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ABSTRACT

A one-dimensional transport model based on critical-gradient fluctuation

dynamics is presented. This model has the characteristic properties of a

self–organized critical (SOC) system. As the source increases and for an input flux

above a threshold value, a dynamical transition spontaneously takes place.  A high-

gradient edge region forms. The width of this region increases with increasing value

of the particle source.  Transport dynamics in this edge region self-organizes to be

very close to marginal stability, while the core remains at the subcritical gradient

that is typical of an SOC system.
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I. INTRODUCTION

In the past 10 years, there has been great interest in the concept of self-organized

criticality (SOC)1 as a unifying explanation for some of the observed universal dynamics

of complex systems.  Characteristic SOC dynamics can explain some of the properties of

transport in magnetically confined plasmas2,3 and transitions to high-confinement

regimes.4-6  It also offers a new perspective on how plasma transport and fluctuation

dynamics calculations should be performed.7,8

Here we consider a one–dimensional transport model based on critical-gradient

fluctuation dynamics. The fluctuation dynamics is incorporated through an evolution

equation for the fluctuation envelope as has been done in models like Ref. 9.  This

equation is coupled to a transport equation for a scalar quantity h.  For convenience, we

will refer to this quantity as particle density.  Transport is controlled by the fluctuation

level, and the fluctuations are triggered when the gradient of h is above a critical value.

We can interpret3 each radial site as corresponding to a resonant surface, and the coupling

to the transport is done through the amount of flux transported in each resonant surface.

This model includes both fluctuation and transport timescales. It has the characteristic

properties of an SOC system such as subcritical transport, probability distribution

function (PDF) with power tails, and expected power spectra. However, in contrast with

the sandpile model, transport is not done by an integer amount of grains of sand, but by a

continuous amount that is regulated by the local fluctuations.

As the particle source increases, a dynamical transition spontaneously takes place.

For a particle flux above a threshold value, an edge pedestal like region forms, and the

pedestal width increases with increasing value of the particle source.  Transport in this

edge region self-organizes to be very close to marginal stability, while the core remains at

the subcritical gradient that is typical of the sandpile.  The two regions are characterized

by distinct dynamical behavior of the fluxes. The change from one radial region to the

other is sharp and has the characteristic properties of a transition.

The control parameter for the transition is the local mean flux.  When the mean

particle flux is low, the transport is caused by bursty flux events. The system remains

subcritical most of the time and evolves through a sequence of particles bursts. At the
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critical value of the local mean flux, this mechanism cannot effectively keep the particle

balance, and the system transitions to another state.  In this state, the gradient of the

particle density stays very close to its critical value, zc, and the flux becomes continuous

with intermittent changes of its amplitude.

The rest of this paper is organized as follows. In Sec. II, we present the transport

model, and we discuss its numerical implementation. In Sec. III, a description of the

numerical results is given.  This is followed, in Sec. IV, by an analysis of the dynamics of

the fluxes that allows us to characterize the transition. Finally, In Sec. V, we discuss the

results and conclusions of this paper.

II. EQUATIONS OF THE MODEL AND NUMERICAL SCHEME

The model proposed in this paper consists of two equations describing the

evolution of the root-mean-square (rms) fluctuations, Φ(x), and of the averaged density,

h(x). The two equations are

∂Φ
∂t

= Φ γ − µΦ( ) + S1 ,  (1)

∂h

∂t
=

∂
∂x

µ0Φ
∂h

∂x
 
 

 
 + S0 .  (2)

In the fluctuation equation, γ is the linear growth rate of the instability, µ is the

coefficient of the nonlinear term that is responsible for the saturation of the turbulence,

and the third term, S1, is a small source term to guarantee a minimal level of seed

fluctuations.  This seed for fluctuations is needed to start the growth when the profile

goes from supercritical to subcritical.  The transport equation includes two terms: a

source term, S0 and a radial diffusion term. In the latter, we assume that the diffusivity is

proportional to the level of fluctuations and is given by µ0Φ.

