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Abstract.
According to conventional theory based on the drift-Poisson equations, the m = 1

diocotron mode is stable, even for hollow density profiles. However, experiments[C. F.
Driscoll, Phys. Rev. Lett. 64, 645 (1990)] show instability for this mode. These results
have remained unexplained since 1990. We have found two effects which lead to insta-
bility with growth rates and other properties in good agreement with the experiments.
The first effect is due to curvature of the sheaths at the ends of the trap and involves
compression parallel to the magnetic field. The second effect is the free boundary effect
due to the linearized perturbation of the plasma length. The effects are described in
terms of the modified drift-Poisson model, which states the conservation of the line
integrated density. The modified drift-Poisson equations derived are analogous to the
shallow water equations of geophysical fluid dynamics, and the line integrated density
corresponds to the potential vorticity in the shallow water equations. This is explained
in more detail in [del-Castillo-Negrete et al., this volume]. More recent experimental
results[A. A. Kabantsev and C. F. Driscoll, this volume] show agreement over a wider
range of parameters than the original experiments. Curvature and free boundary ef-
fects can increase the growth rate of the m = 2 mode, but the growth rate of this
mode is still very small compared to that of the m = 1 mode for realistic parameters,
and the critical hollowness for stability is much greater. Results are also shown for
m = 1 modes in the analogous geophysical system. Specifically, topography variation
in cylindrical geometry (in the γ-plane approximation) and free boundary effects both
lead to instability with properties very similar to those in the plasma models.

According to the classical theory of diocotron modes in nonneutral plasmas [1,2],
the m = 1 mode (m is the azimuthal mode number, in a geometry with the magnetic
field in the ẑ direction) is stable even in the presence of a hollow density profile.
However, experiments with such profiles in a Penning-Malmberg trap [3] have shown
an instability [4], with an exponential growth rate a few percent of the E × B
rotation frequency. There have been several theoretical attempts to explain this
discrepancy, but to date none have found growth rates comparable to those found
in the experiment [5–8].
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The theory of low frequency behavior such as diocotron modes is based on the
drift-Poisson model. This system consists of the continuity equation with velocity
equal to the E×B drift u⊥ = ẑ×∇φ/B0 and φ obtained from the Poisson equation,
i.e.

Dn

Dt
= 0 , ∇2

⊥φ = 4πen , (1)

where D/Dt ≡ ∂/∂t+u⊥ ·∇, −e is the electron charge, and the constant magnetic
field is B = B0ẑ.

THE MODIFIED DRIFT POISSON MODEL AND
FLUID ANALOGY

The drift-Poisson model is based on an assumption of strictly two-dimensional
behavior of the plasma in the trap. However, equilibrium computations [9–12]
show that in general there is curvature in the electrostatic sheaths at the ends of
a plasma. Based on this observation, we have introduced a new model [9] in order
to explain the discrepancy between theory and experiment. The equations of this
model, which we call the modified drift-Poisson model, are derived by integrating
the three dimensional continuity equation including parallel compression ∂(nuz)/∂z
in z over −L(r, θ, t) < z < L(r, θ, t). This treatment is consistent with the fact
that the plasma is independent of z in the region −L < z < L (neglecting the
width of the sheaths at the ends, which is of order the Debye length). This leads
to Dn/Dt+n [uz(L) − uz(−L)] /L = 0. Using the kinematic relations uz(r, θ, L) =
(D/Dt)L, uz(r, θ,−L) = −(D/Dt)L we find

D

Dt
(nL) = 0 . (2)

The quantity nL is the line integrated density, and Eq. (2) is the equation for
conservation of charge in plasma columns aligned with B. In this approximation,
all quantities are independent of z for −L < z < L (except uz ∼ z). Therefore the
Poisson equation takes the same form as in Eq. (1), and the velocity u⊥ = ẑ×∇φ/B0

is also unchanged. The plasma length is of the form L(r, θ, t) = L0(r)+Λ̃[φ(r, θ, t)−
φ0(r)], where φ0(r) is the equilibrium potential, and Λ̃ allows for the possibility of
a moving boundary; Λ̃ is in general a linear functional obtained by matching at
z = L, z = −L to the vacuum region |z| > L(r, θ, t). Equation (2) can be written
in in dimensionless variables in the form

D

Dt
∇2

⊥φ+
∇2

⊥φ

L

[
−L′

0

r

∂φ

∂θ
+

D

Dt
Λ̃

]
= 0 , (3)

where D/Dt is as before the E×B convective derivative. We assume a conducting
wall at r = rw = 1.



