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Abstract.

We discuss an analogy between magnetically confined nonneutral plasmas and geo-
physical fluid dynamics. The analogy has its roots in the modified drift Poisson model,
a recently proposed model that takes into account the plasma compression due to the
variations of the plasma length [1]. The conservation of the line integrated density in
the new model is analogous to the conservation of potential vorticity in the shallow wa-
ter equations, and the variation of the plasma length is isomorphic to variations in the
Coriolis parameter with latittude or to topography variations in the quasigeostrophic
dynamics. We disuss a new class of linear and nonlinear waves that owe their existence
to the variations of the plasma length. These modes are the analog of Rossby waves
in geophysical flows.

INTRODUCTION

There is a well-known analogy between nonneutral plasmas confined in a
Penning-Malmberg trap and two-dimensional inviscid fluid dynamics. In this anal-
ogy the plasma electrostatic potential and density correspond to the fluid stream-
function and vorticity respectively [2]. This analogy has proved to be particularly
useful in the experimental study of various fluid dynamics problems using non-
neutral plasmas, e.g. Ref. [3]. The goal of this paper is to study a new analogy
between nonneutral plasmas and geophysical fluid dynamics. This analogy is based
on the modified drift-Poisson system, a recently proposed model that generalizes the
usual drift-Poisson equations by taking into account the variations of the plasma
lenght [1]. The modified drift-Poisson model consists of the conservation of the
line-integrated density and Poisson equation,
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where L is the plasma length, ¢ is the electrostatic potential, n is the plasma
density, e the electron charge, and D/Dt = 0; + u -V with u = 2 x V¢/By the
E x B drift velocity.

This model was originally proposed to resolve a controversy regarding the stabil-
ity of the m = 1 diocotron mode. According to linear theory the m = 1 diocotron
mode should be stable [2]. However, about ten years ago Driscoll found a robust ex-
ponential growth of m = 1 perturbations in hollow plasma density profiles [4]. The
contradiction between this experimental result and theory has been a long-standing
problem. In the modified drift-Poisson model the m = 1 instability is naturally
explained by the destabilizing effect of the variations of the plasma length (positive
curvature at the plasma sheats) that is accompained by the plasma density com-
pression. The growth rate, frequency and mode structure of the m = 1 instability
predicted by the modified drift-Poisson model are in good agreement with the ex-
perimental results reported in [4], and recent experiments [5] have further verified
the prediction of this model.

In general the plasma length L depends on r, # and ¢, and its exact expression
involves a numerical Green’s function calculation. However, for the present discus-
sion we will assume L = Ly(r). A more general model for L which incorporates free
boundary effects on the plasma lenght without the need to compute the Green’s
function is discussed in [1]. For L = Lgy(r) the modified drift-Poisson model (1)
becomes
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where the prime denotes derivative with respect to r, and {f,9,}=1/r (8,~f 0pg —
Oy f Opg. Writing ¢ = ¢o(r) + ¢(r,0,t), and neglecting nonlinear terms in ¢ we get
the linearized version of Eq. (1)
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The precise form of Ly(r) depends on the numerical solution of the plasma equilib-
rium equations. However, as discussed in Ref. [1], Lo(r) can be fit to the parabola

Lo(r) = Lo(0) [1 — xr?] (4)
where Ly(0) and the curvature x depend on the equilibrium parameters. Typically

k> 0.

ANALOGIES WITH GEOPHYSICAL FLUID
DYNAMICS

When the variation of the plasma length L is taken into account the two-
dimensional density n is not conserved, and the analogy with the two-dimensional



Euler equation breaks down. However, there remains a new and interesting similar-
ity with geophysical fluid dynamics. In addition to its intrinsic theoretical interest,
this analogy is important from the perspective of modeling geophysical flows with
nonneutral plasmas experiments in Penning-Malmberg traps.

To explain this similarity consider a uniform density, incompressible, rotating
fluid, shown in Fig. ??, with free surface z = n(z,y,t), and bottom topography
z = —Hy[1 — A(r)]. This system is commonly used in geophysical fluid dynamics
as the starting point in the development of simple models of the oceans and the
atmosphere [6]. An important parameter in rotating fluid dynamics is the Rossby
number defined as Ro = U/(20L) where U is a horizontal velocity scale, L is a
horizontal length scale, and €2 is the magnitude of the rotation frequency.

The limit Ro << 1 is of particular interest in geophysical flows. In this case,
because of the rapid rotation the horizontal velocity, u, is to a good approximation
independent of z. If in addition it is assumed that the scale of vertical motions
is small compared to the scale of the horizontal motion we get the shallow-water
model which implies the conservation of the potential vorticity, q,
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where ( is the vorticity, h = n + Hy(1 — A) is the fluid depth, and f = 2Qsin ¢ is
the Coriolis parameter with ¢ the latitute angle measured from the equator [6].

