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Abstract

There is some experimental evidence that the E×B flows have radial structure that may be

linked to rational surfaces. This flow structure may result from a self-organization process

involving nonlinear flow amplification through Reynolds stress and fluctuation reduction by

sheared flows. In stellarators, a large contribution to the Reynolds stress comes from the

coupling of the magnetic field component of a vacuum field island with a plasma instability.  In

this process, the self-organization principle seems to be marginal stability for the fluctuations

driving the flow.
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I.  INTRODUCTION

Transport barriers1,2 in toroidal magnetically confined plasmas tend to be linked to regions

of unique magnetic topology, such as the location of a minimum in the safety factor, rational q

surfaces, or the boundary between closed and open flux surfaces.3,4  Recent experimental

results have shown the possible influence of low-mode-number islands in the formation of edge

transport barriers.5  In the absence of E×B sheared flows, turbulence is radially nonuniform and

has localized structures near resonant surfaces. For pressure-gradient-driven turbulence,

fluctuations show maximum amplitude near the rational surface. This localization of the

fluctuations might cause the deterioration of confinement in these radial locations, as suggested

by the correlation between energy confinement and the presence of low-order rational surfaces

at the plasma boundary in Wendelstein 7-AS. 6 On the other hand, if the generation of E×B

sheared flows is linked to low order rational surfaces, they cause a local improvement of

transport. Measurements of the plasma potential and ion saturation current7,8 in the boundary

region of the TJ-II stellarator9 have provided experimental evidence for such a link.  Therefore,

net transport is the result from a self-organization process involving these two mechanisms.

In TJ-II, radial profiles and fluctuations of the ion saturation current have been measured in

the proximity of the n = 8/m = 5 and n = 4/m = 2 natural plasma resonant surfaces. These

magnetic surfaces are located near the plasma boundary for different magnetic configurations.

The presence of vacuum magnetic field islands at the natural 8/5 and 4/2 rational surfaces has

been detected as a flattening in the edge profiles in the plasma configuration. Changes in the

shear of E×B flows have been observed near these rational surfaces with values of the shear

decorrelation rate B–1
 dEr /dr ≈ 105 s –1 . Radial electric fields in the range of 103 V/m and

poloidal phase velocity of fluctuations of about 500 m/s have been measured.

In this paper, we present a theoretical study of the influence of vacuum magnetic islands on

the shear flow amplification near low-resonant surfaces. The nonlinear interaction of the

vacuum magnetic islands with plasma turbulence via Reynolds stress is the main mechanism for

this flow amplification.  Since most of the observations indicate that the effect is important at

the plasma edge, we use the resistive interchange model as the most likely instability at the edge

of the stellarator.

The way we set up this problem involves single helicity calculations. In the present model,

there is no background turbulence.  Therefore, this problem involves a reorganization of the
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radial profiles of flow and fluctuation and it does not necessarily imply fluctuation suppression

by shear flow. Fluctuations and flows organize themselves so as to be close to marginal

stability.  The vacuum magnetic field perturbation acts as an external knob that allows us to vary

this solution and test the nature of this self-organization process.

The rest of the paper is organized as follows.  In Sec. II, we present the basic model used

to evaluate the nonlinear evolution of the resistive interchange modes. A description of the

nonlinear evolution of these instabilities in the presence of vacuum magnetic islands is given in

Sec. III.  In Sec. IV, we describe the effect of the vacuum magnetic field perturbation on the

flow amplification.  The self-organization of fluctuations and flow profiles is explained in

Sec. V. The presence of a static magnetic field perturbation creates difficulties in the

experimental evaluation of statistical properties of fluctuations and flows. These potential

difficulties are discussed in Sec. VI.  Finally, the conclusions of this paper are given in

Sec. VII.

II.  NONLINEAR EVOLUTION OF INTERCHANGE MODES

Interchange modes, resistive and ideal, extend uniformly along the magnetic field lines.