There is an analogy between the modified drift-Poisson equations and the shal-
low water equations [13] of geophysical fluid dynamics, in which the line integrated
density nL corresponds to the potential vorticity, and the first term (the curvature
term) in the brackets in Eq. 3 is the analog of either topography variation or of lat-
itude variation in the Coriolis force in the β-plane approximation [13]. Specifically,
for a cylindrical tank with a sloping bottom at z = −H0[1 − ∆(r)] the equation
analogous to Eq. (2) states the conservation of potential vorticity q in a frame
rotating at constant angular frequency Ω0:

Dq

Dt
= 0 , q ≡ ζ + 2Ω0

h
. (4)

Here, h(r, θ, t) = η(r, θ, t)−H0[1−∆(r)] includes the topography variation as well as
the motion of the free surface at z = η and D/Dt is the convective derivative with
the geostrophic flow u⊥ = ẑ ×∇ψ. The streamfunction is given by ψ = gη/(2Ω0),
g is the gravitational acceleration, and ζ is the vorticity ∇2

⊥ψ in the rotating frame.
Expanding [14] for Ro << 1,∆(r) << 1 (Ro is the Rossby number) and ignoring
the constant 2Ω0 we obtain the approximation

D

Dt

[
∇2

⊥ψ − k2
Rψ + 2Ω0∆(r)

]
= 0 , (5)

where the term proportional to k2
R ≡ 4Ω2

0/gH0 is due to the free boundary, and and
k−1

R is called the Rossby deformation radius. Expanding near some radius r > 0,
∆(r) contributes a term linear in r. This is called the β-plane approximation.
Expanding near r = 0 gives the γ-plane approximation, in which the leading order
variation of ∆(r) is proportional to r2. We will explore this analogy further in the
context of an m = 1 instability in the γ-plane approximation. Other aspects of this
analogy are explored in detail in [14].

MODEL

Equilibrium computations for Penning-Malmberg traps show that it is appropri-
ate to parameterize the equilibrium length L0(r) of the plasma by

L0(r) = L0(0)
(
1 − κr2

)
, (6)

with the curvature parameter κ typically positive [9]. We also consider density
profiles with two parameters relating to the degree of hollowness and to the plasma
radius relative to the wall radius. We assume the form [15]

n0(r) = n0(0)
[
1 − (r/rp)

2
]2 [

1 + (µ+ 2) (r/rp)
2
]

(7)

for 0 < r ≤ rp and zero otherwise, with rp the plasma radius. The density at r = 0
is n0(0) and µ is the hollowness parameter. (The density profile is hollow if µ > 0;
in this case the E × B rotation profile Ω(r) is also hollow.)



LINEARIZATION AND FREE BOUNDARY
PERTURBATION

Linearizing Eq. (3), we obtain

(ω −mΩ(r))∇2
⊥φ̃+

mn′
0

r
φ̃ = −mn0L

′
0

rL0

φ̃− n0(ω −mΩ(r)) Λ̃[φ̃]/L0 , (8)

where we have assumed the normal mode dependence φ̃ ∼ eimθ−iωt and ω is the
complex frequency. This equation is the conventional Rayleigh equation if the terms
on the right due to variation of L are zero.

