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Abstract

Numerical evidence of non-diffusive transport in three-dimensional, resis-

tive pressure-gradient-driven plasma turbulence is presented. It is shown that

the probability density function (pdf) of test particles’ radial displacements is

strongly non-Gaussian and exhibits algebraic decaying tails. To model these

results we propose a macroscopic transport model for the pdf based on the

use of fractional derivatives in space of and time, that incorporate in a unified

way space-time non-locality (non-Fickian transport), non-Gaussianity, and

non-diffusive scaling. The fractional diffusion model reproduces the shape,

and space-time scaling of the non-Gaussian pdf of turbulent transport calcu-

lations. The model also reproduces the observed super-diffusive scaling.
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Recent experimental and theoretical evidence indicates that transport in magnetically

confined fusion plasmas deviates from the standard diffusion paradigm. Typical examples

include the confinement time scaling in low confinement mode plasmas [1,2], perturbative

experiments [3–5], and the non-Gaussianity and long-range correlations of fluctuations [6].

The standard diffusion paradigm breaks down in these cases because it rests on restrictive

assumptions including locality, Gaussianity, lack of long-range correlations, and linearity. In

particular, according to Fick’s law, the fluxes, which contain the dynamical information of

the transport process, are assumed to depend only on local quantities, i.e. the gradients of

the fields. Also, at a microscopic level, the diffusion paradigm assumes the existence of an

underlying un-correlated, Gaussian stochastic process, .i.e. a Brownian random walk.

The need to develop models that go beyond these restrictive assumptions, is the main

motivation of this letter that has two connected goals. The first goal is to show numeri-

cal evidence of non-diffusive transport in pressure-gradient-driven plasma turbulence. We

do this by integrating test particles in the E × B field obtained from a nonlinear, three-

dimensional turbulence model. Test particle studies of this type have the advantage that

incorporate in the particle trajectories all the physics of the turbulence model. However,

this “microscopic” approach has the limitation of being time consuming, and potentially

redundant in the sense that it tracks individual, particle orbit information that from a sta-

tistical point view might be irrelevant. This issue takes us to the second goal of this letter

which is to propose and test a macroscopic model describing the statistical properties of

transport in pressure-gradient-driven plasma turbulence. The proposed model is based on

the use of fractional derivative operators which, as it will be explained below, incorporate

in a natural, unified way, non-locality in space and time, non-Gaussianity, and anomalous

diffusion scaling.

The underlying instability in pressure-gradient-driven plasma turbulence is the resistive

interchange mode, driven by the pressure gradient in regions where the magnetic field line

curvature is negative. In this system, changes in the pressure gradient trigger instabilities

at rational surfaces that locally flatten the pressure profile and increase the gradient in
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nearby surfaces. This in turn leads to successive instabilities and intermittent, avalanche-

like transport [7], which has been observed to cause anomalous diffusion [8]. This instability

is the analog of the Raleigh-Taylor instability, extensively studied in fluids, responsible for

the gravity driven overturning of a low density fluid laying below a high density fluid. In

magnetically confined plasmas the role of gravity is played by the curvature of the magnetic

field lines which in a cylindrical geometry is always negative and depends only on the radius.

The turbulence model that we use, describes the coupled evolution of the electrostatic

potential Φ and pressure p in a cylindrical geometry [7]
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where the tilde denotes fluctuating quantities (in time and space), and the angular bracket,

〈 〉, denotes poloidal and toroidal angular (flux surface) average. The magnetic field B0 is

assumed to be on a cylinder with axis along the z-axis. The equilibrium density is n0, the

ion mass is mi, the averaged radius of curvature of the magnetic field lines is rc, and the

resistivity is η. The subindex “⊥” denotes the direction perpendicular to the cylinder’s axis,

and the subindex “‖” denotes the z direction. In both Eqs. (1) and (2) there are dissipative

terms with characteristic coefficients µ (the collisional viscosity) and χ⊥ (the collisional

cross-field transport). A parallel dissipation term proportional to χ‖, is also included in

the pressure equation. This term can be interpreted as a parallel thermal diffusivity. The

evolution equation of the flux surface averaged pressure is
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It contains a source term, S0, which is only a function of r. This source of particles and

heat is due, for instance, to neutral beam heating and fueling. In this case, S0 is essen-

tially determined by the beam deposition profile. In the present calculations, we assume a

parabolic profile, S0 = S̄0 [1 − (r/a)2]. The model parameters used here are µ = 0.2 a2/τR
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and χ⊥ = 0.025 a2/τR, where τR ≡ a2µ0/η is the resistive time and a the minor radius.