They are flute-like instabilities.  Therefore, it is possible for these instabilities to average over

the toroidal magnetic field modulation induced by the helical windings.  Using the Greene and

Johnson formalism10  and assuming a straight helical system, the averaged equilibrium

magnetic field geometry has cylindrical symmetry.  In this system, the magnetic field line

curvature is given by the averaged magnetic field line curvature,

κ ≡
dΩ
dr

=
r

R0

B0
2 ′ ′ V (1)

where prime indicates the derivative with respect to the toroidal flux, and 
  

′ V = dl B∫  is the

specific volume enclosed by a flux surface. In Eq. (1), R0 is the major radius of the stellarator,

r is the averaged minor radius of a flux surface, and B0 is the toroidal magnetic field value at

the magnetic axis.

We use a reduced set of magnetohydrodynamic (MHD) equations to describe the

dynamics of the ideal and resistive interchange instability.  The geometry is cylindrical with

minor radius a and length L0 = 2πR0, and the cylindrical coordinates are r, θ, and z.  The

reduced set of MHD equations is the poloidal magnetic flux evolution equation:
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1

R0

∂˜ ψ 
∂t

= −∇||
˜ Φ −

1

e neq

Teq∇||
˜ n + neq∇ ||

˜ T e( ) +η ˜ J z      , (2)

and the perpendicular momentum balance equation:  

ρm

∂ ˜ U 

∂t
=−ρmv⊥ ⋅∇U − B0∇ ||

˜ J z +κ Teq

1

r

∂˜ n 

∂θ
+ neq

1

r

∂ ˜ T e
∂θ

 
  

 
  +ρmµ∇⊥

2 ˜ U     . (3)

Since we are applying this model to an electron cyclotron heated stellarator, we assume that the

ion temperature is low.  Therefore, plasma pressure is essentially given by the electron

pressure,p = pe ≡ neTe . We now need an evolution equation for both the electron density and

temperature.  The electron density equation is

∂ ˜ n 

∂t
= −v⊥ ⋅∇n +

1

e
∇||

˜ J ζ + D⊥∇⊥
2 ˜ n      . (4)

The electron temperature equation is

∂ ˜ T e
∂t

= −v⊥ ⋅∇Te +
Teq

e neq

∇ ||
˜ J z + ∇|| χ||∇ ||Te( ) +χ ⊥∇⊥

2 ˜ T e      . (5)

Here, v⊥  is the perpendicular flow velocity, U is the z-component of the vorticity, ψ is the

poloidal magnetic flux function, Jz =∇ ⊥
2 ψ µ0 R0  is the parallel current, η is the resistivity, and

ρm is the mass density.  The total magnetic field can be expressed in terms of the poloidal flux

function as

B = − ∇ψ × ˆ z ( ) R0 + B0
ˆ z       , (6)

and the perpendicular flow velocity in terms of a stream function Φ/B0 can be expressed as
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v⊥ = ∇Φ × ˆ z ( ) B0   . (7)

Here, ˆ z  is the unit vector in the toroidal direction.  The velocity stream function Φ/B0 is trivially

related to the electrostatic potential –Φ.  The z-component of the vorticity can be expressed in

terms of the velocity stream function by ˜ U =∇ ⊥
2 ˜ Φ B0 .  The derivative parallel to the magnetic

field, ∇||, is defined as ∇ || f = B ⋅∇f B0 .

In Eqs. (2), (3), (4) and (5), a tilde identifies perturbed quantities, and the subindex eq

identifies equilibrium quantities.   The equilibrium current Jzeq is assumed to be zero. Each

equation has a perpendicular dissipation term with coefficients D⊥, the collisional cross-field

particle transport; χ⊥, the perpendicular electron heat conductivity; and µ⊥, the collisional

viscosity for the perpendicular flow. The parallel electron heat conductivity, χ||, is also included

in the electron temperature equation.

The driving term of the resistive interchange instability is the pressure gradient in the bad

curvature region (κ > 0).  That is, these modes are unstable when −κ dpeq dr( ) > 0 .  The

second term on the right-hand-side of Eq. (3) is the field line bending term, which is

stabilizing. The resistivity weakens this term and allows the instability to grow.  