The free boundary linear perturbation Λ̃[φ̃] is computed by matching to the
vacuum region at z = L, z = −L. In Ref. [9] we showed that by requiring continuity
of the normal as well as tangential components of the electric field E at z = L0(r)+

Λ̃[φ̃] one obtains the following equation for Λ̃:

n0(r)Λ̃ =
[
1 + L′

0(r)
2
] (
∂zφ̃

)
e
, (9)

where the subscript e denotes the external region just to the right of z = L0(r).
The matching conditions at the ends have been expressed in an alternate way [16].
Following this approach, we write the equilibrium density in the limit of zero Debye
length as n(r, z) = n0(r)Θ(L0(r) − z), where Θ is a step function. Then, ñ has a
singular component due to axial motion ñs = −Λ̃∂zn(r, z) given by

ñs = Λ̃n0(r)δ(z − L0(r)) . (10)

Thus, the perturbed density ñ is associated with a surface charge even though
the full nonlinear density is bounded, consistent with continuity of the full electric

field E. Defining Ψ ≡ [z − L0(r)] /
√

1 + L′
0(r)

2, such that ∇Ψ is the unit outward
normal to the curved equilibrium plasma boundary at Ψ = 0, we write ñs in terms
of the distribution σ̃ of surface charge at z = L0(r) as

ñs = σ̃δ(Ψ) , σ̃ =
Λ̃n0(r)√

1 + L′
0(r)

2
. (11)

Relating the jump in the normal derivative
[
∇Ψ · ∇φ̃

]
z=L0(r)

to σ̃ and requiring

continuity of the tangential derivative of φ̃, we obtain

[
∂zφ̃

]
z=L0(r)

=
σ̃√

1 + L′
0(r)

2
. (12)

Using ∂zφ̃ = 0 in the plasma z < L0(r), we recover Eq. (9) from Eqs. (11), (12),
showing that the two formulations are identical.



To express
(
∂zφ̃

)
e

at z = L0(r) in terms of φ̃ at z = L0(r) involves solving

Laplace’s equation in the vacuum region L0(r) < z < L0(0) + b, where b is the
length of the end-cap, and with Neumann boundary conditions at z = L0(0) + b,
a reasonable approximation to open boundary conditions. In general, this can
be done in terms of a Green’s function. However, for b << rw = 1, assuming
L0(0) − L0(r) = O(b), there is a differential approximation [9]:(

∂zφ̃
)

e
= bf(r)∇2

⊥φ̃ , (13)

where f(r) ≡ 1 + [L0(0) − L0(r)]/b. Substituting Eqs. (9),(13) into Eq. (8), using
Eq. (6), and neglecting terms of order κ2, we find f(r) = 1 + κr2/η,

(1 + η + κr2)[ω −mΩ(r)]∇2
⊥φ̃+

m

r

[
n′

0 −
2κr

1 − κr2
n0

]
φ̃ = 0 , (14)

where η ≡ b/L0(0).
For Λ̃ = 0 in Eq. (8), i.e. ignoring free surface effects, and using Eq. (6), we find

(ω −mΩ)∇2
⊥φ̃+

m

r

[
n′

0 −
(

2κ r

1 − κ r2

)
n0

]
φ̃ = 0 . (15)

Note that along with η = 0 the term κr2 in the factor multipling ∇2
⊥φ̃ in Eq. (14)

is dropped, because it is included there under the assumption η ∼ κ. The two
significant parameters in Eq. (15) are the hollowness µ of Eq. (7) and κ.

RESULTS WITH CURVATURE

For κ > 0 and η = 0, i.e. using Eqs. (15), and with (7) for µ > 0 (hollow), a
mode with a positive growth rate γ is found. For fixed µ and κ → 0, γ scales as
κ2/3 for κ small, and ωr = Ωmax. The fractional power and threshold κ = 0 are
associated with a boundary layer near Ωmax, the maximum of Ω(r). The results
ωr = Ωmax at marginal stability is in agreement with the experiments [4]. We have
found that ωr decreases slowly from Ωmax as κ is increased, giving two resonant
radii (where Ω(r) = ωr). The perturbation is localized within the radius where
Ω(r) is maximum, showing the self-shielding property observed in the experiments
[4]. For κ < 0 the mode is stable (γ = 0) with a real frequency ωr that increases
above Ωmax as |κ| increases, i.e. the mode becomes nonresonant. More details are
given in Ref. [9].