The underlying instability is assumed to be a critical-gradient instability. Then the

linear growth rate is
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 γ = γ 0 −
∂h

∂x
− z c

 
 

 
 Θ −

∂h

∂x
− z c

 
 

 
 .  (3)

Here, Θ is the Heaviside function, and zc is the absolute value of the critical gradient.

The source terms are not continuous, but they represent the random addition of

fluctuation energy and density with a prescribed probability. In Eq. (1), we add Φ  with

probability p1, in Eq. (2), we add an amount δ with probability p0.

This model represents a generalization of the classical sandpile model used to

interpret plasma transport3 by the addition of fluctuation dynamics that regulates the

amount of transport, which couples back to the fluctuations through the gradient drive.

Equations (1) and (2) can be rewritten in dimensionless form as

∂ ˆ Φ 
∂τ

= ˆ Φ ˆ γ − ˆ Φ ( ) + ˆ S 1 ,  (4)

∂ ˆ h 

∂τ
=

∂
∂ ˆ x 

ˆ Φ 
∂ ˆ h 

∂ ˆ x 

 

  
 

  + ˆ S 0  .  (5)

Here, τ = tγ 0Z c , ˆ x = x µ µ0 , ˆ h = h Z c( ) µ µ0 , ˆ Φ  =µΦ γ 0 Zc( ), ˆ γ = γ γ 0Zc( ) ,

ˆ S 1 = µS1 γ 0Zc( )2
, and ˆ S 0 = S0 Z c

2( ) µ µ0γ 0
2( ) . There are no explicit parametric

dependencies in these equations except for the source term. However, they depend on the

system size ˆ L = L µ µ0 . Because of this transformation, in what follows we take γ0 = 1.

Equations (1) and (2) are numerically advanced in the following way.  First, the

source terms are taken into account by

Φ i
t → Φi

t + Φ  (6)

with probability p1, and

hi
t → hi

t + δ  (7)
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with probability p0.  Then  we proceed to time advance by setting

Φ i
t+∆ t = Φ i

t exp ∆t γ i − µΦi
t( )[ ]  ,  (8)

hi
t+∆ t = hi

t + ∆tµ0 −Φ i
t+∆ tzi + Φi−1

t+∆t zi −1( )  ,  (9)

for i > 0. At the origin

h0
t+∆ t = h0

t − ∆tµ0Φ0
t +∆t z0 ,  (10)

where γ = z − z c( )Θ z − z c( ), with zi = hi
t − hi+1

t .

The boundary condition at the edge, x = L, is hedge ≡ h(L) = 0. Note that Φi is

really defined at i+1/2, and Φ(L) does not enter in the scheme.

The form for the time advancement of Φ, Eq. (8), has been chosen to guarantee

the positivity of the fluctuation amplitude.

III. NUMERICAL RESULTS

Using the model described in the previous section, we have carried out numerical

calculations for different values of the parameters.  For these calculations, a time step of

∆t = 0.05 has been used.  The time evolution goes through a transient phase. The length

of this phase depends on the size L of the system.  After the transient, there is a steady

state phase.  The function h in steady state can be characterized by its slope z.  The time-

averaged fluctuation profile must be such that the induced local flux at every location is

equal to the input flux, that is µ0 Φi zi = p0 xi .

Because the diffusion coefficient is proportional to Φ and the source term in

Eq. (1) is random with a fixed size step, this source term (if large enough) can induce

diffusive transport.  In the radial region where the randomly induced flux is larger than

the fluctuation-induced flux, p1Φ > ∆t γ i Φi , diffusion dominates, and the slope of z is
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linear with x.  In this region, the time-averaged Φ is given by Φ i = p1Φ µ∆t( )  and is

essentially independent of the radial position [Fig. 1(a)]. When p1Φ < ∆t γ i Φi , the

fluctuation-induced flux dominates; the saturation condition for the fluctuations is

γ i = µ Φ i ; and because the slope of z is nearly constant, the Φ  profile is

approximately linear with x  [Fig. 1(a)].  In this diffusion-dominated regime, one can

reproduce many of the properties identified in the case of combining a sandpile dynamics

with diffusive transport.10  Therefore, depending on the value of p1 and Φ , we can have a

diffusion dominated transport [Fig. 1(a)], or an avalanche-dominated transport regime

[Fig. 1(b)]. In the remainder of this paper, we always work in the second regime where

the effect of the source term S1 on the transport dynamics is negligible.