In the nonlinear calculations, we also include the evolution of the averaged electron density

and temperature.  The corresponding equations are

∂ n

∂t
= −

1

r

∂
∂r

rΓ( ) + D0⊥
1

r

∂
∂r

r
∂ n

∂r
 
   

  (8)

and

neq

∂ Te

∂t
= −

1

r

∂
∂r

rΓQ( ) + χ0⊥neq

1

r

∂
∂r

r
∂ Te

∂r

 
  

 
       , (9)

where the expressions for the particle and heat flux are

Γ = ˜ V r ˜ n −
1

e B0

˜ B r
˜ J z (10)

and
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ΓQ = neq
˜ V r

˜ T e −
Teq

e B0

˜ B r
˜ J z −

neq

B0

˜ B rχ||∇ ||
˜ T e      , (11)

respectively.  Here, the angular brackets, , indicate poloidal and toroidal angle average. The

radial derivatives of the equilibrium electron density and temperature in the first term of the

right hand side of Eq. (11) are neglected.  

The poloidal flow profile evolution equation is derived by taking the flux surface average

of the poloidal momentum balance equation. The resulting equation gives the conservation of

momentum:

∂ Vθ

∂t
= −

1

r 2

∂
∂r

r2 Srθ( ) − ˆ µ Vθ      , (12)

where Srθ is the non-diagonal rθ component of the Reynolds stress tensor and has two terms,

an electrostatic and a magnetic component,

Srθ ≡ ˜ V r
˜ V θ −

1

ρmµ0

˜ B r
˜ B θ      , (13)

and ˆ µ  is the poloidal flow damping rate.

The complete set of equations used in the numerical calculations discussed here is

Eqs. (2)-(5).  Equations (8)-(9) are obtained by flux-surface averaging of Eqs. (4)-(5). Note

that the dissipation terms in the averaged equation are not necessarily the same as for the

fluctuating quantities.  The reason is that the dissipation terms in the fluctuation quantities are

used to control the spectrum of Fourier components of the fluctuations, and the ones in the

averaged equation correspond to the collisional plasma edge of the TJ-II device.  Equation (12)

is obtained by flux-surface average of the poloidal momentum balance equation. The

dissipative term is a drag instead of a diffusion and is due to magnetic pumping.

We calculate the averaged helical curvature using an equilibrium with the same rotational

transform as the TJ-II.  The calculations presented here are single helicity 8/5 calculations.  We

have included 10 poloidal components, from m = 5 to m = 50, and the radial resolution is

∆r/a = 3.3 × 10−3.

Nonlinear calculations have been carried out for an equilibrium corresponding to the

profiles shown in Fig. 1.  The Lunquist number, S ≡ τR τ HP , is 2.1×105; β0/2ε2 = 1.875×10–2;
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and the diamagnetic frequency, ω*e = Teq 0( ) ea2B0 , is 9.25×10–4 τHp
−1 .  Here,

τR ≡ a2µ0 η 0( ) is the resistive time and τHP ≡ R0 µ0 ρm B0  is the poloidal Alfvén time.  We

have used diffusivity coefficients for the fluctuating quantities: D⊥ = χ⊥ = µ = 0.1a2/τR.  They

are chosen to control the spectrum of modes used in the calculation.  For the averaged density

and temperature evolution, D0⊥ = χ0⊥ = 0.3a2/τR.  The collisional flow damping rate, ˆ µ , is

200τ R
−1, and the parallel electron heat conductivity is χ|| = 105 R0

2 τ R .

III.  DYNAMICS OF RESISTIVE INTERCHANGE INSTABILITIES IN THE PRESENCE

OF A VACUUM MAGNETIC ISLAND

A possible explanation of the flow structure near a singular surface is the coupling of the

vacuum-magnetic-field island with a plasma instability. Of course, the self-interaction of a

vacuum magnetic field perturbation gives an identically zero contribution to the Reynolds

stress.  It is only the cross-interaction with resonant plasma instabilities that may give a non-

zero contribution. Therefore, we will study first the dynamics of the resistive interchange

instabilities in the presence of a vacuum magnetic island.