The rest of the parameters in the model can be reduced to two dimensionless quantities

the Lundquist number, which is taken to be S = 105, and β0/2ε
2 = 0.018, where β0 is the

value of β at the magnetic axis, and ε = a/R0. The numerical calculations were carried

out using the KITE code [9] with 363 Fourier components to represent the poloidal and

toroidal angle dependence for each fluctuating component, and a radial grid resolution of

∆r = 7.50 × 10−4a.

Having computed the electrostatic potential Φ̃, we study transport by following test

particle orbits determined from the solutions of the E × B equation of motion

dr

dτ
=

1

B2
0

∇Φ̃ × B0 . (4)

Since the magnetic field is fixed, the turbulence-induce transport is only due to the fluctu-

ating electrostatic potential. This electrostatic approximation, which is quite reasonable for

low β values, is needed in order to carry out the numerical calculations in the time range

required for reliable transport studies. As an initial condition we used 25, 000 tracer particles

with random initial positions in θ and z, and radial position r = 0.5 a. Finite size effects did

not seem to be relevant because during the evolution there were very few particles moving

out of the system. In the numerical integration of Eq. (4), it is observed that tracer particles

either get trapped in eddies for long times, or jump over several sets of eddies in a single

flight, giving rise to anomalous diffusion [8].

Due to the intrinsic stochasticity of test particle orbits, one has to resort to a statistical

approach to study transport in this system. Our main object of study here is the probability

density function (pdf) of radial displacements of the particles, P (x, t), where x = (r−a/2)/a

and t = τ/τR. By definition, at t = 0, P (x, t) = δx. As t evolves, the pdf broadens

and develop tails. The triangles in Figure 1 show P (x, t) at t = 0.64 obtained from the

histogram of particle displacements. The log-normal scale of the plot makes clear the strong

non-Gaussianity of the density function (in this scale a Gaussian is a parabola). The insert

in Fig. 1 shows that the tails exhibit algebraic decay with exponent equal to 1.75 ± 0.03.
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The numerical results show that for times above t = 0.1, the moments of the test particles

displacements exhibits super-diffusive scaling, 〈xn〉 ∼ tnν , with ν = 0.66 ± 0.02.

In what follows we show that these numerical results can be quantitatively described

with a transport model using fractional derivative operators in space and time. The generic

form of the proposed model is

cD
β
t P = χ

[
w−

aD
α
x + w+

xD
α
b

]
P + Λ , (5)

where Λ is a source,
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are the left and right Riemman-Liouville fractional derivatives respectively, w± are weighting

factors, and m− 1 ≤ α < m with m a positive integer. The operator on the left hand side

of Eq. (5) is the Caputo fractional derivative in time of order 0 < β < 1,

cD
β
t P =

1

Γ(1 − β)

∫ t

c

∂τP (x, τ)

(t− τ)β dτ . (8)

Despite the apparent complexity of their definition, fractional derivatives are natural gen-

eralizations of regular derivatives. In particular, as expected, for α and β integers, these

operators reduce to regular derivatives, and results of regular calculus extend directly to

the fractional domain making the analytical study of fractional equations a tractable prob-

lem. Further information about the definition and basic mathematical properties of these

operators can be found in Ref. [10].

Fractional derivatives are integro-differential operators that incorporate non-locality in

space and time in a natural way. In particular, the right hand side of Eq. (5) evaluated

at a fixed position x takes into account non-local, spatial contributions to the flux from all

points located to the left (through aD
α
x ), and all points located to the right (through xD

α
b )

of x [11]. The constants w± control the degree of left-right asymmetry in the transport
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processes. This is relevant to fusion plasmas where asymmetric fluxes are usually observed.

The non-locality in time is incorporated in the fractional derivative operator on the left

hand side of Eq. (5). Here, only the left derivative is used because, by causality, transport

can only depend on the past history of the system. In addition to the space-time non-

locality, the fractional diffusion model exhibits non-diffusive scaling of moments. In an

infinite domain, the algebraic decaying tails of non-Gaussian distributions lead to divergent

moments. However, in physical applications (e.g. Ref. [12]) a finite-x cutoff leads to the

finite size scaling 〈xn〉 ∼ tnν , where ν = β/α. Depending on the value of α and β, transport

can be super-diffusive (2ν > 1), sub-diffusive (2ν < 1), or diffusive (2ν = 1).