As expected,11 and from the invariance transformation given in the previous

section, numerical results are not affected by the value of the critical gradient, zc.

Therefore, we keep zc = 5 for all cases considered here. This independence of zc is a

consequence of the simple form of this model. Here, we consider a single instability

mechanism. In more realistic models, multiple instabilities are possible, each with its own

critical gradient. In such a case, a dependence on the relative magnitude of the critical

gradients may appear. We also keep constant throughout these calculations the amount of

density added randomly to the h, that is δ = 0.05 , and we control the particle source

through the frequency p0 of these additions. The probability p1 is maintained very small.

The only role of this term is to avoid the fluctuations going to zero during the subcritical

phase.  We keep the value of p1 below 10-7, and for this range of values the numerical

results are independent of p1.  Therefore, we are left with three main parameters: p0, L,

and µ0/µ. To understand the role of each parameter, we have done sequences of numerical

calculations that vary each of these parameters independently.  For the p0–scans, we set

µ0/µ = 0.5 and considered four values of L—100, 200, 400, and 800.

As a difference from the classical sandpile, the system is not always subcritical.

The average slope can be below zc but can also be at marginal stability, z = zc.  How much

of the profile is subcritical depends on the value of p0.  An example is shown in Fig. 2,
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where we have plotted the time-averaged slope of h for different values of p0.  The results

plotted in Fig. 2 are for a system's length L = 200.

In Fig. 2, we see the jump in the averaged slope of the density at a given radial

position. This jump is sharp and has the characteristic properties of a transition.  It is not

only a change in the averaged equilibrium properties of the sandpile, but also reflects a

change in transport dynamics as discussed in the next section.  The transition point from

subcritical to marginal is well defined in all cases. It is also clearly visible in the averaged

profile of the fluctuations (Fig. 1).  This transition point depends on both p0 and the

system size, L. For each one of the four sequences of p0-scan calculations with different

size L, we can plot the position of transition point as a function of p0.  In this way, we

obtain four self-similar curves.  As can be seen in Fig. 3, these four curves can be

superimposed by plotting them as a function of the parameter p0L
3/4.  The functional

dependence on this parameter is simple and can be described by the following:

xm

L − 20
=

1

p0L3 / 4 A( )5 / 2
+1

.  (11)

Here, the value of the parameter A = 0.0067 has been determined by fitting this function

to the data.  In this figure, we have normalized xm to L–20 instead of L. The reason is that

boundary effects can be important in a range of about 10 cells in each of the end points of

the radial region.

By transforming Eqs. (1) and (2) to Eqs. (4) and (5), we have shown that, apart

from zc, only two relevant parameters remain: the renormalized source

ˆ S 0 = S0 µ µ0γ 0
2( )  and the system size ˆ L = L µ µ0 . For the time-averaged h profile,

the renormalization of the source can be interpreted as a renormalization of p0.

Therefore, Eq. (11) automatically can be changed to include the dependence in the

parameter µ µ0  in the following way:

xm

L − 20
=

1

p0 L3 / 4µ 2µ0( )7 / 8
A[ ]5 / 2

+1
 .  (12)
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In Fig. 4, we compare the fit obtained from the numerical data for µ0 µ = 0.5  with the

data for µ0 µ ≠ 0.5 . As expected, the agreement is good.

For very low values of the averaged flux, p0L, the jump in the slope stays just at

the edge.  This is the case for p0 = 10-6, shown in Fig. 2, and for lower values of p0.  From

Eq. (12), we have that the pedestal width is greater than one cell for

p0L ≥ A
2µ0

µ
 
  

 
  

7/8

L−3 / 2 0 .  (13)

For values of p0L above this value, the jump on the slope moves inward, and the edge

pedestal broadens.  We can interpret Eq. (13) as a threshold value for the total particle

flux.