To study the effect of the vacuum magnetic field perturbation on flow amplification, we

use the cylindrical-geometry resistive interchange model described in the previous section. To

determine the equilibrium parameters, we use the rotational transform profile determined from

vacuum magnetic field calculations for a configuration like the TJ-II stellarator (Fig. 1).  The

vacuum magnetic field island is introduced through a non-zero boundary condition for the

n = 8/m = 5 component of the poloidal flux. The reference plasma parameters are close to

those of TJ-II.  In Fig. 1, we have plotted the electron density and temperature profiles,

normalized to their peak values, that we have used in the calculations. Since the plasma edge is

collisional, we have taken the flow damping rate to be equal to the ion-ion collision frequency,

νi, and we assumed Ti = Te = 20 eV.  The present calculations are not a simulation of the TJ-

II results.  The magnetic geometry of the TJ-II stellarator is not amenable to the averaging

method treatment. Here, we use TJ-II parameters only as a reference for these calculations.

We control the size of the 5/8 vacuum magnetic field island by varying the boundary

condition for the (m = 5; n = 8) component of the poloidal magnetic flux, ψb.  In the
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nonlinear calculations, we vary ψb from ψb = 0 to ψb = 5×10–4; the corresponding vacuum

magnetic island width changes from W  = 0 to W  = 0.09a.  This result has been plotted in

Fig. 2.  In this figure, we can see that W /a increases approximately as ψ b
1/2 .  This scaling could

be expected because, for the vacuum field solution, the poloidal magnetic flux at the resonant

surface scales linearly with ψb.  At finite beta, resistive interchange modes become unstable;

therefore, the effective width of the magnetic island increases.  This scaling is also shown in

Fig. 2, where the magnetic island width for β/(2ε2) = 0.0187 has been plotted as a function of

ψb.  

For all cases considered, we follow the evolution of the plasma instabilities until their

fluctuation level reaches a steady oscillatory solution (Fig. 3).  At finite beta, the width of the

magnetic island induced by the plasma instability oscillates in time as a result of the interaction

between the resistive interchange instability, rotating at the diamagnetic velocity, and the vacuum

magnetic field perturbation. The interaction between the resistive interchange instability and the

vacuum magnetic field perturbation is quite complex.  In Fig. 4, we have plotted the time

evolution in the steady-state phase of the 5/8 magnetic island width for four different values of

ψb.  In the absence of vacuum magnetic field perturbation, ψb = 0, there is a poloidal rotation of

the magnetic island induced by the plasma instability caused by a combination of E×B  flows

diamagnetic effects.  The magnetic island associated with the instability rotates with a well-

defined frequency. When a vacuum magnetic field perturbation is introduced, there is a braking

effect that is most effective when both plasma and vacuum field perturbations are in phase and

minimal when they are out of phase.  Their interaction is suggestive of a stick-and-slip type of

effect (Fig. 5).  A similar braking effect has been observed in the case of tearing modes in

tokamak plasmas.11  

As ψb is increased, the oscillations of the magnetic island go through a period doubling.

This is the case of ψb = 5×10–5 , shown in Fig. 4. For a range of values of ψb,

1 ×10−4 ≤ψ b < 2 ×10−4 , the evolution of the plasma instability has a chaotic behavior.   In

these cases, the stick-and-slip effect is more apparent.  This effect can be seen in Fig. 5, where

we have plotted the poloidal position, θ, of the O-point of the magnetic island as a function of

time.  Because we are considering an m = 5 perturbation, when θ reaches 72°, the poloidal
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angle jumps back to zero and the island has rotated by 1/5 of the poloidal circumference.  In

Fig. 5, we see that the island oscillates for a while around θ = 0°, and then suddenly the

poloidal excursion increases and the island go through a full rotation.  