In the non-rotating (inertial) frame Eq. (5) reduces to D({/h)/Dt = 0 which is
analogous to the conservation of the line integrated density in Eq. (1) if we identify
the plasma density n with the vorticity ( and the variations of the fluid depth A
with the inverse of the plasma lenght 1/L.

Topography variations. There are two sources of variability in (5), one due
to the variations of the fluid depth h = h(r, 6,t) and the other due to the variations
of Coriolis parameter f = f(¢). Consider first the case when f = f; = constant
and

h=Ho[l —A(r)] (6)

where we have neglected free surface effects and, as shown in Fig. [?], A is the
topography variation. In the small Rossby number limit (/2fo ~ A ~ R, < 1, we
have
1+ £ + A(r)} +O(R?) . (7)
fo

In the quasigeostrophic approrimation the advective derivative in (5) becomes
D/Dt = 0y + u -V, where u = z x Vi is the geostrophic velocity, which is the
analogue of the E x B plasma drift velocity, 9 is the streamfucntion and ¢ = V2.
In this limit Eq. (5) becomes the quasigeostrophic potential vorticity equation:
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where, the prime denotes derivative with respect to r. Writting ¢ = o(r) +

¥(r,0,t), we get the linearized drift-Poisson model
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Note that Eq. (2) is different from Eq. (8), but the linearized drift-Poisson model
(3) is identical to the linearized quasigeostrophic equation (9) is we make the
identification A <« 1/fy [ dr Ly(r)no(r)/Lo(r). In particular for Ly in (4)
A ~ A (1 —akxr?) where a > 0. That is, a positive plasma length curvature
is analogue to a “mountain”.

Coriolis parameter variation. Consider now the case in which there are
no topography variations (A = 0) but the Coriolis parameter varies with latitude
f=2Qsinp. Let ¢y denote a reference latitute angle and write

f~2Q [sin ©o + cos @y 6 — sin g (6¢)?/2.. ] : (10)

In this approximation the potential vorticity becomes

q=cgof%Hio(fo+<+ﬂr—w2+---), (11)

where 8 and 7 are constants, and r = dp R with R the radius of the earth. At
mid-latitiude cospy # 0 and ¢ ~ fo + ¢ + Br. This is the so-called f—plane
approximation. However, near the poles cos ¢y ~ 0 and thus g ~ fy+( —~r? which
is known as the y—plane approximation [7,8]. From Egs. (7) and (11) we have that
the variations of the Coriolis parameter in the earth can be mimiced by topography
variations if we identify 2QA'(r) «» ( — 2~ r. This identification is the guiding
principle in the modeling of geophysical flows with laboratory experiments.

ROSSBY WAVES

According to (1) the variation of the plasmas lenght L induces a compression of
the plasma density n. This compression provides the restoring mechanism of a new
class of plasma waves which are the analog of Rossby waves in geophysical fluid
dynamics.

Linear solutions As a simple illustration of these waves, consider a “top-hat”
piece-wise constant density profile:

no = constant,  ¢o =Q/2[(r/r,)* - 1] , (12)
for r < rp, and ng = ¢o = 0 for 7 > r,. For this density distribution 2 = ny/2 for

r <71p, and Q ~ 1/r for r > r,. According to the linearized modified drift-Poisson
model (3), for r < r,
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Substituting ¢ = f(r) e (™=%" in (13) we get
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In the small curvature limit k < 1, A — 1 and Eq. (14) reduced to Bessel’s equation.
Therefore, in this limit, we get the following linear solution for r < r,:

Ge= Al (Dr) om0 (15)

where J,, is the Bessel function of order m, and A is a constant.
For the vacuum region, r > 7, we simply have V2¢ = 0. The solution of this
equation that vanishes at » = 1 (the boundary of the trap) is

é> =B (r‘m — rm) llmo—uwt) (16)

From the matching conditions ¢« (r,) = ¢~ (r,), and ¢’ (r,) = ¢4 (r,) we get the
linear dispersion relation:
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Note that according to (18) these linear waves propagate only in the one direction.
Nonlinear solutions To construct nonlinear traveling wave solutions of the
modified drift-Poisson system consider

¢ = gﬁ + 1 (r,mh — wt) , (19)

where w is a constant. Substituing (19) into (2) we get

{¢, Lo [V*¢ +2w/m|} =0. (20)
The general solution of (20) is

Ly [V + 2w/m| = F(y) , (21)
where F is an arbitrary function of 1. A solvable special case is

F(3) = Lo(0) 22— D* 9] , (22)



where € is a constant and D is defined in (14). For this special case the solution
(19) reduces to

b=+ f(r) e (23)

where f(r) is determined by the solution of Eq. (14). As discussed before, in the
small curvature limit k < 1, Eq. (14) reduced to Bessel’s equation and f(r) =
Jm(Dr), The interior solution (23) has to be coupled to the solution of the vacuum
equation V?¢ = 0, whose solution is (16). From here the calculation proceeds as
the linear problem presented before.
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