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Abstract. We study a mean field Hamiltonian model that describes the collective
dynamics of marginally stable fluids and plasmas in the finite N and N → ∞ kinetic
limit (where N is the number of particles). The linear stability of equilibria in the ki-
netic model is studied as well as the initial value problem including Landau damping.
Numerical simulations show the existence of coherent, rotating dipole states. We ap-
proximate the dipole as two macroparticles and show that the N = 2 limit has a family
of rotating integrable solutions that provide an accurate description of the dynamics.
We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent
structures, and discuss a mechanism of “violent” mixing caused by a self-consistent
elliptic-hyperbolic bifurcation in phase space.

1 Introduction

The study of many-body interacting systems has been a problem of interest in
science for many years. Examples of particular interest include plasmas, hydro-
dynamics, gravitational systems, and coupled dynamical systems. The dynamics
of these systems is self-consistent in the sense that the evolution of a given mem-
ber of the system is determined by the collective effect of all the other members
of the system. Self-consistent dynamics is ubiquitous in nature. For example, in
plasma physics the dynamics of an ensemble of charged particles is determined by
the electromagnetic fields generated by the particles themselves. In gravitational
systems, the dynamics of an ensemble of masses is determined by the gravita-
tional potential created by all the particles in the system. In hydrodynamics, an
ensemble of point vortices evolves under the advection of the velocity field gen-
erated by the vortices themselves. Although the equations governing the above
mentioned systems have been known for quite a long time (e.g., the Lorentz force
and Maxwell’s equations in the case of a plasma) their self-consistent dynamics
is not well-understood. For example, a lot is known about the chaotic dynamics
of a single charged particle in a given, time-dependent electrostatic wave. But,
much less is known about the problem of self-consistent chaos in an ensemble of
charged particles. One of the main goals of this chapter is to study the problem
of self-consistent dynamics and chaos in particular in the context of a simple
Hamiltonian mean field model known as the single wave model (SWM).

The SWM has its origins in the study of the beam plasma instability [27–
29]. More recently, the model has been derived under more general conditions
to describe the weakly nonlinear dynamics of marginally stable Vlasov-Poisson
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systems [10,11]. Other derivations and applications of the SWM include Ref. [9],
the work in Ref. [1] where the mean field–particle Lagrangian of the model was
derived from the full N-body classical mechanics Lagrangian for Coulomb inter-
actions, the study of the model to treat Langmuir turbulence [19], and Landau
damping[17,20]. In a more general setting, single wave models have been used
to study self-consistent Lagrangian transport [12,13], the relationship between
self-consistent chaos and phase space coherent structures [14], finite-amplitude
non-axisymmetric perturbation of vortices [4], critical layer dynamics in shear
flows [5], and free electron lasers [18].

The organization of this chapter is as follows. In the next section we define
the SWM in the finite N and in the N → ∞ limit and discuss the application
of the model to fluids and plasmas. Also, in this section we discuss the rela-
tionship between the SWM and the Hamiltonian mean field model proposed in
Refs. [2,24,6,16]. Section 3 discusses the integrability of the SWM in the finite
N case. In particular, using the symmetries and the conservation laws of the
model, it is shown that the model is integrable in the N = 1 case and in the
N = 2 symmetric case. These integrable solutions are important because they
provide the basic understanding of the coherent structures found in the large
N and kinetic limits of the model. Section 4 presents a symplectic map ver-
sion of the SWM. Section 5 studies the linear theory of the SWM in the kinetic
limit. In particular, we derive the dispersion relation and present a criterion that
gives necessary and sufficient conditions for the stability of a general equilibrium
with a single extremum. In addition, we discuss the initial value problem and
Landau damping. Section 6 shows the construction of exact nonlinear solutions
of the SWM, which are the analogue of the BGK (Bernstein-Greene-Kruskal)
modes in plasma physics [26]. Section 7 is devoted to the study of the role of
self-consistent chaos in the formation of coherent structures . Section 8 discusses
a self-consistent dynamical bifurcation in the SWM that leads to the destruction
of coherent structures and violent mixing of the phase space. The conclusions
are presented in Sec. 8, and a derivation of the SWM from the Vlasov-Poisson
system is presented in Appendix A.

2 The single wave model

The single wave model (SWM) is a Hamiltonian system consisting of an en-
semble of N particles in one-dimension with phase space coordinates (xj , uj),
j = 1, 2, . . . N , such that

dxj

dt
=
∂ H

∂uj
,

duj

dt
= −∂ H

∂xj
, (1)

where

H =
N∑

k=1

[
1
2
u2

k − a(t) eixk − a∗(t) e−ixk

]
, (2)
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da

dt
− iUa =

i

N

N∑
k=1

Γk e
−ixk , (3)

and σ, U and Γj are parameters.
Equation (2) is the Hamiltonian of an ensemble of particles in the potential

of a time-dependent wave with a single harmonic with wave-number κ = 1. The
dynamics of Hamiltonians of this type is well understood in two limits: when
a(t) =constant, and when a(t) is a given function of time. The first case is
fully integrable. In particular, the N particles problem decouples and reduces
to the pendulum problem. In the second case, when a(t) is a given function,
the system also decouples, but, due to the time dependence, the system is in
general not integrable. For example, the case a = cos(ωt) leads to the extensively
studied periodically perturbed pendulum, which has both integrable and chaotic
solutions [25]. The nontrivial aspect of the SWM lays in the fact that the function
a(t), rather than being given a priori, is determined by the dynamics itself. That
is, according to Eq. (3), the dynamics of the particles, xj(t), determines the
dynamics of the field, a(t). In this respect, the SWM is a self-consistent model.

The SWM is a mean field model; it treats the interacting elements of the sys-
tem as independent entities moving in an average field determined self-consistently
from the dynamics of all the elements. Defining

a =
√
J e−iθ , (4)

and writing the SWM as

d2xj

dt2
= − ∂V

∂xj
, V = −2

√
J cos(xj − θ) , (5)

it is clearly seen that the equations governing the dynamics of the N interacting
particles reduce to the equation governing the motion of a single particle under
the effective potential V . That is, the only influence a particle has in the rest
is through its contribution to the effective potential which is determined from
Eq. (3).

In the kinetic limit (N → ∞), the system is described by a phase distribution
function f , evolving according to the Vlasov equation

∂tf + ∂uH ∂x f − ∂x H ∂u f = 0 , (6)

with

H =
u2

2
− a(t) ei x − a∗(t) e−i x , (7)

σ
da

dt
− iUa =

i

2π

∫
e−ix dx

∫
du f . (8)

The extra parameter σ (which in the finite N case was taken to be σ = 1) has
been introduced for convenience when comparing with the HMF (Hamiltonian
mean field model) which corresponds to σ = 0 [2,16].
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Most of the studies of the SWM so far have limited attention to the case
Γk > 0. In fact, early derivations of the model in the context of the beam-plasma
instability considered compact electron equilibrium distributions for which only
positive Γk are acceptable [27,28,1]. However, in the description of generic in-
stabilities of marginal stable plasmas it is possible to have positive and negative
Γk’s [10,13]. In this case the starting point is a marginally stable background
plasma equilibrium density. Perturbations that locally increase the equilibrium
density have Γk > 0 and are called “clumps,” while perturbations that locally
deplete the equilibrium density have Γk < 0 and are called “holes.” In the fluid
dynamics context, the interpretation of the Γk’s is straightforward: Γk is the
circulation of the point vortex k that can be negative or positive. Consideration
of Γk’s with different signs opens a new chapter in the study of mean field cou-
pled Hamiltonian systems from the physical and the dynamical systems point of
view.

