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Abstract
We analyze a 15-year time series of North American
electric power system blackouts for evidence of self-
organized criticality.  Scaled window variance and R/S
analysis of the time series shows moderate long time
correlations. The probability distribution functions of
various measures of blackout size have a power tail.
Moreover, the same analysis applied to a time series from
a sandpile model known to be self-organized critical gives
results of the same form. Thus the blackout data is
consistent with self-organized criticality. Self-organized
criticality, if fully confirmed in power systems, would
suggest new complex systems approaches to
understanding and possibly controlling blackouts.

1. Introduction

Electric power transmission networks are
complex systems that are commonly run near their
operational limits. Such systems can undergo non-
periodic major cascading disturbances, or blackouts, that
have serious consequences.  Individually, these blackouts
can be attributed to specific causes, such as lightning
strikes, ice storms, equipment failure, shorts resulting
from untrimmed trees, excessive customer demand, or
unusual operating conditions. However, an exclusive
focus on these individual causes can overlook the global
dynamics of a complex system in which repeated major
disruptions from a wide variety of sources are a virtual
certainty.  We analyze a time series of blackouts to probe
the nature of these complex system dynamics.

The North American Electrical Reliability
Council (NERC) has a documented list summarizing
major blackouts of the North American power grid [1].
They are of diverse magnitude and of varying causes.  It
is not clear how complete this data is, but it is the best-
documented source that we have found for blackouts in
the North American power transmission system. An initial
analysis of these data [2] over a period of 5 years
suggested that self-organized criticality (SOC) [3-5] may

govern the complex dynamics of these blackouts. Here, we
further examine this hypothesis by extending the analysis to
15 years. These data give us improved statistics and longer
time scales to explore.  We compare the results to the same
analysis of time sequences generated by a sandpile model
known to be SOC.  The similarity of the results is quite
striking and is strongly suggestive of the possible role that
SOC plays in power system blackouts.

In evaluating the long-range time dependence of
the blackouts, we use both the R/S˚[6] and the SWV˚[7]
techniques.  These techniques are useful in determining the
existence of an algebraic tail in the autocorrelation function
and calculating the exponent of the decay of the tail.

2. Time series of blackout data

We have analyzed the full 15 years of data from
1984 to 1998 that is publicly available from NERC [1].
There are 427 blackouts in 15 years and 28.5 blackouts per
year.  The average period of time between blackouts is 12
days.  The blackouts are distributed over the 15 years in an
irregular manner.  We have detected no evidence of
systematic changes in the number of blackouts or periodic
or quasi-periodic behavior.  However, it is difficult to
determine long term trends or periodic behavior in just 15
years of data.

We constructed time series from the NERC data
with the resolution of a day for the number of blackouts and
for three different measures of the blackout size. The length
of the time record is 5477 days.  The three measures of
blackout size are:

1. energy unserved (MWh)
2. the amount of power lost (MW)
3. number of customers affected.

Energy unserved was estimated from the NERC data by
multiplying the power lost by the restoration time.



3. Comparison to a SOC sandpile model

The issue of determining whether the power system
blackouts are governed by SOC is a difficult one.  There
are no unequivocal determining criteria.  One approach is
to compare statistics of the power system to those
obtained from a known SOC system.

The prototypical model of a SOC system is a one-
dimensional idealized running sandpile [8]. The mass of
the sandpile is increased by adding grains of sand at
random locations.  However, if the height at a location
exceeds a threshold, then grains of sand topple downhill.
The topplings cascade in avalanches that transport sand to
the edge of the sandpile, where the sand is removed. In
the running sandpile, the addition of sand is on average
balanced by the loss of sand at the edges and there is a
globally quasi-steady state or dynamic equilibrium close
to the critical profile that is given by the angle of repose.
There are avalanches of all sizes and the PDF of the
avalanche sizes has an algebraic tail. The particular form
of the sandpile model used here is explained in [9]. The
sandpile length used in the present calculations is L = 800.

We are, of course, not claiming that the running
sandpile is a model for power system blackouts.  We only
use the running sandpile as a black box to produce a time
series of avalanches characteristic of an SOC system. It is
convenient to assume that every time iteration of the
sandpile corresponds to one day.  When an avalanche
starts, we integrate over the number of sites affected and
the number of steps taken and assign them to a single day.
Thus we construct a time series of the avalanche sizes.

The sandpile model has a free parameter p0,
which is the probability of a grain of sand being added at
a location. p0 is chosen so that the average frequency of
avalanches is the same as the average frequency of
blackouts.

