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The design of the ITER ion cyclotron system utilizes an antenna of the resonant double loop configuration that must operate at relatively 
high voltages (≥ 45 kV) to deliver the required power to the ITER plasma.
A single-strap prototype antenna has been built and tested to ascertain the voltage and current limits it can withstand in vacuum. 
Results are: • Voltage over 70 kV for 0.1 s

• Voltage over ≈ 65 kV for 1 s
• Voltage over 60 kV for 2 s (limited by heating)

In addition, circuit parameters to model the resonant double loop configuration have been measured and agree well with calculated 
values.

Magnetic fields of the antenna have been measured and compared with calculations. Simple two-dimensional calculations ignoring the 
presence of the Faraday shield do not give a very good fit to the measurements. Three-dimensional calculations that include the Faraday 
shield bars are needed to give an accurate result. 

Summary
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Details of the ITER Prototype Antenna

Antenna front view:
Current strap and Faraday shield
mounted on main vacuum flange

Current strap connected to water-cooled 
stainless steel can at start of pre-
matching stub

Sliding short with Multilam type LA contactors
40 A per louver allows 7.7 kA peak at low 
frequency.

Rear view of stub during assembly

Center conductor
Sliding short

Water cooling tubes

Push rods for short
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Electrical Characterization of Antenna
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Measurements of RF properties of the antenna

Circuit can be tuned to resonance and match in 56-60 MHz
range using pre-matching stubs

Time Domain Reflectometry measurements used 
to characterize the feedline
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• In RFTF with Faraday shield
• In free space with Faraday shield
•In free space with no Faraday shield

Calculation of current and voltage along resonant loop
at 58.5 MHz (where most of high-power data was taken).
Current normalized to 1.0 kA at center of strap, resulting
in peak voltage of ≈ 37 kV.

Voltage probe locations
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Faraday shield adds about 55 pF/m capacitance to
current strap, thereby reducing char. impedance from 
58 ohms (free space) to about 40 ohms, and     (relative 
phase velocity) from 1.00 to about 0.72.

Insertion of antenna into RFTF decreases char. impedance
of strap slightly because of metallic walls near antenna.

β
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High-Voltage Tests

• With no water cooling, the following components were heated to ~ 150° C for about 24 hours
              Pre-matching stubs  (heating tape)

              Vacuum feedthrough (heating tape)

              Side walls of cavity (Calrod heating elements in vacuum)
• After heating was turned off,  pressure was about 4 x 10   Torr at room temperature.

• Turned on water cooling for center conductor of pre-matching stubs and stainless steel cans  at each end of Cu current strap.

• Used low-power CW rf (< 1 kW) to condition. Gradually decreased rf power until  multipactor condition was encountered, 
   then kept power at that level until multipactor went away. Then decreased power and repeated.

• Started high-power pulsing. Could rapidly get to over 50 kV range.

• Generally set the power level (which fixed max. voltage) and then increased the pulse length from 10 ms to 100 ms to 1 s.

Conditioning procedure

-7

f = 58.5 MHz

60- kV, 2-s pulse
After gradually conditioning the antenna for a couple of days, it was easy 

to run at over 60 kV for 1 to 2 second pulses. The antenna was very 

reliable at this level. Pulse length was limited by thermal heating.
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65-70 kV, 1-s pulse

Difficulty with obtaining and maintaining this level. Took significant

conditioning, often would break down before end of pulse.

70-kV, 0.1-s pulse

After conditioning, not too hard to achieve for short time.

However, would usually break down after about 150 ms. 
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Observations

Future work

Near-term: We will instrument the antenna with acoustic and optical detectors and fast pressure gauges to better diagnose 
the antenna, and then carry out experiments to determine the breakdown locations and causes. 

Longer term: We may test the antenna with EU-supplied pre-matching stubs if/when they are delivered (part of ITER R&

D). These pre-matching stubs would allow tuning over the 40 to 70 MHz frequency range.

Pressure rise: During high-power shots the pressure rose in the vacuum vessel. For a 1-s, 60 kV pulse, pressure would rise to the 

low
 10   Torr range. We could not eliminate this pressure increase by baking at 150° C. 

Temperature increase: The walls of the cavity and the center and outer conductors of the pre-matching stubs are Ni-plated. 

During a 2-s, 60 kV pulse the surface temperature of the cavity walls would exceed 250° C (measured by an infra-red camera). 
The wall temperature near the front edge of the cavity was > 150° C a few seconds after the shot was over, as measured by an 

embedded thermocouple.

-5
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Magnetic Field Measurements and Calculations
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ITER R&D Prototype antenna
Toroidal, radial and vertical field scan
45 mm in front of Faraday shield

f = 52.86 MHz 
Vertical (y) scan  from -70 to + 70 cm
Horizontal (x) scan from -10 to +50 cm
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Comparison of measured and calculated fields

Two-dimensional calculations
Used 2D Laplace eq. solver
   No Faraday shield
   Uniform current in poloidal direction
   Net current = 0 (strap current = box current)

Good agreement between
calc. and experiment when
no Faraday shield on antenna.

Agreement not so good
when FS present. Can 
improve agreement by
artificially moving septum 
location in calculation
forward 6 cm.

Implication: The effect of the 
FS is similar to moving the 
septum forward. Both allow 
return currents to flow nearer 
the strap. 

This changes the radial 
decay length, k-spectrum, 
and loading.

Actual geometry

Septum moved forward 6 cm
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Three-dimensional calculations
Used ARGUS 3D electromagnetics code
   Faraday shield included
   Solved for current poloidal dependence self-consistently
   Contained in external box; net current ≠ 0

Good agreement between
calc. and meas. fields.
At large R, calc.B doesn't 
decrease as fast as measured,
probably due to finite size
of enclosing box in the 
calculation
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