The SWM is a universal model describing the dynamics of marginally stable
Vlasov-Poisson systems. By universal we mean that the model describes the
dynamics of a large class of instabilities, and it does not depend on the details
of the long-range interactions involved. In particular the SWM describes the
weakly nonlinear dynamics of Vlasov-Poisson system of the form

∂TF + u ∂XF + ∂u(F0 + F ) ∂XΦ = 0 , (9)

G(k) Φ̃(k, T ) = −
∫ ∞

−∞
F̃ (k, u, T )du , (10)

where the tilde denotes Fourier transform. Appendix A presents a derivation of
the SWM from Eqs. (9)-(10), further details can be found in Refs. [10,11].

In the plasma physics case, according to Poisson equation,

G(k) = k2 , (11)

and Eq. (9) is the kinetic equation for the electron distribution function in a uni-
form neutralizing ion background with F (X,u, T ) denoting the departure from
the equilibrium F0(u) [26]. Here time and space have been normalized using the
electron plasma frequency, ω2

e = 4πn0e
2/m, and the Debye length, λD = V/ωe,

respectively, where e is the electron charge, m is the electron mass, n0 is the
equilibrium plasma density, and V is a chosen velocity scale. The distribution
function, and potential are nondimensionalized with V/n0 and e/(mV 2) respec-
tively, and thus

∫ ∞
−∞ F0 du = 1.

However, the validity of the SWM does not depend on the specific functional
form of G(k). Another important case is

G(k) = 2kcoth(k) , (12)

which corresponds to the vorticity defect model that describes the dynamics of
localized vorticity perturbations in a strong shear flow [3]. In this context, the
Vlasov equation plays the role of the vorticity advection equation, with F + F0

representing the vorticity, and the (x, u) phase space coordinates playing the role
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of the (x, y) spatial coordinates of a two-dimensional incompressible fluid. The
specific form of the function G in this case arises from a matched asymptotic
expansion that divides the fluid in two regions; an outer region dominated by a
constant vorticity Couette flow and an inner region over which the vorticity varies
rapidly. The vorticity defect model provides an interesting link between the SWM
model and fluid dynamics, passing through an analogy with the Vlasov-Poisson
equation. However, as discussed in Refs. [8,21,4,5] the SWM, and generalizations
of it, can be derived directly from the fluid dynamics equations including the two-
dimensional Euler equation and the β-plane equation describing quasigeostrophic
flows.

The HMF model [2,16]

d2xj

dt2
= − ε

N

N∑
k=1

sin(xj − xk) , (13)

is a special case of the single wave model when the first term, da/dt, on the left
hand side of Eq. (3) vanishes, and

U = −2
ε
, Γk = 1 , (14)

where in this case, the mean field a corresponds to the magnetization

M =
1
N

N∑
k=1

eixk =
2
ε
a . (15)

In the kinetic description the HMF model is recovered from Eqs. (6)-(8) when
σ = 0. In this special case, the Hamiltonian in Eq. (6) can be rewritten as

H =
u2

2
+ V (x, t) , ∂2

x V =
ε

2π

∫
dx′

∫
du cos(x− x′) f(x′, u, t) , (16)

which is the kinetic model in [2], except for a trivial 1/(2π) normalization factor.

3 Symmetries, conservation laws, and integrability

Defining

pk = Γk uk , a =

√
J

N
e−iθ , (17)

the SWM model can be written as the N + 1 Hamiltonian system

dxk

dt
=

∂H
∂pk

,
dpk

dt
= − ∂H

∂xk
, (18)

dθ

dt
=
∂H
∂J

,
dJ

dt
= −∂H

∂θ
, (19)
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where the Hamiltonian

H =
N∑

j=1

[
1

2Γj
p2

j − 2Γj

√
J

N
cos(xj − θ)

]
− UJ , (20)

is a function of the canonical conjugate coordinates of the particles (xj , pj), and
the canonically conjugate coordinates of the mean field (θ, J). The invariance
of Hamiltonian in Eq. (20) under time translations, t → t + τ , implies the
conservation of the energy E , which in (xj , uj , a) coordinates can be written as

E =
1
N

N∑
j=1

Γj

(
u2

j

2
− a eixj − a∗ e−ixj

)
+ U |a|2 . (21)

The Hamiltonian is also invariant under space translations (xk, θ) �−→ (xk + α, θ + α),
and this leads to the conservation of the total momentum P

P =
1
N

N∑
j=1

Γj uj + |a|2 . (22)

The first term on the right-hand side of this equation is the momentum of the
particles, and the second term is the momentum of the mean field.

Under the time-dependent canonical transformation

xk → xk + Ut , pk → pk + Γk U , (23)

θ → θ + Ut , J → J , (24)

the Hamiltonian transforms as H → H + U J . Therefore, without loss of gen-
erality we can assume that U = 0. In noncanonical variables, this transforma-
tion corresponds to a Galilean transformation (xk, uk) → (xk + Ut, uk + U),
a → a exp(−iUt).

When U = 0, the Hamiltonian Eqs. (18)-(19) are invariant with respect to
the transformation

(xk, θ, Γk) �−→ (−xk,−θ,−Γk) . (25)

In noncanonical coordinates this transformation corresponds to a reflection of
the particles with respect to the origin in the (xj , uj) space, accompanied by a
change in sign in Γk, and the complex conjugation of the mean field

(xk, uk, Γk, a) �−→ (−xk,−uk,−Γk, a
∗) . (26)

Initial conditions invariant under the transformation in Eq. (26) are called sym-
metric states. In general, an N -particles symmetric state consists of N/2 clumps
(i.e., particles with Γk > 0) symmetrically opposed to N/2 holes (i.e., particles
with Γk < 0) that is

(xj , uj) = −(xj+N/2, uj+N/2) , Γj = −Γj+N/2 , ai = 0 (27)
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where j = 1, . . . N/2, and ai is the imaginary part of the mean field that vanishes
because a = a∗. Because the equations are invariant under this transformation,
symmetric states remain symmetric for all time, and thus a symmetric state with
N particles can be effectively regarded as a system with N/2 particles.

In general, a state with N particles is a N+1 degrees-of-freedom Hamiltonian
system, and according to the Liouville-Arnold theorem, integrability requiresN+
1 constants of motion. The only known constants of motion are the momentum
and the energy and thus the N + 1 = 2 system consisting of one particle in
the mean field is integrable [29]. Because in general there are no other known
constants of motion, this seems to be the only fully integrable case of the single
wave model. The following subsection discusses this solution. However, when
limiting attention to symmetric states the N = 2 system is also integrable [14].
In this case, the system has N/2+1 = 2 degrees of freedom and, as described in
subsection 3.2, use of the momentum conservation law allows the integration of
the solution. The main role of SWM is to describe the mean field interaction of
systems composed of a large, or even infinite, number of particles. In this regard
the integrability of the model in the N = 1 and N = 2 cases might seem like
an academic issue. However, this is not the case. As we will discuss in Sec. 7,
these low degree of freedom integrable solutions provide the key elements for the
description of coherent states with N 
 1 and N → ∞.

