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Presentation Outline

• Experience and capabilities

• RF Design challenges

• Examples of RF mechanical engineering

• Design

• Analysis
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Experience and capabilities

• 20 years close interaction between physicists and mechanical
engineers and designers

• On-site expertise in material selection, welding and brazing
processes, advanced coatings, inspection and QA, and machining
methods

• State of the art design tools

• Pro/Engineer solids modeler

• NASTRAN, ABAQUS, Mechanica, PTHERMAL FEA Solvers

• EDDYCUFF, EMAS for transient electro-magnetics
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ORNL engineers have designed many RF launchers

•  Development launchers to advance the state of the art

Folded waveguide (2 versions), ITER antenna

•  “Enabling” launchers for experiment heating, current drive

Tore Supra, TFTR, DIIID (3 designs), ATF (ICH, ECH), KSTAR

•  Advanced launchers for next generation machines

CIT, BPX, TPX (ICH and LH), FIRE, ITER, QOS
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Launchers cover a range of performance parameters

RF power density vs pulse length
for some representative launcher designs
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RF Design Challenges

• Robust Mechanical Systems that have optimal electrical performance

_ Thermal loads and stresses
_ Electromagnetically induced stresses from plasma disruption

• Compact systems that fit in tight places

_ High power density
_ Close control of position, tolerances

• Systems compatible with a nuclear device

_ integral shielding, low activation
_ radiation heating, damage
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Optimizing RF and Mechanical Requirements

Tore Supra RDL
Antenna

• Steady State Device

• 16 MW/m
2 RF Power

Density

• 0.5 MW/m
2 Plasma Heat

Flux

• 160o C Water Coolant at
35 atm Pressure
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Optimizing RF and Mechanical Requirements

Faraday Shield
Design Issues

• RF Performance

• Critical Buckling Loads of
Coolant Tubes

• Thermal Stress

• Vacuum Integrity

• Plasma Sprayed Coatings
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Coupled Thermal and Structural Analysis

Faraday Shield
Analysis

• Thermal Loads
Predicted by RF
Engineers

• Thermal Profile
Calculated Using Water
Convection

• Stresses Calculated

• Configuration Modified
as Required for Next
Iteration
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Disruption effects on KSTAR Faraday Shield Tube

Current induced in tube

Forces on tube Stresses (static analysis)

KSTAR Faraday Shield Tube Disruption Current
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KSTAR disruption effects - dynamic

KSTAR Faraday shield response to disruption dB/dt
Max. displacement = 0.135 mm at 1.1 ms
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Structural Analysis - Disruptions

Launcher B0
(Tesla)

Ip
(MA)

Max load on faraday
shield tube  (lbs/in)

Tore Supra 4.5 2 13

DIII-D 2.2 3 21

KSTAR 3.5 2 15

ITER (FDR) 5.7 21    1400  (10 ms Ip decay)
  840  (50 ms Ip decay)

Disruption loads vary with device parameters

...e.g.  Faraday shield tubes
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Disruption effects on ITER launcher

All components of assembly affected by disruptions

Current  strap

Faraday shield element

Box structure
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Thermal Analysis of ITER Faraday shield element

• Thermal Analysis

Driven By Radiant,

Neutron, and

Gamma Heating

• High Temperature,

High Pressure Water
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Thermal / Structural analysis of ITER FS element

Thermal stresses combine with disruption stresses

91 Mpa 186 Mpa
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Extensive CAD capabilities avoid manufacturing
problems

Rear view of stub during assembly

Center conductor

Sliding short

Water cooling tubes

Push rods for short
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We also do tuning and matching system layouts
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Designing for Tight Spaces

DIII-D Antenna

• Designed for Steady State
Operation

• All Components but Front
Tubes (moly) Actively
Cooled

• Current Carrying
Components All-Welded,
but Fit to Within 0.01 inch

• Complex Geometry All Fit
With No Leaks or Failures
in 3 Years Operation
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NCSX Launcher position layout

RF launchers must find a home among TF coils, NBI, and saddle coils

…..but they fit!
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Technology Development

Tore Supra
Bumper Limiters

• 1000 W/cm2 Leading
Edge Flux

• Multi-Cycle Braze

_ High Temperature
Joint Between
Graphite and Moly

_ Lower
Temperature Joint
of Moly to Copper
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Complex Geometries
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Materials

• Wide experience with varieties of non-magnetic alloys
_ Stainless Steels
_ Nickel Alloys
_ Molybdenum
_ Glidcop

• Developing technology for titanium alloys

• Depth of Experience in Electro-Plating for Enhanced RF Surfaces

• Experienced in plasma spray deposition for protection of plasma-facing
surfaces
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Summary Comments

• Broad range of technical expertise is available at one place

_ Engineering, Materials, Fabrication,

• Extensive experience at design and building of RF launchers

_ CAD modeling
_ Force calculations
_ Thermal and Stress analysis
_ Fabrication / Vendor oversight

• Active in design of RF hardware for advanced systems / reactors

_ ITER, FIRE, etc.