Above a threshold value of the vacuum magnetic field perturbation, corresponding to a

value ψth of the poloidal flux at the boundary, the poloidal propagation of the magnetic island in

the plasma stops.  The sticking effect becomes dominant, and the magnetic island acquires a

quasi-periodic oscillation in the poloidal direction.  The threshold value is difficult to determine

from the numerical calculations. From the numerical results available, we can give bounds to

the value of the threshold 1.75 ×10−4 < ψ th < 2.0 ×10−4 .  This threshold not only is important

in the dynamics of the fluctuations, but also plays an important role in the shear flow

amplification.

IV. EFFECT OF THE VACUUM FIELD MAGNETIC ISLAND ON FLOW

GENERATION

Let us now consider the effect of the vacuum magnetic island in the generation of a global

poloidal flow through Reynolds stress. The non-diagonal rθ component of the Reynolds stress

tensor has two terms, an electrostatic and a magnetic component, as it is shown in Eq. (13). For

values of ψb below the threshold ψth, the electrostatic and magnetic components of the

Reynolds stress have similar size and radial profile shape, but they have opposite sign (Fig. 6).

This causes a near cancellation of these two terms, as happens often for electromagnetic

turbulence.12,13  In this regime, the electrostatic component is slightly larger than the magnetic.

Therefore, there is weak poloidal flow amplification in the direction determined by the

electrostatic term.  For values of the vacuum magnetic field perturbation above the threshold,

this perturbation induces a non-negligible contribution to the magnetic component of the

Reynolds stress, making the latter dominant (Fig. 7).  Therefore, for ψb > ψth, a strong sheared

poloidal flow is established. This shear flow has the opposite sign from the one below the

threshold.

The role of the vacuum magnetic field perturbation can be better clarified by splitting the

magnetic field in two components, the instability induced and the vacuum magnetic field

perturbations.  In this case, the magnetic component of the Reynolds stress can be written as
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˜ B r
˜ B θ ≡ ˜ B r

p ˜ B θ
v + ˜ B r

v ˜ B θ
p + ˜ B r

p ˜ B θ
p      .  (14)

Here, the superindex p refers to the instability-induced perturbation and v to the vacuum

magnetic field perturbation.  It is through the first term in the r.h.s. of Eq. (14) that the vacuum

magnetic field perturbation contributes to the poloidal shear flow, by beating with the radially

inhomogeneus component of the resistive interchange instability.

In Fig. 8, we have plotted the electrostatic and magnetic components of the Reynolds

stress for the same case as in Fig. 7, but subtracting from the magnetic field perturbation the

contribution of the vacuum magnetic field perturbation. We can see that the magnitude and

radial profile of the Reynolds stress are similar to the ones below the threshold ψth. In Fig. 8,

the two components of the Reynolds stress and the total are similar to the ones shown in

Fig. 6.

Increasing the vacuum magnetic field perturbation increases the magnetic contribution to

the Reynolds stress. This effect was not a priori obvious. Increasing the vacuum magnetic field

perturbation increases the radial transport. The consequence could have been a reduction of the

gradient drive of the resistive interchange and, therefore, a reduction of the overall contribution

to the Reynolds stress. However, the numerical result is not that and the magnetic contribution

to the Reynolds stress increases with ψb. When this magnetic contribution is large enough to

cancel the electrostatic contribution, the result is the threshold effect and a reversal of the

averaged poloidal sheared flow.   When ψb is above the threshold, the averaged poloidal flow

increases in direct proportion to the vacuum magnetic field contribution.  In Fig. 9, we have

plotted the averaged poloidal flow, Vθ , for different values of the vacuum magnetic field

perturbation showing the changes just described.  Here, the angular brackets, , indicate

poloidal and toroidal angle averaged, and the over bar indicates time averaged.  If an external

coil induces the vacuum magnetic field perturbation, this coil can be used to control the local

sheared flow.