IV. ANALYSIS OF THE NUMERICAL RESULTS

The slope of the density gradient as a function of the radial position x near the

jump region has the properties of a critical transition. The real control parameter for the

transition is not necessarily x, but it is probably the time-averaged local flux Γ = p0x.

One of the properties that allows us to identify the change in slope as a transition is that

the width of the transition region decreases in relation to the system size with increasing

system size.

We calculate the width WS of the transition region by fitting the slope with a

constant plus a hyperbolic tangent.  In Fig. 5, we show an example of such a fit and the

parameters WS and xm are indicated in the figure. When xm is close to any of the

boundaries, the width becomes very small.  However, for values of xm such as

0.2L ≤ xm ≤ 0.8L, WS is approximately constant for a fixed system size.  When L

increases, WS increases as L0.4.  This scaling is shown in Fig. 6, where we have plotted
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WS L0.4  as a function of xm/L for all cases considered.  We can see that, within error bars,

all points fall on top of the same curve.

To understand the transition between subcritical and marginal regions of the

profile, it is important to investigate the dynamical properties of the fluxes in the different

radial positions or averaged local flux values. To do so, time sequences of the fluxes for

radial points around the transition point have been analyzed. The time sequences of

fluxes are 2 × 108 points in length.

The mean value of the flux does not have any particular radial structure in the

region of the transition point.  This, of course, is expected because the mean flux has to

match the integrated source, which is uniform in x.  However, there is a different

dynamical behavior of the fluxes above and below the transition point.  A way to

visualize this change in behavior is to do a two-dimensional (2-D) plot of the contours of

the flux.  Such a plot is shown in Fig. 7. Between the transition point (x = 161) and the

edge, there is continuous activity.  In the inner region, the activity is sporadic. In this

region, the dominant transport mechanism is avalanche transport. These avalanches are

triggered in the outer region (x > 161), and they propagate inward (x < 161). They can

penetrate all the way to the center of the pile (x = 0).  Some avalanches may start in the

inner region (x < 161), but they are rare, and it takes a long time for them to build up.

Although most avalanches propagate inward, all fluxes are positive, which causes

outward transport of particles.  If we look at the time trace of the fluxes, the flux is bursty

for x < xm. It is practically zero most of the time, and suddenly a flux burst occurs.  Above

the transition radius, there is a continuous flux with what looks like a superimposed

noise.

To quantify the change of behavior of the fluxes, it is useful to introduce the

parameter Λ.  This parameter is defined as the ratio of the time-averaged, most probable

flux (the maximum of the PDF of the fluxes) to the time-averaged flux.  In Fig. 8, we

have plotted Λ as a function of x/xm for 20 different cases, which vary from p0 and L.  In

the radial region where the flux is bursty, we see that 0 < Λ < 0.3.  That is, the large

values of the flux that dominate the tail of the PDF determine the mean flux.  In this
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region, Λ is bound to a low value, but its value varies from case to case without a clear

pattern.  At the transition point, Λ jumps above 0.8 for all cases considered and goes

asymptotically to 1 for x/xm > 1.  In this region, x/xm > 1, the mean flux is determined by

the peak of the PDF.  Although the function Λ(x/xm ) is not a universal function, the

functional form is quite close for all cases considered.

The change of Λ with x is very sharp at x/xm = 1, and again it shows the

characteristics of a transition. From case to case and in the region x/xm = 1, there is a

slight change on the rate of increase of Λ with x.  We can measure this rate of increase

and, from it, calculate the width WΓ of the transition region.  In Fig. 9, we have plotted

WΓ/xm for all the cases considered as a function of p0.  This figure shows that the WΓ/xm on

p0 is compatible with a simple power scaling.

This transition from a continuous flux to intermittent flux is rather similar to the

transition discussed in Ref. [12] for a pure sandpile model. However, in the latter case the

transition was observed as an overall change of the dynamics of the sandpile, while in the

present model the change appears at a radial position.

Other statistical properties of the flux depend on the radial position or mean flux,

and they correlate with the transition points.  An example can be seen in Fig. 10, where

we have plotted the variance of the flux for each of the sequences with L = 800 and

different values of p0 as a function of x/xm.  There is a clear sharp peak of the variance at

the transition point.