3.1 Integrability of the N = 1 model

When there is only one particle, the single wave Hamiltonian has two degrees
of freedom, one for the particle and one for the wave. Using the momentum
conservation law, the problem can be reduced to one degree of freedom [29]. To
do this, we define q = x − θ, substitute the expression for the momentum P in
Eq. (20) with N = 1 and get

H =
1

2Γ
p2 − 2Γ

√
P − p cos q . (28)

Since this Hamiltonian is time-independent, and it has only one degree of free-
dom, it is completely integrable. In particular, the particle orbits in the phase
space follow the constant energy contours, H = constant.

The fixed points of the Hamiltonian (28), defined by the condition

q̇ =
∂H

∂p
= 0 , ṗ = −∂H

∂q
= 0 , (29)

are determined by the solutions of

sin q = 0 , p
√
P − p+ Γ 2 cos q = 0 . (30)

The first equation has two solutions q = 0 and q = π. In the first case there is
only one solution of the second equation in (30) for p. In the second case, when
q = π, there are no solutions for p, except when

3
41/3

<
P

Γ 4/3
, (31)
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in which case there are two solutions for p. Thus, as shown in Fig. 1, there is
a fixed point at (0, p0) with p0 < 0; and, if condition (31) is satisfied, there are
two other fixed points at (π, p1), and (π, p2).

The stability of the fixed points is determined by linearizing the equations of
motion. Doing this, we conclude that (π, p1) is stable and (π, p2) unstable. The
fixed point at (0, p1) is stable, and it corresponds to a particle oscillating at the
bottom of the potential with oscillation frequency

ω2 = 2
√
P − p0

[
1 +

Γ 2

2 (P − p0)3/2

]
. (32)

3.2 Integrability of N = 2 symmetric states

To construct symmetric integrable solutions, consider an N = 2 state consisting
of one clump and one hole with Γ1 = −Γ2 = Γ , U = 0, and symmetric initial
conditions x1(0) = −x2(0), u1(0) = −u2(0), and a(0) = a∗(0). Substituting
x1(t) = −x2(t) = x(t), u1(t) = −u2(t) = u(t) and a(t) = a∗(t) into Eqs. (1)–(3),
we get

dx

dt
= u ,

du

dt
= −2 a sinx ,

da

dt
= Γ sinx . (33)

This system of three ordinary differential equations can be reduced to a two-
dimensional integrable system using the conservation of momentum

P = Γu+ a2 . (34)

-2 0 2
-5

-4

-3

-2

-1

0

1

2

3

 x- θ

p

(a)

-2 0 2
-5

-4

-3

-2

-1

0

1

2

3

 x- θ

p

(b)

Fig. 1. Phase space of reduced, N = 1, single wave model Hamiltonian in Eq. (28).
Panel (a) shows the case Γ = 1, P = 1, and panel (b) shows the case Γ = 1, P = 2. In
both cases, the stable fixed point at x−θ = 0 corresponds to the particle at the bottom
of the single-wave potential. Consistent with Eq.(31), in case (b) there is a stable and
an unstable fixed point at x − θ = π.
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In this case, the conservation of energy is of no use because for symmetric states
the energy vanishes identically, E = 0.

For the two-dimensional reduction, we take x and a as basic variables. Solv-
ing for u in Eq. (34) and substituting the result in (33), we conclude that the
dynamics of the (x, a) variables is governed by the Hamiltonian system

dx

dτ
=
∂H

∂A
,

dA

dτ
= −∂H

∂x
, (35)

with Hamiltonian

H = αA− A3

3
+ cosx , (36)

where we have introduced the rescaled variables

A = aΓ−2/3 , τ = Γ 1/3 t , α = PΓ−4/3 . (37)

Once A and x are found, u is determined from

u =
P
Γ

(
1 − A2

α

)
. (38)

Since the Hamiltonian (36) is time independent, the system is completely inte-
grable and the orbits follow the contours H =constant.

As shown in Fig. 2, when α < 0, the system (35) has no fixed points, and
when α > 0 the system has four fixed points: (x0, A0) = (0,

√
α) , (0,−√

α),
(π,

√
α), and (π,−√

α), with eigenvalues λ = ±iω0, λ = ±ω0, λ = ±ω0, and
λ = ±iω0, respectively, where

ω0 =
√

2α1/4. (39)

That is the elliptic and hyperbolic fixed points come in pairs since the equations
of motion Eq. (35) are invariant under the transformation (x, a) �−→ (x+π,−a).
The value α = 0 is the bifurcation point at which an elliptic-hyperbolic pair is
created at x = 0, and another elliptic-hyperbolic pair is created at x = ±π. A
perturbative solution of the equations of motion of the Hamiltonian (36) gives a
a nonlinear correction to the rotation frequency

ω =
[
1 −

(
5 + 9λ

12

)
ε2

]
ω0 , λ =

(
α

α∗

)3/2

, (40)

and

A(τ) =
ω2

0

2

[
1 − 2 ε cosω τ − ε2

(
1 − 2

3
cosωτ − 1

3
cos 2ω τ

)]
, (41)

x(τ) = ω3
0

[
ε sinω τ − ε2

3
(sinω τ + sin 2ω τ)

]
, (42)

where

ε =
√
α−A(0)
ω2

0

� 1 , (43)
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is a small parameter measuring the departure of the initial condition (x(0), A(0))
from the (

√
α, 0) elliptic fixed point. The interested reader should refer to [14]

for the details of the calculation.

As observed in Fig. 2, for different values of α, the phase space topology
of the H =constant contours change. These global bifurcations are caused by
separatrix reconnection. In a Hamiltonian system a separatrix is a distinguished
orbit that joins the unstable and stable manifolds of hyperbolic points. Separatrix
reconnection corresponds to the different ways in which the hyperbolic points
can connect. In panel (b) of Fig. 2 the separatrices join the unstable and stable
manifolds of the same point, whereas in panel (c) the separatrices reconnect and
join different hyperbolic points. The reconnection threshold can be obtained
from the condition H(P0) = H(Pπ), where P0 = (0,−√

α), and Pπ = (π,
√
α).

This condition gives α∗ = (3/2)2/3. For α < α∗, the H =constant contours
have the homoclinic topology of Fig. 2-(b), and for α > α∗ the heteroclinic
topology of Fig. 2-(c). Using (37) the separatrix reconnection bifurcation can be
parametrized in terms of the momentum of the system according to

P <

(
3Γ 2

2

)2/3

Homoclinic , P >

(
3Γ 2

2

)2/3

Heteroclinic , (44)

with P = (3Γ 2/2)2/3 giving the reconnection threshold. Further discussion on
separatrix reconnection can be found in Ref. [15].