The plots in Figs. 6–9 correspond to poloidal and toroidal angle averaged quantities, but

they also have been averaged in time over the steady-state phase of the calculation. This second

average eliminates the fast oscillations on each of these components. These oscillations can be
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quite important.  In Fig. 10, we have plotted the standard deviation (in time) of the average (in

poloidal and toroidal angles) poloidal flow, Vθ
2

− Vθ

2 
 

 
 

1/2

. We can see that the oscillatory

component of the averaged poloidal flow is more important below the threshold ψth. Above the

threshold, where the averaged poloidal flow is large, the oscillatory component of the averaged

poloidal is smaller than the stationary component.

V. SELF-ORGANIZATION: SHEARED FLOW AMPLIFICATION AND

FLUCTUATION REDUCTION

In the present study, we consider a dynamical problem that involves a strong coupling

between the fluctuations and shear flow. Fluctuations through Reynolds stress cause an

amplification of shear flow, and the latter causes a reduction of the fluctuations.  A nonlinear

self-consistent solution emerges that couples both mechanisms.  Since the problem involves a

single helicity and there is no background turbulence, this problem involves a reorganization of

the radial profiles of flow and fluctuations and it does not necessarily imply fluctuation

suppression by shear flow.  The radial profile of the perturbation rearranges itself to coexist

with the shear flow and conversely.  An interesting aspect of the present problem is that the

vacuum magnetic field perturbation acts as an external knob that allows us to vary this solution

and test the nature of this self-organization process.
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For ψ b <ψ th , the oscillatory component of the fluctuations and flow are dominant over

the stationary ones, as we discussed in the previous section.  For ψ b > ψ th  and for both flow

and fluctuation level, the steady-state component is the largest component of the solution.

However, the oscillatory component is still significant.  To show the essentially dynamical

character of the coupling of fluctuations and flows, we have plotted the value of the density

fluctuations at r/a = 0.7, near the inner peak of its rms value, as a function of the shear flow at

the singular surface. In Fig. 11, we show this plot for a case without vacuum field perturbation

ψ b = 0( )  and for one case with ψb above the threshold ψ b = 2 ×10–4( ) .

A main question is what is the guiding principle of the profile reorganization process.  To

explore this issue, we have calculated the shearing rate for the sequence of nonlinear

calculations with different values of ψb.  Since the local shear flow varies in time and position

in a rather sensitive manner, we have defined an averaged valued for the shear flow in the

following way:

′ V θ{ } = 2 rdr ′ V θ r( ) 2

0

a

∫ 
 
 

 
 
 

12

(15)

We define the shearing rate as ωs = ′ V θ{ }kθW  and the normalized shearing as Ωs =ω s γ 0 .

Here, kθ = 5/rs and W  = 0.06a, and γ0 is the linear growth rate of the 5/8 instability. We have

calculated γ0 using the density and temperature profiles reached in the steady state with the

vacuum island and without flow.  The calculated Ω for the sequence considered is shown in

Fig. 12.  For values of ψb below the threshold, the level of shear flow generated and the change

in the gradient of the profile are such that Ω ≈ 1.  For values of ψb above the threshold, Ω > 1.  

It appears like that below the threshold the fluctuations and flows organize themselves so as to

be close to marginal stability.  It is important to use the rms value of ′ V θ  in the calculation of

the shearing rate to take into account the oscillatory component of the flow.

We cannot expect that the radially integrated stability criterion describes all details of the

self-organization process.  The poloidal flow oscillates in time and changes direction in a

quasiperiodic manner. The averaged poloidal flow has radial spikes just outside the magnetic

island, and the maximum shear is at the resonant surface (Fig. 9). The corresponding

fluctuations have a minimum at the resonant surface, and they peak away from the resonant
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surface where the flow has the minimum shear. In Fig. 13, the rms value of the density

fluctuation is plotted as a function of radius. The profiles are obtained by averaging in time in

two different time intervals in the saturation phase.   For ψ b <ψ th , the fluctuation level and

flow profiles do not change much with ψb, and the integrated criterion is reliable.  However, for

ψ b >ψ th , there is a radial rearrangement of the profiles as ψb increases. The fluctuation levels

are very low in the region of high shear flow;  conversely, in the region of high fluctuations,

there is hardly any flow. Furthermore, although the oscillatory component of the flow has

decreased, it is still quite significant. In this situation, we need a local criterion to describe the

self-organization. The integrated one is no longer reliable.