The same R/S and SWV analyses used for the
blackout time series (see section 4 for details) are applied
to the avalanche time series.  It is useful to recall that for a
time series with an autocorrelation function with an
algebraic tail, the R/S or SWV statistic scales as mH

where m is the time lag and H  is the Hurst parameter.
Thus H is the asymptotic slope on a log-log plot of the
R/S or SWV statistic versus the time lag.  If 1˚>˚H̊ >˚0.5,
there are long-range time correlations, for 0.5˚>˚H̊ >˚0, the
series has long-range anticorrelations, and if H˚=˚1.0, the
process is deterministic. Uncorrelated noise corresponds
to H = 0.5.

Fig. 1 shows the R/S statistic for the time series
of avalanche sizes from the sandpile and for the time
series of power lost by the blackouts. In Fig.˚2, we show
the same comparison using the SWV technique. In both
cases, the similarity between the two curves is
remarkable.
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Fig. 1.  R/S for avalanche sizes in a running
sandpile compared to R/S for power lost in
blackouts.
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Fig. 2.  SWV for avalanche sizes in a running sandpile
compared to SWV for power lost in blackouts.

Fig. 3 shows the PDF of the avalanche sizes from
the sandpile data together with the rescaled PDF of the
energy unserved from the blackout data.  The resemblance
between the two functions is again surprising.  The rescaling
is necessary because of the different units used to measure
avalanche size and blackout size.  That is, we assume a
transformation of the form

P X F X( ) = ( )λ λ

Here, X is the variable that we are considering, P(X) is the
corresponding PDF, and λ is the rescaling parameter.  If this
transformation works, F  is the universal function that
describes the PDF for the different parameters.  It is this
transformation that is used to overlay the different PDFs.
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Fig. 3.  Rescaled PDF of energy unserved during
blackouts superimposed on the PDF of the
avalanche size in the running sandpile.

We can do the same transformation for the other
measures and plot the various PDFs with the avalanche
size PDF. In all cases, the agreement is very good.  Of
course, the scaling parameter differs for each measure of
blackout size.

The exponents obtained for these PDFs tails are
between —1.3 and —2.  These exponents imply divergence
of the variance, one of the characteristic features of
systems with SOC dynamics.

This comparison of the PDFs of the measures of
the blackouts and the avalanche sizes is useful in
evaluating the possible errors in the determination of the
algebraic decay exponent of the PDFs. One can see that
for the large size events where the statistics are sparse,
there may be deviations from the curve. These deviations
can influence the computed value of the exponent, but
they may be of little significance for the present
comparisons.

4. Analysis of the blackout time series

We have determined the long-range correlations
in the blackout time series using both R/S [6] and SWV
[7] methods.  The calculated Hurst exponents [10] for the
different measures of blackout size are shown in Table I.
The H  values are obtained by fitting over time lags
between 100 and 3000 days. In this range, the behavior of
both R/S and SWV is power-like (Figs. 1 and 2).

The time sequence for the events has H ≈ 0.6 for
all cases. In our previous analysis over a five-year period
[2], H  for the events was closer to 0.5. For the R /S
calculation, the values of H obtained for all sequences are
close to 0.6. This seems to indicate that they are all
equally correlated over the long range.  Note that the
"events" in the time series is the list of events that have

produced a blackout. It is not the list of all possible events.
The latter are supposed to be random (H˚=˚0.5); however,
the events that produce a blackout may indeed have
moderate correlations because they depend on the state of
the system.

Table I. Hurst parameter for blackout size time series.

H (R/S) H (SWV)
Events 0.62 0.62
Power lost 0.59 0.60
Customers 0.57 0.78
MWh 0.53 0.71

100

101

102

103

104

105

101 102 103

p
0
 = 0.0001

p
0
 = 0.001

C = 779.45 * e-0.00678T 

C = 14530 * e-0.0598T 

C
ou

nt
s

Time between avalanches

Fig. 4. Distribution of waiting times between avalanches
in a sandpile for two values of the probability of adding
grains of sand.
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Fig. 5. Probability distribution function of the waiting
times between blackouts.

A better way of testing the independence of the
triggering events has been suggested by Boffetta et al [11].
They evaluated the times between events (waiting times)



and argued that the PDF of the waiting times should have
an exponential tail.  Such is clearly the case for the
waiting times of sandpile avalanches (Fig.˚4).  In the case
of waiting times between blackouts, we also have
observed the same exponential dependence of the PDF
tail (Fig. 5).  This strengthens the contention that the
apparent correlations in the events come from SOC-like
dynamics within the power system rather than from the
events driving the power system dynamics.