-2 0 2
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(a)

-2 0 2
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-2
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x

A
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-2 0 2

-2

0

2

x

A
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Fig. 2. Phase space of reduced, N = 2, single wave model Hamiltonian in Eq. (36).
Panel (a) α = −0.2, (b) α = 0.5, (c) α = (3/2)2/3, and (d) α = 1.95. In (a) there are
no fixed points, case (c) corresponds to the separatrix reconnection threshold, case (b)
shows the homoclinic topology, and case (d) the heteroclinic topology.
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4 Symplectic map formulation

Symplectic maps arise naturally in the study of Hamiltonian systems. A well-
known example is the standard map which is an area preserving transformation
of the (q, p) plane defined as

qn+1 = qn + pn+1

pn+1 = pn − κ sin qn , (45)

where (qn, pn) are phase space coordinates at the discrete time n, and κ is a
parameter. The main advantage of maps rests in their relative mathematically
simplicity, compared with the time-continuous Hamiltonian systems. Whereas
continuous dynamical systems can be time-consuming to integrate numerically,
especially for very long times and many initial conditions, maps are very effi-
cient. Another advantage is that maps are relatively simpler to study analytically
than their continuous analogues. Because of this, maps are useful to carry out
numerical studies of asymptotic properties of Hamiltonian systems.

In this section we discuss a map that is the discrete version of the single wave
model. Given a set of differential equations, a map can be obtained by discretizing
the time derivatives. However, in the case of Hamiltonian systems, special care
must be taken to preserve the symplectic nature of the dynamics. For example,
the standard map can be obtained from the time-discretization of the equations
of motion of a pendulum, but whereas the map in Eq. (45) is an area preserving
transformation, other discretization might not be. One way of to guarantee that
a map will be symplectic is to define it using a generating function. Let (qn,pn)
denote the canonical conjugate coordinates of an M -dimensional Hamiltonian
system at time n. Then, the transformation (qn,pn) → (qn+1,pn+1) defined by

qn+1 =
∂S

∂pn+1
, pn =

∂S

∂qn
(46)

defines a symplectic map with generating function S = S(qn,pn+1). Equa-
tion (46) defines a canonical transformation, consistent with the fact the evolu-
tion of a Hamiltonian system is a canonical transformation.

Let qn = (xn
1 , x

n
2 , . . . x

n
N , θ) and pn = (pn

1 , p
n
2 , . . . p

n
N , J) denote the canonical

conjugate coordinates of the single wave model Hamiltonian at time n, and define

S =
N∑

j=1

[
xn

j p
n+1
j +

τ

2Γj

(
pn+1

j

)2 − 2 τ
√
Jn+1 Γj cos

(
xn

j − θ
)]

+θn Jn+1 . (47)

Substituting this generating function into Eq. (46) we get the symplectic map

Xn+1
k = Xn

k +
(
τ

Γk

)
pn+1

k (48)

pn+1
k = pn

k − 2τΓk

√
Jn+1 sin(Xn

k −Θn) (49)
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Θn+1 = Θn − τ√
Jn+1

N∑
j=1

Γj cos(Xn
j −Θn) (50)

Jn+1 = Jn + 2τ
√
Jn+1

N∑
j=1

Γj sin(Xn
j −Θn) , (51)

for k = 1, 2, . . . N . As expected, this map is a symplectic, time-discretization
of the single wave model equations of motion defined in Eqs. (18)-(20), where
without loss of generality we have assumed that U = 0.

The momentum of the system at time n is

Pn =
N∑

j=1

pn
j + Jn , (52)

and the conservation of momentum in the SMW implies the conservation of the
momentum in the map

Pn+1 = Pn . (53)

On the other hand, whereas the continuous model conserves the energy E , in
the map the energy is only conserved to first order in the map parameter τ .
In general, energy conservation is problematic with maps because of the time
discretization.

To simplify the notation we define:

xn
k = Xn

k , yn
k =

(
τ

Γk

)
pn

k , θn = Θ , κn = 2τ2
√
Jn , (54)

γk = 2τ3 Γk , Ω = Uτ , ηn =
N∑

j=1

γj sin
(
xn

j − θn
)
, (55)

and write the SWM map as

xn+1
k = xn

k + yn+1
k , (56)

yn+1
k = yn

k − κn+1 sin (xn
k − θn) , (57)

κn+1 =
√

(κn)2 + (ηn)2 + ηn , (58)

θn+1 = θn −Ω +
1

κn+1

∂ ηn

∂θn
. (59)

Note that in doing this we have gone from the implicit Jn map in (51) to the
explicitly κn map in (59). Comparing Eq. (45) with Eqs. (56)-(59) one observes
that the SWM map has the structure of an ensemble of standard maps cou-
pled through a mean field with amplitude κn and phase θ. Whereas in the
standard map, the parameter κ is fixed, in the SWM map this parameter is
self-consistently coupled to the dynamics of the particles [13].
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5 Kinetic linear theory: stability and Landau damping

In this section we return to the kinetic description of the single wave model. An
important problem in kinetic theory is the stability of solutions. The simplest
problem is the linear stability of solutions of the form f = f0(u), a = 0. To study
this problem we substitute

f = f0(u) +
∞∑

n=−∞
ψn(u, t) einx , a = a1(t) (60)

into Eqs. (6)-(8), neglect the nonlinear terms, and get the linear stability equa-
tions

∂tψn + inuψn + iδn,±1 f
′
0 a1 = 0 , (61)

σ
da1

dt
− iUa1 = i

∫ ∞

−∞
ψ1(u, t)du . (62)

Assuming a normal mode solution,

ψn(u, t) = ξn(u) e−ict a1(t) = ρ e−ict , (63)

we get from (61) the eigenfunctions

ξn(u) = − ρf ′
0

u− c
δn,±1 , (64)

and the dispersion relation

D(c) ≡ σc+ U −
∫ ∞

−∞

f ′
0

u− c
du = 0 , (65)

where c = cr + ici.
An equilibrium solution f = f0(u), a = 0 is linearly stable with respect to

normal mode perturbations if and only if there are no solutions of Eq. (65) with
ci > 0. As an illustrative example, a normalized Lorentzian equilibrium with
“temperature” T = 1/β

f0 =
√
β

π

1
1 + β u2

. (66)

In this case the integral can be calculated using the Cauchy residue theorem,
and it is concluded that the equilibrium is unstable if and only if ε > 2/β, in
which case

c = ±i
(√

ε

2
− 1√

β

)
. (67)

In the previous examples, the integral of the dispersion relation was easy to
compute. However, in general this is not the case, and it is important to derive
general stability criteria to determine the stability of equilibria without the need
of explicitly solving the dispersion relation. In Ref. [11] the Nyquist method was
used to derive stability criteria for general equilibria. Here we quote the result
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for the case of equilibria with a single extremum; the interested reader can find
further details in Ref. [11]. An equilibrium f0 with a single maximum at u = u1

is unstable if and only if

u1 + U +
∫ ∞

−∞

f0(u1) − f0(u)
(u1 − u)2

du > 0 . (68)

If the extremum is a minimum the inequality sign is reversed. In the HMF model
case, Eq. (16), an equilibrium f0(u) with a single maximum at u = 0 is unstable
if and only if

2 < ε

∫ ∞

−∞

f0(0) − f0(u)
u2

du . (69)

As a particular example, consider a Gaussian distribution with temperature
T = 1/β

f0(u) =

√
β

2π
exp

(
−β u2

2

)
. (70)

In this case we have that the equilibrium is unstable if and only if

ε >
2
β
. (71)

That is, decreasing the temperature or increasing the coupling leads to instabil-
ity.