The saturation level of the fluctuations is only slightly decreased for island widths below

the threshold; and, in spite of the strong sheared flow, the fluctuation level increases for island

widths above the threshold, as is shown in Fig. 13. However, the fluctuation-induced particle

flux [Eq. (10)] in this region, ψ b >ψ th , remains almost the same as the vacuum magnetic field

perturbation increases, as can be seen in Fig. 14.

The total particle flux is essentially given by the electrostatic component. The effect of the

magnetic field perturbation in Eq. (10) is practically negligible in the range of parameters

considered here.  That is not the situation for the energy flux.  There is a non-negligible

contribution from the magnetic field perturbation, as can be seen in Fig. 15.  This magnetic

contribution increases with increasing vacuum magnetic field perturbation. However, the total

heat flux is not much affected (Fig. 16).  There is a reduction of the electrostatic flux by the

shear flow.  This reduction practically compensates for the increase of the magnetic

component.

Therefore, the profile reorganization process is such that the instability is kept close to

marginal, and both particle and heat flux remain constant as the vacuum magnetic field

perturbation is varied.



14

VI.  CALCULATION OF AVERAGES IN THE PRESENCE OF A VACUUM MAGNETIC

ISLAND

When there are static perturbations in the plasma, as is the case for a vacuum magnetic

island in a stellarator, there is a problem in using a time average instead of a flux surface

average and/or ensemble average.  Since experimentalists often measure fluctuations only in a

single poloidal position, a time average is often used instead of flux surface average.  In this

case, the presence of a stationary perturbation can cause serious distortions of the results.  We

can use the results of the numerical calculations presented in this paper to illustrate some of

these difficulties.  Let us consider the fluctuation-induced electrostatic particle flux.  We use

the following form to calculate the flux from the numerical results:

Γmodel = Vr − Vr( ) n − n( )      , (16)

where the upper bar indicates time-average and the angular brackets, , indicate average over

the flux surface.  In the experiment, with data measured at a single poloidal location, the

averaged flux is often calculated as

Γexp = Vr − Vr( ) n − n( )      . (17)

In the absence of a vacuum magnetic island and with poloidal propagation of the turbulence,

both results are similar. This can be seen in Fig. 17, where we have plotted the particle flux

calculated by Eq. (17) with data taken at a single poloidal position and the particle flux

calculated by Eq. (16).  The comparison is done for several values of the poloidal angle and

using the numerical data for the ψb = 0 case. The results show good agreement between the

two methods.  The situation changes totally when poloidal propagation of some or all

fluctuation components stops. In Fig. 18, we present a plot analogous to Fig. 17 but for the

ψb = 2×10−4 case.  It is clear from Fig. 18 that Eq. (17) underestimates the flux in practically

all poloidal positions, and even may result in a strong negative flux in some of them, because

the estimates of the averaged fluctuation level are erroneous and close to its local value.

Recent experiments carried out in the TJ-II stellarator have shown that local E×B

fluctuation induced fluxes are significantly modified in the proximity of rational surfaces. In

the case of measurements taken in the proximity of the n = 4/m = 2 resonant surface, located
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near the plasma boundary, the local E×B fluctuation particle flux shows a reverse direction

(from outwards to inwards). Further measurements of E×B turbulent transport are in progress

at different poloidal and toroidal locations in the TJ-II stellarator to clarify to what extend this

is a local or a global  effect linked to rational surfaces.

VII.   CONCLUSIONS

Experiments in the TJ-II stellarator show the formation of E×B sheared flows in the

proximity of rational surfaces. These results can be interpreted in terms of the symmetry-

breaking mechanisms in the radial-poloidal structure of fluctuations (i.e., Reynolds stress) at

rational surfaces. We have used a resistive interchange model to study the effect of magnetic

islands on poloidal flow generation and turbulence. For vacuum magnetic islands below a

threshold value, there is a near cancellation of the electrostatic and magnetic components of the

Reynolds stress. Above the threshold, the magnetic component dominates and a strong sheared

flow is established. In spite of that, the fluctuation level increases, and the particle and the heat

flux remain almost the same.