For µ, κ → 0, there are scaling properties due to the localization of the mode
inside the radius rΩ where Ω(r) is maximum. For µ, κ small but κ/µ ∼ 1, and
using the localization r ∼ rΩ ∼ µ1/2 we find the scaling [9]

γ/µ2 = Γ(κ/µ) . (16)

The scaled growth rate γ/µ2 as function of κ/µ from Eq. (15) is shown in Fig. –(a)
for five values of µ. The results are in agreement with the scaling of Eq. (16). From



the scaling γ ∼ κ2/3 as κ → 0 and these results we conclude γ ≈ 5 × 10−3κ2/3µ4/3

for κ << µ. From Fig. –(a) we observe further that the marginal stability point to
the right satisfies κ/µ ≈ 1.55. This marginal stability curve is shown in Fig. –(b).
Note that the marginal stability curve is nearly linear even for κ, µ of order unity.

The linearized equation (15) for Λ̃ = 0 has a modified Rayleigh criterion. The
usual derivation [2] is easily generalized to show that there is a sufficient condition
for stability: the equilibrium is stable if the line integrated density n0(r)L0(r) is
monotonic. This condition is satisfied for κ sufficiently large since the length L0(r)
[c.f. Eq. (6)] is a decreasing function or r. The sufficient condition from the modified
Rayleigh criterion as well as the actual marginal stability curve κ/µ = 1.55 (c.f.
Fig. –(b)).

Equilibrium computations show that κ increases as the length decreases, and
that values κ ∼ 1 can be obtained for short plasmas [9]. Thus, the linear results
shown on Figs. predict stability for short plasmas. This stabilization has been
observed in experiments [17].

RESULTS WITH CURVATURE AND FREE
BOUNDARY

In Figure 2–(a) we show the growth rate γ obtained from Eq. (14) as a function of
η for µ = 3 and for seven equally spaced values of κ between 0 and 0.35. For these
values of η the differential approximation of Eq. (13) used in Eq. (14) is adequate.
These values of γ/ωr are in reasonable agreement with experiments [4]. We find
that the behavior as a function of η is similar to the behavior as a function of κ.

FIGURE 1. (a) Scaled growth rate γ/µ2 as function of κ/µ, for µ = 0.05 (top), 0.10, 0.15, 0.20,
and 0.25 (bottom). The overlap of the curves for different values of µ indicates that in the limit
(κ, µ) → 0, γ(κ, µ) converges to the self-similar form µ2Γ(κ/µ) of Eq. (16). (b) Stability diagram
µ, κ. The solid curve is the stability boundary computed numerically, and satisfies κ/µ < 1.55
for µ, κ << 1, with little variation for κ, µ ∼ 1. The dashed line is the modified Rayleigh criterion
[n0(r)L0(r)]′ < 0 stability boundary, namely κ/µ < 2.87 for rp = 0.59.



In particular, γ ∼ η2/3 for κ = 0, η > 0, and the mode is stable and nonresonant
(ωr > Ωmax) for κ = 0, η < 0.

The linearized equation in the presence of curvature and free boundary effects
in the differential approximation Eq. (14) satisfies the same modified Rayleigh
criterion as for η = 0, namely (n0L0)

′ < 0: in the usual derivation [2] n′
0(r) is

replaced by (n0L0)
′/[L0(1+ η+κr2)]. However, the observed stabilization for large

η and κ = 0 [9] is not predicted by the modified Rayleigh criterion. Note also that
the modified Rayleigh criterion applies to all modes with m = 0. We conclude that
the usual diocotron modes with |m| > 1 can in principle be stabilized by sufficiently
large curvature. We return to this point in the next section.

