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THE GOAL OF THE DIII–D ADVANCED TOKAMAK PROGRAM IS TO DEVELOP
THE BASIS FOR A STEADY-STATE, HIGH PERFOMANCE TOKAMAK

� Simultaneously require:

— High fusion power density ⇒ High plasma pressure (high β)
— High fusion gain ⇒ Good energy confinement (high τE)

 

�  Gain and bootstrap current have conflicting scalings 

— Fusion gain:  βτE ∝ (βN/q)  (H89 /qα)

      
 

 ⇒  Self-consistent scenarios require βN and  H89 above conventional tokamak values

 Definitions:  βN = β/(I/aB)      H89 = τE / τE,ITER89P

274-00/rs

— Non-inductive current   ⇒   High bootstrap fraction (high βP)
     sustainment

— Bootstrap current:   fBS ∝ βp ∝ q βN
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COMPARISON OF CONVENTIONAL
AND ADVANCED TOKAMAK FEATURES

Conventional

Potential for Steady-State

Advanced
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 Features of Monotonic q Profile:

High gain

Moderate turbulence

Resistive modes limit β

     fBS < 30 %; H89P < 2.0; βN < 2.5
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 Features of High qmin and Low Shear:

High fBS 

Reduced turbulence 

Ideal modes limit β

     fBS  > 50 %; H89P > 2.5; βN > 3.5
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HIGH NORMALIZED PERFORMANCE (~10) 
SUSTAINED FOR 5 τE
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POTENTIAL FOR STEADY-STATE OPERATION
IS ACHIEVED FOR MODERATE REDUCTION IN FUSION GAIN
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q = 3.1, βN = 2.7, H89 = 1.9 

q = 5.5, βN = 3.8, H89 = 2.7 



ENERGY TRANSPORT IS NOT SUBSTANTIALLY ALTERED
BY THE CHANGE IN q PROFILE
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IMPROVED CONFINEMENT IS CONSISTENT WITH
DRIFT-WAVE SIMULATION WITH ExB SHEAR
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� GLF23 model* contains ITG, TEM, and ETG with effects of E×B shear
 

�   Self-consistent simulation shows reduction but not suppression of
turbulence, consistent with measured χi > χi, neo

Politzer GP1.114*Waltz et al, Phys. Plasmas 5 1695 (1998)



MAXIMUM β IS LIMITED BY RESISTIVE WALL MODES 
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Limiting modes have the
characteristics of resistive
wall modes:

�  Onset is at or above the
no-wall ideal limit (βN ~ 4li)

�  Growth rate consistent with
characteristic wall time

�  Real frequency (<100 Hz) consistent
with wall time, not fluid rotation

�  Proof of principle experiments on
feedback control of the resistive
wall mode indicate the possibility
of raising the β limit
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TEARING MODE BEHAVIOR AGREES WITH
NEOCLASSICAL TEARING MODE MODEL
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TEARING INSTABILITY MAY OCCUR DUE TO LACK OF CURRENT
SUSTAINMENT AND DENSITY CONTROL
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Sensor
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Correction
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RWM Feedback
Control Coils (βN > βN

no-wall)

ECCD (Current Profile Control)Divertor Pumping
(Density Control)

DEVELOPMENT OF CONTROL TOOLS IS NECESSARY
 TO EXPLOIT THE  PHYSICS OF ADVANCED TOKAMAKS

Plasma Shaping
(βN > 3.0)



CURRENT PROFILE EVOLVES THROUGHOUT
THE HIGH PERFORMANCE PHASE AT CONSTANT PRESSURE
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DENSITY CONTROL WILL MAXIMIZE
THE EFFECTIVENESS OF OFF-AXIS ECCD
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DENSITY AND IMPURITY CONTROL HAS BEEN 
DEMONSTRATED IN LONG-PULSE ELMING H–MODE 
DISCHARGES WITH βN H89P ~ 7.5 FOR OVER 25 τE
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INTERNAL MAGNETIC MEASUREMENTS INDICATE THAT 
THE CURRENT PROFILE IS NOT EVOLVING
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RWM β LIMIT HAS A SIGNIFICANT DEPENDENCE ON PLASMA SHAPE
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SUMMARY

� Substantial progress has been made in the development of
long-pulse advanced tokamak scenarios
— βN H89 ~ 10 for 5 τE
— βN H89 ~ 9 for 16 τE

� Stability

— Resistive wall modes are the β limiting instability in most 
discharges with qmin ≥ 1.5

— Neoclassical tearing modes limit β in discharges with 
qmin ~ 1 and sometimes limit the duration of higher qmin 
discharges

� Confinement

— Local heat diffusivity on high qmin plasmas similar to that 
found on conventional sawtoothing H–mode plasmas

— Electron and ion temperature profiles are well simulated 
by an ITG model including E×B shear

� Current evolution

— Non-inductive current fraction is 60%–75% in high 
qmin discharges

— Remaining inductive current is peaked off-axis

� Control tools
— Density and β control demonstrated by operating at 

βN H89 ~ 7 for 6.3 s with β at >90% of the 2/1 tearing mode limit
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EXTENSION OF HIGH PERFORMANCE RESULTS RELY ON
MITIGATION OF RESISTIVE MHD MODES (RWMs and NTMs)

� βN limited by resistive wall modes (RWMs)
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High Bootstrap Fraction Discharges

⇒  Need feedback stabilization

� Duration limited by current evolution
⇒  Need off-axis ECCD

� βN limited by neoclassical tearing modes

Long-Pulse, High-Performance Discharges

⇒  Need NTM stabilization