5.1 High frequency oscillations

In a way similar to what is done in a Vlasov-Poisson plasma, one can look for
pure real solutions of the dispersion relation for a general distribution f0(u) with
temperature T =< u2 > in the limit

T � c2 . (72)

This is the analogue of the Langmuir waves in plasma physics. In this case,
assuming f0(u) = 0 for |u| > u∗, the integral in the dispersion relation can be
expanded as∫ ∞

−∞

f ′
0

u− c
du ≈

∫ u∗

−u∗

f0

(u− c)2
du ≈ 1

c2

∫ u∗

−u∗

f0

(
1 +

2u
c

+
3u2

c2
. . .

)
du , (73)

doing the integrals
σc3 + Uc2 − 1 − 3(T/c2) = 0 . (74)

In the SWM case, σ = 1, U = 0, we can solve this equation by a perturbation
expansion in T/c2 to get

c = (3T + 1)1/3 . (75)
In the σ = 0, HMF model case, Eq. (16), a perturbative solution of the dispersion
relation gives

c = 3T − ε/2 , (76)
which generalizes the result reported in [2] for the case of a “water-bag” equi-
librium distribution. Equations (75) and (76) are the analogue of the Langmuir
waves dispersion relation.
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5.2 Initial value problem and Landau damping

When n �= ±1 the solution of (61) with initial condition ψn(u, t = 0) = ψn(u, 0),
a1(t = 0) = a(0), is ψn(u, t) = ψn(u, 0) exp(−inut), and f(x, u, t) simply phase
mixes. The general solution for n = ±1 is slightly more complicated but it can
be obtained in the same way as it is done for the Vlasov-Poisson equation by
introducing the Laplace transforms

ψ̂(u, p) =
∫ ∞

0

ψ(u, t)e−ptdt , â(p) =
∫ ∞

0

a(t)e−ptdt , (77)

where p = pr + ipi. The convergence of the integrals in (77) requires pr ≥ p0,
where p0 is a real number.

Substituting (77) into (61) and solving for â, we get

â(p) =
N(p)
D(p)

, (78)

where

N(p) = iσa(0) + i

∫ ∞

−∞

ψ(u, 0)
u− ip

du , D(p) = iσp+ U −
∫ ∞

−∞

f ′
0(u)

u− ip
du(79)

Knowing N(p) and D(p), the mean field a is obtained by inverting the Laplace
transform

a(t) =
1

2πi

∫ p0+i∞

p0−i∞

N(p)
D(p)

eptdp , (80)

where the integration is along the Bromwich contour, which is a straight line
parallel to the imaginary axis in the complex p-plane and located to the right of
the abscissa of convergence. The evaluation of the integral in (80) is simplified
by deforming the contour to the left-half of the complex p plane and using the
Cauchy residue theorem. However, doing this requires the analytic continuation
of the functions D(p) and N(p), originally defined for p ≥ p0, into the entire
complex plane. One way of performing this analytic continuation is following
the Landau prescription according to which the integrals in D and N should be
viewed as integral in the complex u-plane and evaluated along a contour that
should always pass below the singularity u = ip regardless of the sign of pr. As in
the case of the Vlasov-Poisson system, this prescription allows the determination
of the asymptotic value of the integral in (80) and leads to the conclusion that for
stable equilibria, f0(u), the mean field exhibits decay known as Landau damping
[23,26]. However, as in the plasma and fluid dynamics cases, one should be aware
of technical difficulties that can lead to more general time asymptotic behavior
[30,3]. Here we limit attention to an analytical tractable example that illustrates
Landau damping in the context of the HMF model.

The equilibrium considered is the normalized Lorentzian distribution in Eq. (66).
In this case, the integral in (79) can be easily computed and analytically contin-
ued giving:

D(p) = −2β
ε

(p− p+)(p− p−)
(
√
β p+ 1)2

, p± = ±
√
ε

2
− 1√

β
. (81)
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For a perturbation of the form

ψ1(u, 0) =
1

1 +∆u2
, (82)

a similar calculation leads to

N (p) = − π

1 +
√
∆p

. (83)

Substituting (81) and (83) into (80) we get

a(t) = − i ε

4β

∫ p0+i∞

p0−i∞

(
√
β p+ 1)2 ept

(1 +
√
∆p)(p− p+)(p− p−)

dp , (84)

which can easily be evaluated using the Cauchy residue theorem giving, for
β = ∆,

a(t) =
ε π

4
√
β

(
ep+t − ep−t

)
. (85)

Figure3 shows a(t) in (85) for ε = 2 and β = 0.5, 1 and 1.3. According to (67)
the Lorentzian equilibrium (66) is unstable if and only if ε > 2/β. Thus, as
expected, case β = 1.3 in Fig. 3 exhibits a transient followed by an exponential
growth due to the linear instability. For β = 0.5 the equilibrium is stable, and
following a transient growth, the mean field Landau damps. The case β = 1 is
the marginal value and gives rise to a neutral oscillation of the mean field.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

t

a

β=0.5

β=1

β=1.3

Fig. 3. Instability and Landau damping in the HMF model limit of the SWM model
for the Lorentzian equilibrium in Eq. (66) and Lorentzian perturbation of the form in
Eq. (82) with ε = 2 and ∆ = β. The critical value of β in this case is β = 1. For
β > 1 the equilibrium is linearly unstable. For β < 1 the equilibrium is stable, and the
perturbation exhibits Landau damping.
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6 Kinetic nonlinear solutions

The kinetic limit of the SWM, Eqs. (6)-(8), admits a large class of exact nonlinear
solutions, which are the analogue of the BGK modes for the Vlasov-Poisson
system [10,11]. To construct these solutions, we substitute

f = f(ξ, u), a = ρ eiδ−ict , (86)

into Eqs. (6)-(8), where ξ = x− c t and get

∂(H, f)
∂(ξ, u)

= 0 (87)

∫ ∞

−∞
du

∫ 2π

0

dξ f(H) e−iξ = −2π(U + σc) ρ ; (88)

where
H =

1
2
(u− c)2 − 2ρ cos ξ . (89)

Any function of the form f = f(H) is a solution of Eq. (87). However, f = f(H)
will be a self-consistent solution of (8), only if Eq. (88) is also satisfied. As an
example, consider the normalized Gibbs distribution

f(H) =
e−βH

λ
, (90)

where λ = 〈e−βH〉 is a normalization factor. In this case the self-consistent
condition leads to

ρ(U + σc) = −I1(2β ρ)
I0(2β ρ)

, (91)

where I1(z) is the modified Bessel function of order one [10,11]. In the σ = 0,
HMF model case, Eq. (16), the solution (91) reduces to the one reported in [24].

M =
I1(εβM)
I0(εβM)

, (92)

where M is the magnitude of the magnetization.