RESULTS FOR M = 2 MODES

We have obtained results for m = 2 modes in the presence of curvature and free
boundary, i.e. κ and η. First, we have studied the case η = 0, with rp = 0.50 and
0 < ∆ < 0.06. (∆ ≡ 1/µ is the hollowness parameter of Ref. [15].) For κ between
0 and 0.2, we found that the growth rate relative to that obtained in Ref. [15]
changes by less than 0.1%, the real frequency changes by less than 1%, and the
marginal stability point ∆ ≈ 0.05 does not change measurably. In Fig. 2–(b) we
show the growth rate γ, scaled to the m = 1 stable diocotron mode frequency
ω1 = Ω(r = rw), as in Ref. [15] for κ = 0, 0 < η < 0.1 and ∆ in the above
range. These results show that in this range of η the growth rate of m = 2 modes
increases by about a factor of two and the relative change in the real frequency
changes by a factor up to 10%, i.e. ∆ωr/ωr ∼ η. The absolute changes ∆γ and
∆ωr are comparable. However, the marginal stability value of ∆ increases by only

FIGURE 2. (a) Dependence of the growth rate γ on η according to Eq. (14), for seven equally
spaced values of κ between 0 and 0.35 for µ = 3. (b) Growth rate γ for the m = 2 mode, relative
to the m = 1 diocotron frequency ω1 = Ω(r = rw). Results are plotted for rw = 0.50, κ = 0 as a
function of the hollowness parameter ∆ = 1/µ for five equally spaced values of the free boundary
parameter η between 0 and 0.1.



a small amount. As described in Ref. [15], these modes are destabilized by a small
population of resonant particles with

γ ∼ [∂rn0(r)]r=rs
; (17)

here rs is the resonant surface, where ωr = 2Ω(rs). For κ > 0, η = 0 and for
κ > 0, η ∼ κ similar analyses show

γ ∼ ∂r [n0(r)L0(r)] |r=rs , γ ∼ ∂r [n0(r)L0(r)]

1 + η + κr2
|r=rs , (18)

respectively. Because of this local resonant nature their growth rates are very
small (γ/ωr ∼ a few times 10−3 [15].) The results with κ > 0, or the results with
η > 0 of Fig. 2–(b), show that the conclusion of very small growth rates still holds.
Moreover, these modes for η = κ = 0 have a very large critical µ (small ∆) for
instability, which does not change substantially for reasonable values of κ and η.
Furthermore, the possible stabilization for large κ is irrelevant for the m = 2 modes;
they are unstable only for a large degree of hollowness ∆ < 0.05 [15] (consistent
with Fig. 2–(b)), i.e. µ > 20, so that an unrealistically large curvature, κ ∼ µ
would be required for the modified Rayleigh criterion to be satisfied. Such values
of κ are not observed in equilibria [9]. Indeed, the representation (6) is invalid for
κ > 1/r2

p. It is anticipated that the m > 2 modes behave similarly to those for
m = 2.

For comparison with these m = 2 results, we summarize the m = 1 results of
Figs. with increasing µ and fixed κ: as κ is increased (other parameters as in
these figures), there is a critical hollowness µ = µc for m = 1 instability, namely
µc = κ/1.55. (It is noteworthy that µc goes to zero as κ → 0.) As µ increases, the
growth rate is of order 10−2κ2 at µ ≈ 2κ (with a scaling Ωmax ∼ 1. For µ = 3 and
rp = 0.59, we have Ωmax = 0.61, ω1 = 0.13.) For larger µ the growth rate continues
to increase as γ ≈ 5 × 10−3κ2/3µ4/3. For these parameters and κ ∼ µ ∼ 1, γ/ω1

can be of order 0.1. These growth rates are much larger than the typical growth
rates for the resonant m = 2 modes. Also, µc, the critical µ for destabilization, is
typically much smaller, and µc goes to zero as κ goes to zero.

M=1 RESULTS IN ANALOGOUS FLUIDS

Based on the above results, showing instability for m = 1 modes in Penning-
Malmberg traps with hollow density profiles, and the analogy with geophysical
fluid dynamics, we have investigated the m = 1 stability properties of rotating
fluids with topography variation and a free surface. Linearizing Eq. 5, we obtain

(ω −mΩ(r))
(
∇2

⊥ψ̃ − k2
Rψ̃

)
+
m

r

[
ζ ′0(r) − rk2

RΩ(r) + κr
]
ψ̃ = 0 . (19)

Here, ζ0(r) is the equilibrium vorticity and Ω(r) is the equilibrium rotation velocity,
both in the frame rotating at Ω0. We have taken the relative topography ∆(r) =



σr2/r2
w, where σ << 1 and rw is the radius of the tank, and defined κ ≡ 4σΩ0/r

2
w.