In evaluating H for the blackout series, we found
significant differences between H calculated using R/S
and SWV for the time series of customers and MWh. To
better understand this, let us compare the R/S and SWV
results in detail.  In Fig. 6, we have plotted the R/S and
SWV statistics for the time series of the number of the
customers affected by blackouts.
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Fig. 6.  R/S and SWV statistics for the number of
customers affected by blackouts.

The average period of time without blackouts is
12 days, hence, in looking over time lags of this order we
either capture one event or none. Therefore, for the region
below 50 days, we can expect a very different behavior
than for 1 year.  For the shorter times, we are unable to
get information on correlations between events because
the time intervals are too short to contain several events.
We see a correlation between non-events, and because
these time intervals tend to only contain non-events, we
see H  close to 1 (trivially deterministic). The R/S
calculation is always more sensitive to changes in regimes
than the SWV method.  That is why there is a more
obvious change of behavior for time intervals around 50
days. The SWV method tends to give a more uniform
power over all scales, and it does not see the two regimes.
In the SWV results, the long-range dependencies are
polluted by the short-range dependencies.  For time lags
above 50 days, the R/S shows a power behavior and gives
the correct determination over those scales.  The SWV
has a higher sensitivity to correlations, but because of this
it can be more easily polluted.  The R/S results lead to

values of H that are somewhat lower than the previously
obtained values [2], but still significantly above 0.5.

5. The effect of weather

Approximately half of the blackouts (212
blackouts) are characterized as weather related in the NERC
data.  In attempting to extract a possible periodicity related
to seasonal weather, we consider separately the time series
of all blackouts and the time series of blackouts that are not
weather related.

An important issue in studying long-range
dependencies is the possible presence of periodicities.
Spectral analysis for this data does not show any clear
periodicity. However, since the weather related events may
play an important role in the blackouts, one may suspect
seasonal periodicities.  However, the data combines both
summer and winter peaking regions of North America.
Because of the limited amount of data, it is not possible to
separate the blackouts by geographical location and redo the
analysis. What we have done is to reanalyze the data
excluding the weather-related events.  The results are
summarized in Table II. In this table, the column marked
Non-W has the results of the analysis when the events
triggered by weather are excluded.  As can be seen, the
exclusion of the weather events does not significantly
change the value of H.  When looking solely at the weather
related events, the value of H is closer to 0.5 (random
events), although the available data is too sparse to be sure
of the significance of this result.

Table II. Hurst parameter H for measures of blackout size
comparing the total data set with the data excluding the
events triggered by weather.

H (total)
R/S

H (non W)
R/S

Events 0.62 0.62
Power lost 0.64
Customers 0.57 0.58

MWh 0.53 0.57

Another question to consider is the effect of
excluding the weather related events on the PDF. We have
recalculated the PDF for all the measures when the weather
related events are not included. The PDFs obtained are the
same within the numerical accuracy of this calculation.
This is illustrated in Fig. 7, where we have plotted the PDFs
of the number of customers unserved for all events and for
the non-weather related events.

Therefore, for both long-range dependencies and
structure of the PDF, the blackouts triggered by weather
events do not show any particular properties that distinguish
them from the other blackouts.  Therefore, both the long
time correlations and the PDFs of the blackout sizes remain
consistent with SOC-like dynamics.
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Fig. 7.  PDF of the number of customers unserved
comparing the total data set with the data excluding the
weather related events.

6. Conclusions

We have calculated long time correlations and
PDFs for several measurements of blackout size in the
North American power transmission grid from 1984 to
1998.  These long time correlations and PDFs are
consistent with long-range dependencies and PDFs for
avalanche sizes in a running sandpile known to be SOC.
That is, for these statistics,  the blackout size time series is
indistinguishable from the avalanche size time series.
This similarity strongly suggests that SOC dynamics may
play an important role in the global complex dynamics of
power systems.

R/S analysis of the blackout time series shows
moderate (H ≈ 0.6) long time correlations for several
measure of blackout size. The probability distribution
functions of the measures of blackout size have power
tails with exponents ranging from -1.3 to -2 and divergent
variances.  Excluding the weather related blackouts from
the time series has little effect on the results. The
exponential tail of the PDF of the times between
blackouts supports the contention that the correlations
between blackouts are due to the power system global
dynamics rather than correlations in the events that trigger
blackouts.

The strength of our conclusions is somewhat
limited by the short time period (15 years) of the available
blackout data and the consequent limited resolution of the
statistics.  To further understand the mechanisms
governing the dynamics of power system blackouts,
modeling of the power system from a SOC perspective is
indicated and is underway [12,13].
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