7 Self-consistent chaos and coherent structures

The spontaneous formation of coherent structures is commonly observed in ex-
periments and numerical simulations in hydrodynamics and plasmas. Coherent
structures are also routinely observed in planetary flows (e.g., the Jupiter’s red
spot.) These structures typically coexist with a turbulent background, and a
problem of interest is to explain their robustness with respect to the chaotic
transport induced by the background. The goal of this section is to study this
problem in the context of the SWM.
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The existence of phase space coherent structures in large degrees-of-freedom
Hamiltonian systems is in principle puzzling because coherence requires some
degree of integrability, which one might expect to lose as the number of degrees of
freedom increases. However, as we will discuss in this section, there are situations
in which mean field self-consistent systems exhibit an effective reduction of the
number of degrees of freedom, which leads to coherent behavior.

As in the finite N case, the dependence on U in the kinetic description can be
removed by a Galilean transformation, and when U = 0 the system is invariant
under the transformation

(x, u, f, a) �−→ (−x,−u,−f, a∗) . (93)

In the kinetic limit, a symmetric state is defined by the condition

f(x, u, t) = −f(−x,−u, t) , a(t) = a∗(t) , (94)

Figure 4 shows an example of a rotating dipolar coherent structure. This
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u
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x
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Fig. 4. Rotating dipole obtained from the numerical integration of the kinetic single
wave model Eqs. (6)–(7) with initial condition in Eqs. (95)–(96). White corresponds
to f > 0 (clump), and black to f < 0 (hole). The panels show the dipole at t =
0, ∆, 2∆, . . . 7∆, where ∆ = 1.237 and 7∆ = 8.66 is the rotation period of the dipole
[14].

state was obtained by integrating numerically the SWM in the kinetic limit,
Eqs. (6)-(8), with a symmetric initial condition consisting of a Gaussian dis-
tributed hole-clump pair:

f(x, u, t = 0) = f1 − f2 , a(t = 0) = a0 , (95)
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Fig. 5. Real part of mean field a as function of time corresponding to the coherent
rotating dipole solution shown in Fig. 4. The imaginary part of a vanishes identically
for all t in this case [14].

where

fj = γ exp

[
−

(
x− xj

σx

)2

−
(
u− uj

σu

)2
]
, (96)

γ = 5, x1 = x2 = π, u1 = −u2 = 0.4, a0 = −0.2, σx = 0.2, σu = 0.1, and
U = 0. As the figure illustrates, the structure rotates maintaining its coherence.
Figure 5 shows the evolution of the real part of the mean field a(t). Because this
is a symmetric state, the imaginary part of a is identically zero. Figure 6 offers
a three-dimensional perspective of the hole-clump pair together with a contour
plot of the mean field Hamiltonian

H =
u2

2
− a(t)eix − a∗(t)e−ix , (97)

at a fixed time. As the figure shows, the dipole is trapped in the mean-field
potential and rotates around the stable fixed point (x, u) = (π, 0) . As expected
by self-consistency, the rotation period of the dipole is close to the period of the
mean field.

Kinetic simulations always introduce some sort of dissipation due to the
coarse graining of filamentary structures with a scale beyond the resolution of
the numerical method. Because of this, the relationship between very large N
discrete particle simulations, which are in principle conservative, and kinetic re-
sults might not always be trivial. To explore this issue in the dipole problem,
we integrated the finite N SWM model with an initial condition consisting of a
discretization of f in Eqs. (95)-(96) with N = 1000 (half holes and half clumps)
and the appropriate values of Γk. In this case, there is not any significant dif-
ference between the finite N and the kinetic phase space evolution. However, in
the finite N case, the rotation period of the mean field is slightly smaller [14].
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f

x

u

Fig. 6. Three dimensional perspective of a hole-clump dipole in the single wave model.
The dipole is trapped in the mean-field potential and rotates around the stable fixed
point (x, u) = (π, 0) of the mean-field Hamiltonian.

7.1 Macroparticle description

The coherence of the dipole suggests the description of the system as two “macropar-
ticles,” one representing the hole and another the clump. The macroparticle rep-
resentation is a sort of renormalization process in which a group of particles with
different values of Γk are replaced by one with an effective Γ . For the kinetic
initial condition in Eqs. (95)-(96) the effective Γ for the clump is simply

Γ =
1
π

∫ ∫
f1 dxdu = γ σxσu , (98)

and for the hole is −Γ . The macroparticle representation provides a link between
systems with large (or infinite) N , and systems with small N , say N = 1, or 2. In
particular, according to the results discussed in Sec. 3.2, the rotation period of a
symmetric hole-clump system is T =

√
2π/P1/4 where P is the momentum of the

N = 2 system. The momentum of the kinetic initial condition in Eqs. (95)-(96)
is

P =
1

2π

∫ ∫
f u dxdu + |a|2 = γ u1σxσu + |a0|2 , (99)
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which, according to the macroparticle description, gives the following expression
for the rotation period of the kinetic dipole

T =
√

2π
P1/4

=
√

2π

(γ u1σxσu + |a0|2)1/4
. (100)

For the parameter values used in Fig. 4, Eq. (100) gives T = 8.35 close to the
period T = 8.66 according to Fig. 5. Equation (40) provides a second order
correction of the kinetic dipole rotation period in Eq. (100). To compute this
correction note that for the initial condition in Eqs. (95)–(96)

λ =
2

3γ2σ2
xσ

2
u

(γu1σxσu + |a0|)3/2
, (101)

which for the parameter values used in Fig. 4, gives λ = 1.5084. In the evaluation
of ε in Eq. (43) we have to take the negative sign of

√
α because a(0) = −0.2 < 0.

Doing this, we get ε = 0.146 and ω = 1.566, which gives T = 8.64; a value
remarkably close to the period T = 8.66 according to the numerical results
in Fig. 5. Using Eqs. (98), the value of α = PΓ−4/3 can be computed, and the
topology of the reduced nontwist Hamiltonian of the macroparticles determined.
In particular, for the kinetic simulation in Fig. 4, α = 1.7235 > α∗, which
corresponds to the heteroclinic topology.

A rotating dipole creates a time periodic self-consistent mean field. In dynam-
ical systems, it is well known that time periodic Hamiltonian systems typically
give rise to chaos1 and an important problem is to understand the effect of chaos
in the dipole. To this end, consider the evolution of “test” particles with phase
space coordinates (q, q̇) in the mean field of the rotating dipole

d2q

dτ2
= 2A(τ) sin q , (102)

where A is give by Eq. (41).
Panel (a) of Fig. 7 shows a snapshot of the rotating dipole at time τ0, and

panel (b) shows a Poincare section of the system in Eq. (102) with A(τ0 + T ) =
A(τ0) where T is the fundamental period of the self-consistent mean field. As it
is usually the case in Hamiltonian systems, the perturbation gives rise to chaos
in the separatrix region. However, in this region the distribution function f is
negligible and so is the effect of chaos. On the other hand the perturbation
creates islands of stability that “shield” the hole and the clump from the chaotic
region. As the dipole rotates, the phase of the Poincare section changes and the
islands of integrability follow the motion of the coherent structure.