The relative topography ∆(r) includes the equilibrium parabolic deformation of
the surface due to the rigid rotation Ω0.

If Fig. 3–(a) we show the growth rate γ as a function of κ for three values of kR.
Note that instability occurs for κ < 0. There is a zero threshold in κ for kR = 0,
with γ ∼ κ2/3 for small κ, and stabilization is observed for large κ, similar to the
plasma case. (Again there is a modified Rayleigh criterion, giving for example with
kR = 0 a sufficient condition for stability if ζ0(r) + 2Ω∆(r) is decreasing, i.e. if
ζ ′0(r)+κr is negative.) In Fig. 3–(b) we show γ as a function of kR for six values of κ.
The growth rate increases with kR and |κ|. For κ = 0, γ goes to zero at kR = 0.065.
As in the plasma case, the real frequency is found to be Ωmax for κ = kR = 0 and
to decrease as kR increases or |κ| increases, i.e. when there is instability. The mode
structure is similar to that in the plasma case. Specifically the mode has the self-
shielding property, that the perturbation goes to zero rapidly just outside the radius
where Ω(r) is maximum. Since the total height is h = H0[1 − ∆(r)] for zero free
boundary perturbation η, we see that instability occurs when the total height is an
increasing function of r, h′(r) = −H0∆

′(r). The fact that the stability criterion is
opposite to that in the plasma case is traced to the fact that the potential vorticity
in the lab frame is ζ/h, whereas the line integrated density in the plasma case,
which plays the role of potential vorticity, has the form nL.

COMPARISON WITH EXPERIMENTS

As discussed, the theoretical results for m = 1 are in good agreement with the
earlier experiments [4]. Further experiments have recently been done [18] over a
wider range of parameters, and this agreement appears to be holding up. Specifi-
cally, the observed behavior in agreement is: (i) the scaling γ ∼ κ2/3 for small κ; (ii)

FIGURE 3. (a) Growth rate for the m = 1 mode in the γ-plane approximation from Eq. 19 as
a function of κ for three equally spaced values of kR between 0 and 1.0. (b) Growth rate for the
m = 1 mode in the γ-plane approximation from Eq. 19 as a function of kR for six equally spaced
values of κ between 0 and −0.1.



the stabilization for short plasmas (large κ); (iii) the decrease of the real frequency
for increasing positive κ; (iv) stability for κ < 0 with real frequency that increases
above Ωmax with |κ|; (v) the self-shielding property. There appears to be a discrep-
ancy in γ of about a factor of two, but it is possible that this may be resolved by
a Green’s function treatment that is not restricted to b/rw << 1. (The conditions
for the validity of the differential approximation of Eq. (13) are only qualitatively
satisfied for the parameters of the experiments.) Also, Eq. (14) has the property

that the perturbed density ñ = ∇2
⊥φ̃ should be zero where [n0(r)L0(r)]

′ is zero. In
the experiments [4], [18], |ñ| does indeed have a minimum there, but the value ap-
pears to be positive. This possible discrepancy should also disappear in a Green’s
function treatment.

In conclusion, inclusion of terms related to end curvature and free boundary
has a substantial effect on the m = 1 mode, destabilizing it for arbitrarily small
hollowness µ (as long as κ is small enough.) The growth rates are relatively large.
The zero threshold in κ and the scaling γ ∼ κ2/3 for small κ (and similar behavior
for small η, measuring the free boundary effect) are traced to the fact that there is
a boundary layer at Ωmax. The effects on the slowly growing resonant m = 2 modes
(and probably on modes with m > 2) are weaker. In addition to these effects on
known modes, the curvature leads to a new class of stable modes, analogous to the
Rossby waves of geophysical fluid dynamics. These waves are treated in detail in
Ref. [14].
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