This change in the value of the variance reflects a qualitative change of the PDF of

the fluxes, P(Γ), as we move from the subcritical to the marginal region.   For L = 800

and p0= 5 × 10-5, we have illustrated this change by plotting the normalized PDF for the

different radial positions (Fig.  11). In this figure, we have plotted the PDF at each radial

point multiplied by x of the flux normalized to x, xP(Γ/x).  In this way, the mean is the

same for all the PDFs.  In the subcritical region the tails of the large positive fluxes are all

on top of each other, and they scale as a power, xP Γ x( ) → λ Γ x( )α . Clearly, above the

transition point, there is a change in the functional form of the PDF, and the large flux tail
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no longer lies on top of the others.  For the region of normalized fluxes between 10-6 and

10-5, we can calculate the decay index α of this tail. The results for the same sequence are

plotted in Fig. 12.  A similar plot can be done for a constant p0 scan varying L.  This is

shown in Fig. 13.  As can be seen from both figures, the exponent of the tail for large and

positive fluxes is fairly constant and 2.0 < α < 2.2; but it increases sharply at the

transition point.  This value of α in the subcritical region indicates that the mean flux may

be well defined, but its variance is unbounded.

We can verify better this PDF characterization by looking separately at some of

these PDFs. First, consider the PDF of fluxes well in the subcritical region (Fig. 14).

This PDF is strongly asymmetric with a clear algebraic tail. This algebraic tail is well

defined over more than a decade of values of the flux.  However, in the marginal region,

the PDF is completely different.  The bulk is well described by a Gaussian curve, but it is

somewhat asymmetric (Fig. 15) with a weak tail.  Therefore, the flux fluctuation can be

approximately described by a mean value with Gaussian noise. Naturally, in this case the

flux has a small level of intermittency.  In this regime, the range of large positive fluxes

that constitutes the algebraic tail is rather short and ill defined. Consequently, it is more

difficult to determine the decay index of the PDF in this region (see Figs. 12 and 13).

One possible explanation for the transition follows: as the drive increases, the flux

through all local positions must increase.  This must be accommodated by the increased

local effective diffusivity, because the system is in steady state, and we know that while

the gradient changes it does not change by a large amount.  Therefore from Γ = D ∇h, the

effective diffusivity must increase to match the increased flux.  Note that with a

distributed source, this is true for simply changing radial position as well as increasing

the drive because the steady state flux through a given point is the integral of the drive

inside that point.  The low-flux state is characterized by the bursty intermittent transport

events.  The burst of particles comes into a radial location from the uphill side. If the site

becomes unstable, the fluctuations grow until the fluctuation-induced flux reduces the

gradient enough so that it is subcritical.  At that time the fluctuations damp out (do not

stop instantaneously) and leave the site at least somewhat subcritical.  The high-flux state

is characterized by more continuous lower level fluctuations. The "material" comes in
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from uphill, which makes the site unstable.  The fluctuations grow and transport the

particles until it is subcritical; but before the fluctuations can turn off fully, the flux from

above refills the local gradient, which starts the process again.  The transition between

states then occurs when the refill rate exceeds the flux from an individual burst.  At that

point, the average gradient will increase close to the critical gradient, and the fluctuations

will change from bursty to more continuous with smaller oscillations.  In this way, in the

high-flux regime, the PDF of the fluctuations grows narrower and more Gaussian. This

change is a consequence of the oscillations around the continuous level being driven by

the random variations in the external drive. They are not caused by the collective effects

of reaching and then relaxing away from the critical gradient that characterizes the low-

flux transport regime.

V. DISCUSSION AND CONCLUSIONS

The one-dimensional transport model presented in this paper has the properties of

an SOC system. The main transport mechanism is avalanche-like transport that leads to

outward particle fluxes of all sizes.  The distribution of fluxes has a power scaling tail

with a decay index close to -2.  In the inner region, the time-averaged slope of the particle

density is significantly below the critical slope in spite of the local flux mechanism being

a continuous variable controlled by the fluctuations instead of an integer quantity as in

the case of the running sandpile. This model seeks to bridge the gap between the simple

cellular automata models and the more complete “primitive” turbulence models.  In the

primitive turbulence models, exploring different regimes is difficult due to computational

limitations; in the cellular automata models, much interesting physics is excluded due to

the simplicity and discrete nature of the models.