7.2 Parametric resonance

The frequency of the self-consistent mean field is close to the rotation frequency
of the dipole, and there is the possibility of parametric resonance. To explore
1 We say typically because there are special cases in which the time dependence in

the Hamiltonian can be eliminated with an appropriate time-dependent canonical
transformation.
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Fig. 7. The top panel show contour plots of the rotating dipole solution at a fixed time
along with the contour lines of the Hamiltonian in Eq. (2). The panel on the bottom
shows a Poincare section in the mean field of the rotating dipole solution.

the effect of this resonance in the coherence of the dipole, consider a symmetric
state with N particles, N/2 holes, and N/2 clumps, and define the center of
mass coordinates

x̄ =
2
N

N/2∑
j=1

Γj xj , ū =
2
N

N/2∑
j=1

Γj uj . (103)

Substituting Eq. (103) into Eq. (1), and assuming xj � 1 we have

dx̄

dt
= ū ,

dū

dt
= −2 a sin x̄ ,

da

dt
= sin x̄ . (104)

Comparing with Eq. (33), it is concluded that, in this approximation, the evolu-
tion of the center of mass of the hole-clump dipole is described by the integrable
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N = 2 system. Let
qj = xj − x̄ , pj = uj − ū (105)

be the relative coordinates with respect to the center of mass. Substituting
Eq. (105) into Eq. (1) we have

dqj

dt
= pj ,

dpj

dt
= − (2a cos x̄) qj . (106)

Approximating x̄ ≈ 0, and using the mean field equation, we conclude that the
relative position evolves according to the Mathieu equation

d2qj

dτ̂2
+

[
1 + 2

(
5 + 9λ

3

)
ε2 − 2 ε cos τ̂

]
qj = 0 . (107)

The stability properties of this Mathieu equation are well-understood. In partic-
ular, the equilibrium solution (q, dq/dτ̂) = (0, 0) is stable if λ > 5/9 and unstable
if λ < 5/9; see for example Ref. [22]. In terms of the parameter α, the dynamics
of the relative coordinates is stable if and only if

α > αb = (5/6)2/3 . (108)

Figure 8 illustrates this transition.
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Fig. 8. Poincare sections in the (qj , q̇j) –plane of Eq. (107), illustrating the bifurcation
of the stability properties of the origin due to parametric resonance. In (a) α = 2, and
in (c) α = 0.2. Panel (b) corresponds to the bifurcation point α = αb = (5/6)2/3 =
0.8855 according to Eq.(108). To ease the comparison with the Fig. 7, we have shifted
qj → qj + π.
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Fig. 9. Elliptic-hyperbolic bifurcation generated by a trapped N = 2 rotating hole-
clump system.

8 Violent mixing

The SWM Hamiltonian for a symmetric state

H =
N∑

j=1

[uj

2
− 2a(t) cosxj

]
, (109)

has fixed points at (xj , uj) = (0, 0) and (π, 0). The stability of these fixed points
depends on the sign of the mean field a. If a > 0, (0, 0) is stable (elliptic) and
(π, 0) is unstable (hyperbolic). However, if a < 0, (0, 0) is unstable (hyperbolic)
and (π, 0) is stable (elliptic). Thus, a change in the sign of a implies an elliptic-
hyperbolic bifurcation. An example of this bifurcation is illustrated in Fig. 9
where we have plotted the evolution of an N = 2 hole-clump pair together
with the instantaneous location of the separatrix of the Hamiltonian in phase
space. Because of the mean field nature of the model, it is irrelevant which phase
space plane one chooses because (xk, uk) evolves under the same Hamiltonian
for all k. As the hole-clump rotates, the width of the separatrix decreases and
eventually vanishes. At this point, panel (c), an elliptic-hyperbolic bifurcation
occurs leading to the creation of an hyperbolic point at the origin as shown
in panel (d). As the hole-clump rotates the separatrix grows, and once again
eventually decreases and vanishes, leading to another bifurcation that restores
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the elliptic point at the origin. In this case, this sequence of bifurcations repeats
indefinitely because the mean-field is periodic and changes sign twice during one
rotation period of the dipole.
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Fig. 10. Dipole destruction due to mean-field elliptic-hyperbolic bifurcation.

An elliptic-hyperbolic bifurcation occurs whenever the mean field vanishes.
Whether or not this happens during the evolution of the system depends on
the initial conditions and the parameter values of the system. The symmetric
N = 2 system is particularly simple to understand. As discussed previously,
this system is integrable, and the clump orbits follow the iso-contours of the
nontwist Hamiltonian (36) in the (x,A) space shown in Fig. 2. In this case, the
orbits that exhibit elliptic-hyperbolic bifurcations are those that cross the A = 0
dashed line. Consider an orbit with initial condition (x0, u0) that exhibits an
elliptic-hyperbolic bifurcation when it is at (xb, ub). Because the Hamiltonian is
a constant of motion, H = αA0 − A3

0/3 + cosx0 = cosxb. Using the fact that
−1 < cosxb < 1, we get the following condition for the bifurcation to occur [14]:

−1 < αA0 −
A3

0

3
+ cosx0 < 1 . (110)

Assuming for the sake of simplicity that x0 = 0 and using the definition of α in
(37) we can write this condition as in terms of the initial conditions a0 = a(0),
u0 = u(0), and the value of Γ

−6Γ 2 < 3Γu0 a0 + 2 a3
0 < 0 . (111)

In the case N 
 1, and in the kinetic limit, the elliptic-hyperbolic bifurcation
can lead to the destruction of phase space coherent structures. For example,
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panel (a) in Fig. 10 shows the initial condition in Eq. (95) consisting of two
symmetric Gaussian-distributed holes and clumps with γ = 12, x1 = π, x2 = π,
u1 = −u2 = −0.4, and a0 = −0.36. This is the same initial condition as the one
used in Fig. 4 except that the value of γ has been increased. Note also that the
dipole in Fig. 10-(a) is rotated by π, and that there is a corresponding phase shift
in a(t). At the beginning the dipole rotates around (x, y) = (π, 0), but eventually
an elliptic-hyperbolic bifurcation occurs and the dipole is destroyed and filaments
along the unstable manifolds of the hyperbolic point. At this point, to follow the
evolution of this system, it is more convenient to resort to finite–N particle
simulations. In these simulations, it is observed that the dipole filamentation
due to the elliptic–hyperbolic bifurcation is followed by the chaotic mixing of
the holes and clumps in the stochastic layer of the mean field [14].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Violent relaxation of far from equilibrium initial condition. The different pan-
els, show the phase space at t = 0, 2.5, 5, 10, 17.5, 30, 32.5, 40, 100.

Hyperbolic-elliptic bifurcations can occur in more general settings and they
lead to a very rapid mixing of far from equilibrium initial conditions. An ex-
ample is shown in Fig. 11 where, after several successive elliptic-hyperbolic bi-
furcations, the system relaxes to a coherent state consisting of two untrapped
dipoles traveling in opposite directions. In this case, the mean field, shown in
Fig. 12, vanishes several times during a transient phase, and then it relaxes to a
near periodic state. The relaxation of far from equilibrium states in systems with
long-range interactions is a problem of interest in hydrodynamics, plasmas and
galactic dynamics, and several models have been discussed in the literature as
potential mechanisms. The elliptic-bifurcation discussed above is a novel mixing
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Fig. 12. Mean field a(t) corresponding to the simulation in Fig. 11. The vanishing of
a gives rise to elliptic-hyperbolic bifurcations in the phase space.

mechanism which in the SWM leads to “violent relaxation”. We use here the
term violent relaxation (a term originally introduced in galactic dynamics) to
distinguish this kind of mixing from other milder phase space mixing mechanisms
including phase mixing and chaotic mixing.