The physics behind the model in Eq. (5) can be further understood from the close con-

nection between transport models and the theory of random walks. The standard diffusion

model is a macroscopic description of the Brownian random walk which assumes that at

fixed time intervals t = T, 2T, . . . nT . . . particles at a microscopic level experience an un-

correlated random displacement, or jump, #n, with probability Px, where Px is assumed to

have a finite second moment. In a similar way, fractional diffusion models can be viewed

as macroscopic descriptions of generalized Brownian random walk models known as the

Continuous Time Random Walk (CTRW) models [12]. In addition to the jump probability

density Px, the CTRW model introduces a waiting time probability function Pt. That is,

the time between jumps, rather than being fixed as in a Brownian walk, it is drawn from a

probability function Pt. The different types of CTRW processes, and the resulting macro-

scopic transport models, can be classified based on the characteristic waiting time, T , and

the characteristic mean-square jump, σ2, being finite or divergent [12]. Based on this, the

model (5) involving fractional derivatives in space and time can be understood as a general

macroscopic description of an underlying microscopic stochastic process in which particles

exhibit both, jumps without a characteristic spatial scale, and waiting times without a

characteristic time scale. The space non-locality is a direct consequence of the existence of

anomalously large jumps (known also as Levy flights) that connect distant regions in space,

and the time non-locality is due to the history-dependence introduced in the dynamics by
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the presence of anomalously large waiting times.

The fractional diffusion model in Eq. (5) is fairly general, and depending on the values of

α, β, and w±, different transport processes can be modeled, including sub-diffusive transport,

super-diffusive transport, and asymmetric transport. In what follows we show that for

the symmetric, super-diffusive transport observed in pressure-gradient-driven turbulence:

w+ = w− = −0.5/ cos(πα/2), α = 3/4, β = 1/2, and Λ = 0. To understand this, consider

the initial value problem of Eq. (5) in an infinite domain, x ∈ (−∞,∞). Setting a = −∞

and b = ∞ in the left and right fractional derivative operators, and introducing the Fourier

and Laplace transforms

P̃ (k, t) =
∫ ∞

−∞
P (x, t)eikx dx , P̂ (x, s) =

∫ ∞

0
P (x, t)e−st dt , (9)

Eq. (5) becomes

(
sβ + χ |k|α

) ˜̂
P (k, s) = sβ−1P̃ (k, 0) , (10)

where P̃ (k, 0) is the Fourier transform of the initial condition, and we have used the fact

that −∞D
α
x e

ikx = (ik)α eikx, and xD
α
∞ e

ikx = (−ik)α eikx. The test particle transport studies

where done by releasing an ensemble of particles at a fixed radius. Based on this, we consider

an initial condition of the form P (x, 0) = δ(x). In this case, P (x, t) becomes the Green’s

function or propagator which according to Eq. (10) can be written as

P (x, t) =
1

2π

∫ ∞

−∞
e−ikxEβ(−χ|k|αtβ)dk . (11)

where

Eβ(z) =
∞∑

n=0

zn

Γ(βn+ 1)
, (12)

is the Mittag-Lefler function [13,10]. As expected, for α = 2 and β = 1, P reduces to a

Gaussian. For β = 1 , 1 < α ≤ 2, P becomes a symmetric Levy stable distribution [14], and

for 0 < β < 1 , α = 2 it reduces to the solution of the sub-diffusion fractional equation [12].

Introducing the space-similarity variable, η = t−β/αx, the solution can be written as

8



P (x, t) = t−β/αK(η) , K(η) =
1

π

∫ ∞

0
cos(ηz)Eβ(−χzα)dz . (13)

The solid line in Fig. 1 shows a plot of this solution with β = 1/2, α = 3/4, and χ = 0.09. The

agreement with the test particles turbulence simulations (triangles) is good. More precisely,

using the asymptotic resultK(η) ∼ η−(1+α) for large η [13], it follows that P (x, t0) ∼ x−(1+α),

for x� t
β/α
0 , which for α = 3/4 gives a decay exponent equal to 1.75, a value in very good

agreement with the numerical result, 1.75 ± 0.03, shown in the insert in Fig. 1.