This critical-gradient fluctuation-driven transport model shows the characteristic

properties of a critical transition with control parameter the averaged particle flux,

Γ = p0 x .  When the mean particle flux is low, the transport is caused by bursty flux

events. The system remains subcritical most of the time and evolves through a sequence

of particle bursts. As the mean particle flux increases, the bursts have to happen more
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often and be larger.  At the critical value of Γ , this mechanism cannot effectively keep

the particle balance, and the system transitions to another state.  In this state, the gradient

of the particle density stays very close to its critical value, zc, and the flux becomes

continuous with intermittent changes of its amplitude.

This model shows that even in a very simple system spontaneous transitions can

occur. Such a transition in this system will cause an effective confinement improvement

simply by establishing a region with an increased gradient. Furthermore, this model

predicts a detectable global flux threshold for this transition. This threshold depends on

the parameter regulating the saturation of the fluctuations and the particle transport

coefficient in the "lower-confinement" regime. It is important to note that the nature of

the transition is not likely to be directly related to the “classical” enhanced confinement

regimes since the physics thought to be responsible for those regimes is not included in

this model.  Rather, it defines a region, for example an edge region, in which the

dynamics are different and the gradient is increased making this the region in which a

“classical” confinement enhancement transition can occur. This is because the requisite

features for a transition to enhanced confinement, namely inhomogeneity of the

turbulence and a broken symmetry in the fluctuations, both exist. The former comes from

the transition point itself while the latter comes from the increased gradient.  This type of

“transition” makes the most sense near the edge. However, depending on the parameters

and instabilities involved, this transition could also occur in the core.
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FIGURE CAPTIONS

FIG. 1. Time-averaged fluctuation level and slope of h for : (a) p0 = 1 ×10−4 ,

p1 = 1 ×10−3 , and φ =1 × 10−5 (diffusion-dominated regime) and

(b) p0 = 1 ×10−4 , p1 = 1 ×10−7 , φ =1 × 10−8 (avalanche dominated regime).

FIG. 2. Time-averaged slope of h for different values of p0. The figure shows the

change of the jump position in the averaged slope.

FIG. 3. Radial position of the transition normalized to the system size as a function

of the parameter p0L
3/4 for different sizes of the system and µ0 µ = 0.5 .

FIG. 4. A generalization of the plot in Fig. 3 by transformation of variables.  In this

plot, we compare the fit obtained from the numerical data for µ0 µ = 0.5

with the data for µ0 µ ≠ 0.5 .

FIG. 5. Width, WS, and position, xm, of the transition as determined from a fit to the

numerically calculated averaged slope for a case with p0 = 10-4.

FIG. 6. Finite-size scaling of the width of the transition region as a function of xm/L.

FIG. 7. A 2-D plot of the contours of the flux in the time-radius plane to show the

time evolution of the radial structure of the flux.

FIG. 8. Ratio of the time-averaged, most probable flux [the maximum of the PDF of

the fluxes] to the time-averaged flux as a function of x/xm for 20 different

cases varying p0 and L.

FIG. 9. Normalized radial width of the transition region of Λ as a function of p0.

FIG. 10. Variance of the flux for each of the sequences with L = 800 and different

values of p0 as a function of x/xm.

FIG. 11. PDF of the flux normalized to x, xP(Γ/x) at several values of the radial

position x.

FIG. 12. Decay index α of the algebraic tail of the PDF of normalized fluxes in the

range 10-6 to 10-5, for different values of p0.

FIG. 13. Decay index α of the algebraic tail of the PDF of normalized fluxes in the

range 10-6 to 10-5, for different values of L.
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FIG. 14. An example of a PDF of fluxes well in the subcritical region.

FIG. 15. An example of a PDF of fluxes well in the marginal region.
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