9 Conclusions

We have presented a study of the single wave model which is a mean field Hamil-
tonian model that describes the weakly nonlinear dynamics of fluids and plasmas.
The relative mathematical simplicity of the model makes it a tractable system to
study the dynamics of large degrees-of-freedom, long-range interacting systems.
Understanding the coexistence of coherent structures and self-consistent Hamil-
tonian chaos is a problem of interest to fluid dynamics, plasma physics, galactic
dynamics, and statistical mechanics. Two-dimensional, incompressible fluids and
plasmas are known to develop large–scale coherent structures that live in a tur-
bulent background. From a dynamical systems point of view, the problem is to
explain the self-consistent formation of islands of integrability that shield the
coherent structures from the chaotic mixing of the background. In this chapter
we have shown that in the SWM there is a self-consistent parametric resonance
between the rotation frequency of the dipole and the frequency of the mean field.
This resonance creates islands of stability that shield the dipole from the chaotic
transport of the background. A problem complementary to the formation of co-
herent structures is the problem of “violent” mixing and relaxation of far from
equilibrium initial conditions. We have shown that in the SWM the mean field
can exhibit hyperbolic-elliptic bifurcations in the phase space that lead to very
rapid or “violent” mixing of phase space structures. By “violent ” we mean that
the time scale of the mixing is faster than a diffusive or chaotic advection mixing
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Fig. 13. Sketch of a localized perturbation (dashed line) on a marginally stable equilib-
rium (solid line). The matched asymptotic expansion discussed in the appendix reduces
the Vlasov-Poisson system (9)–(10) to the single wave model (6)–(8) that describes the
nonlinear evolution in the inner, O(ε), region. In the outer, 1 � ε, region the system
responds linearly. The shaded area is the asymptotic matching region [11].

process. We also discussed the linear stability of equilibria and the problem of
Landau damping in the kinetic limit of the single wave model.
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Appendix A: Derivation of the SWM for marginally stable
Vlasov-Poisson systems

In this appendix we derive the single wave model in Eqs. (6)-(8) as a weakly
nonlinear description of Vlasov-Poisson systems of the form in Eqs. (9)-(10). We
skip technical details that the interested reader can find in Refs. [10,11].

The starting point is the assumption that the equilibrium is marginally stable
with a stationary inflexion point at u = c0, that is F ′

0(c0) = F ′′
0 (c0) = 0. The

destabilization of F0 is caused by perturbations that turn the locally flat region
around the stationary inflection point into a region of adverse gradient as shown
in Fig. 13.

We introduce the slow time variable

t ≡ (2π/L) ε T , (112)

where ε, the small parameter of the perturbation expansion, is proportional to
the growth rate of the instability, and L is the spatial length of the system. The
quantization condition implies

k =
2π
L

= k0(1 − εΛ) , (113)

where k is the wavelength of the instability, k0 is the wavelength of the neutral
inflexion point mode, and Λ is a constant. In addition, we assume the trapping
scaling according to which the amplitude of the nonlinear saturated fields is of
order ε2,

F = ε2 f (x, u, t) , Φ = ε2 φ (x, t) , (114)

and do a Galilean transformation to a reference frame moving at the speed of
the inflection point mode

x ≡ (2π/L)(X − c0T ) . (115)

In terms of the variable x, the domain has period 2π, and φ, and f can be
expanded as a Fourier series:

φ(x, t) =
∞∑

n=−∞
φ̃(n, t) einx , f(x, u, t) =

∞∑
n=−∞

f̃(n, u, t) einx . (116)

Substituting Eqs. (112)–(116) into Eq. (9) and Eq. (10) we get

ε ∂tf + (u− c0) ∂xf +
(
F ′

0 + ε2∂uf
)
∂xφ = 0 , (117)

G [nk0 (1 − εΛ)] φ̃(n, t) = −
∫ ∞

−∞
f̃(k, u, t)du . (118)

These equations are exact, and the derivation of the SWM proceeds by a per-
turbative solution of them.
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In the perturbation expansion, we write

φ(x, t) = φ0 + ε φ1 . . . (119)

and divide the (x, u) space in two regions; an inner region where u− c0 = O(ε)
and an outer region where u − c0 = O(1). In each region we solve Eq. (117)
by expanding f in powers of ε and match the solution in the intermediate re-
gion. Once a global solution of f is found, φ is determined self-consistently from
Eq. (118).

To treat the inner region, we introduce the stretched coordinate v = (u −
c0)/ε, substitute f = f i

0 +εf i
1 + . . . into Eq. (117), and get at first order a Vlasov

equation describing the distribution function in the inner region

∂tf
i
0 + v∂xf

i
0 + ∂xφ0 ∂vf

i
0 = 0 . (120)

In the outer region, u− c0 = O(1), we substitute f̃(n, u, t) = f̃o
0 + ε f̃o

1 + . . . into
Eq. (117) and get at O(1) the linear eigenmode of the instability

f̃o
0 = − F ′

0

u− c0
φ̃0 (121)

and at O(ε)

f̃o
1 = − i

n

F ′
0

(u− c0)2
∂tφ̃0 −

F ′
0

u− c0
φ̃1 . (122)

Note that, because of the inflexion point condition F ′
0(c0) = F ′′

0 (c0) = 0, there
are no singularities in Eqs. (121)-(122). The last step in the derivation is to derive
a self-consistent equation for the potential by solving Eq. (118) perturbatively.
At O(1) Eq. (118) reduces to the dispersion relation of the neutral model, and
at O(ε)

G (nk0) φ̃1 − nk0ΛG
′ (nk0) φ̃0 = −

∫ ∞

−∞
f̃o
1 du−

∫ ∞

−∞
f̃ i
0 dv . (123)

Because
∫
f̃ idu = ε

∫
f̃dv, the zeroth order term in the inner field, f i, contributes

to the first order term of φ. Substituting (121) into (123), we conclude n = ±1,
and

φ0 = φ̃0(1, t) eix + φ̃0(−1, t) e−ix . (124)

That is, the single-wave spatial structure of the potential arises naturally from
the leading order balance in (118). To determine the time evolution of φ0, we
substitute (121) into (123) and get

γ
dφ̃0

dt
+ iλ φ̃0 =

i

2π

∫ ∞

−∞

∫ 2π

0

e−ixf i
0 dxdv . (125)

Equations (120) and (125) form a closed, self-consistent system of equations
describing the nonlinearly saturated state in the vicinity of the stationary in-
flection point. Defining σ ≡ sign (γ), B ≡ sign (Λ) where “sign” denotes the sign,
and sign (0) = 0, and rescaling as v → |λ/γ| v, t → |γ/λ| t, f ≡ |γ|/λ2 f i

0,
a ≡ (γ/λ)2 φ̃0, Eqs. (120) and (125) become the SWM in (6)-(8).
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