The index β determines the time-asymptotic scaling properties of P . To show this, we

introduce the time-scaling variable ζ = t |x|−α/β, and write the solution as

P = |x|−1 ζ−β/αK
(
ζ−β/α

)
. (14)

Using again the large η, and also the small η asymptotic behavior of the function K(η) it

follows that P (x0, t) ∼ tβ, for t� |x0|α/β, and P (x0, t) ∼ t−β, for t� |x0|α/β. This scaling is

verified in Fig. 2 that shows the evolution in time of P at a fixed position x0. The analytical

solution according to Eq. (11), shown with a solid line, exhibits algebraic tails in the small t

and large t limits, and the expected peak at intermediate times. The circles and the triangles

in the figure denote the results obtained from the test particles turbulence simulations. The

agreement is good, but not as sharp as the one in Fig. 2 due to the numerical limitations in

the integration of the turbulence model for large times.

As mentioned before, α and β determine the scaling properties of the moments of the

test particles displacements. In particular, 〈xn〉 ∼ tnν , with ν = β/α. In the present case,

α = 3/4 and β = 1/2, implies ν = 2/3, a value in very good agreement with the one

obtained from the test particles turbulence simulation, ν = 0.66± 0.02. The super-diffusive

scaling implies an anomalous confinement time scaling, tc ∼ aα/β. For the case studied here,

tc ∼ a3/2, a reasonable value in the range of the experimentally determined values which

typically deviate from the standard-diffusion prediction t ∼ a2 [2].

Summarizing, in this letter we have presented numerical evidence that test particle trans-

port in three-dimensional, resistive, pressure-gradient-driven plasma turbulence exhibits
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non-diffusive transport. In particular, we have shown that the pdf of particles is strongly non-

Gaussian and exhibits algebraic tails with a decay exponent 1.75± 0.03. Also, the moments

of the test particles displacements exhibits supper-diffusive scaling with ν = 0.66±0.02. We

proposed a macroscopic transport model for the pdf based on the use of fractional derivative

operators or order α = 3/4 in space, and order β = 1/2 in time. The model incorporates in

a natural, unified way, space-time nonlocality (non-Fickian transport), non-Gaussianity, and

anomalous diffusion scaling. In good agreement with the turbulent transport calculations,

the pdf in the fractional model decay with exponent 1+α = 1.75, the pfd scale in time with

exponent β = 1/2, and the moments scale with exponent ν = β/α = 2/3 which implies a

confinement time scaling tc ∼ a3/2. We have focused on symmetric fractional derivatives

(i.e. w+ = w−). However, the phenomenology of asymmetric operators is quite interesting,

and important in fusion plasmas. For example, we have observed that asymmetric fractional

derivative operators give rise to ballistic-like propagation of pulses. These results indicate

that fractional diffusion models might be a useful tool to model rapid propagation phenom-

ena in fusion devices. Another area where fractional operators looks promising is in the

study of the role of non-diffusive transport in the L-H transition. One way to approach

this problem is to incorporate fractional diffusion operators into reaction-diffusion systems

of the type used in L-H transition studies (e.g. Ref. [15]). A first step in this direction was

presented in Ref. [16] where it was shown that fractional diffusion gives rise to asymmetric,

exponential acceleration of fronts.
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FIGURES
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FIG. 1. Non-Gaussian probability density function of test particles in plasma turbulence. The

triangles denote the results from the histogram of radial displacements according to the test particle,

pressure-gradient-driven turbulence model Eqs. (1)-(4). The solid line is the analytical solution in

Eq. (13) of the symmetric (w+ = w−) fractional diffusion transport model in Eq. (5) with α = 3/4,

β = 1/2 and χ = 0.09. The log-log insert shows the algebraic decay of the left (circles) and

right (triangles) tails. The straight line in the insert is a fit with the predicted decay exponent,

1 + α = 7/4

12



10
-3

10
-2

10
-1

10
0

10
-4

10
-3

t

P
(x

0, t
)

10
-5

10
0

10
-4

10
-3

P

t

FIG. 2. Time evolution of the probability density function of test particles in pres-

sure-gradient-driven plasma turbulence. The circles and the triangles denote the results from

the turbulence model Eqs. (1)-(4). The solid line is the analytical solution (14) of the symmetric

(w+ = w−) fractional diffusion transport model in Eq. (5) with α = 3/4, β = 1/2 and χ = 0.09. In

agreement with the asymptotic result, the insert shows that the pdf exhibits algebraic tails with

exponent equal to β = 1/2.
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