Similar results were obtained in the study of resistive pressure-gradient-driven turbulence

with an external sheared flow.11   In that case, the numerical results showed that shear flow

effects were not significant when the single helicity dominated near the low-m rational surfaces.

Therefore, multiple helicity calculations are needed to assess the effect of vacuum islands on

turbulence. These calculations are now under way.

Care should be taken in evaluating the turbulent flux in stellarators. The presence of small

vacuum magnetic field islands can stop the poloidal propagation of some of the fluctuation

components. Under these circumstances, the flux surface average and time average are not

equivalent.  The result may be an erroneous estimation of the averaged value of the fluctuations

and, as a consequence, an erroneous estimation of the fluxes.
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Figure captions

Fig. 1. Electron density and temperature profiles, normalized to their peak value, and

rotational transform profile used in these calculations.

Fig. 2. Magnetic island width of the 5/8 helicity as a function of the boundary value of the

poloidal flux for a vacuum magnetic field and for a case with finite beta.

Fig. 3. Time evolution of the rms of the poloidal magnetic flux and velocity stream

function showing that they reach to a steady-state phase.

Fig. 4. Time evolution of the 5/8 magnetic island width for four values of ψb.  The time

period is during the steady-state phase of the calculation. The vertical scale has been

arbitrarily shifted for the purpose of the drawing.

Fig. 5. Poloidal position of the O-point of the magnetic island plotted as a function of time.

The position is measured by the poloidal angle θ in degrees.  The time period

corresponds to the steady-state phase of the evolution for ψb = 1.5×10–4 .

Fig. 6. Radial profiles of the Reynolds stress and its components for ψb = 5×10–5 .  They

are obtained by time-averaging in the saturation phase.

Fig. 7. Radial profiles of the Reynolds stress and its components for ψb = 2×10–4 . They

are obtained by time averaging in the saturation phase.

Fig. 8. Radial profiles of the Reynolds stress and its components for ψb = 2×10–4  after

subtracting the components of the vacuum magnetic field perturbation.  They are

obtained by time averaging in the saturation phase.

Fig. 9. Radial profiles of the averaged poloidal flow for different values of ψb.  They are

obtained by time averaging over the saturation phase of the calculation.

Fig. 10. Radial profiles of the standard deviation (in time) of the averaged poloidal flow for

different values of ψb.  They are obtained over the saturation phase of the

calculation.

Fig. 11. Value of the density fluctuation level at r/a = 0.7 as a function of the shear flow at

the singular surface for a case without vacuum field perturbation ψ b = 0( )  and one

case with ψb above the threshold ψ b = 2 ×10−4( ) .

Fig. 12. Normalized shearing rate as a function of ψb.
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Fig. 13. Radial profiles of the rms values of the density fluctuations for different sizes of the

vacuum magnetic island. They are obtained by averaging in the saturation phase.

Fig. 14. Radial profiles of the rms values of the turbulence-induced electrostatic particle

fluxes for different sizes of the vacuum magnetic island. They are obtained by

averaging in the saturation phase.

Fig. 15. Radial profiles of the rms values of the turbulence-induced electrostatic components

of the heat flux compared with the total heat flux for the ψb = 2×10-4 case.

Fig. 16. Radial profiles of the rms values of the turbulence-induced heat fluxes for different

sizes of the vacuum magnetic island. They are obtained by averaging in the

saturation phase.

Fig. 17. Particle flux calculated by Eq. (17) with data taken at a single poloidal position (thin

lines) and the particle flux calculated by Eq. (16) (thick line).  The comparison is

done for several values of the poloidal angle and using the numerical data for the

ψb = 0 case.

Fig. 18. The same plot as in Fig. 17, but for the ψb = 2×10-4 case.  
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