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Abstract

l The recycling coefficient of the first wall of a fusion device is a
space- and time-dependent parameter.

l The present paper is an analysis of the spatially dependent
recycling coefficient as a function of time, using the Tore Supra
vacuum vessel as an example.

l In the first step an analytical formula is constructed to simulate
the recycling coefficient as a function of the trapped particle flux.

l In the second step, the vessel walls are subdivided into a
computational grid of 73 segments. For each segment the incident
neutral particle flux is calculated with the DEGAS neutrals-code
using an analytic model for the plasma parameters and for the ion
flux to the toroidal limiter.

l The incident particle fluxes and the recycling formula are then
used to analyze the local and temporal recycling behavior of the
wall.
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Plasma model and DEGAS neutrals
transport results

l Analytic plasma model assumed with exponential profiles in
the SOL and quadratic in the core plasma.

l Major (minor) radius of plasma = 2.4 m (0.72 m)
l n(0)=5 x 1019 m-3,   T(0)=2 keV,    n(a)=1.25 x 1019 m-3,  T(a)=50 eV
l Particle flux decay length in SOL and at limiter = 2.3 cm
l Integrated ion flux to the limiter = 3 x 1022 s-1

l Integrated core ionization (fueling) rate = 1.06 x 1022 s-1 . Total
core charge exchange rate = (1.28 x 1022 s-1).

l If core particle balance is assumed (core efflux = core fueling
rate) then the assumed core particle confinement time is 0.1 s.
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DEGAS grid Wall and limiter segments used
      for DEGAS simulations

The plasma flux surfaces are taken to be concentric
circles. Since pumping is from the inboard side, the

plasma is slightly offset from the center of the limiter
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D0 density D2
0  density

 Densities of atomic and molecular deuterium resulting from D+ recycling at
the limiter. The strongly localized D2

0 density at the side walls is due to D2
0

desorption following D0 impact with the walls.
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Flux on neutral D on walls Average energy of neutral D on walls

The flux of D0 on the vacuum vessel walls decreases with distance
from the limiter, but due to energetic charge exchange neutrals
the average energy has a weaker dependence on poloidal angle
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Average neutral power on walls Momentum flux of neutral D on walls

The average neutral power and momentum flux on the
walls have similar dependences upon poloidal angle. Both

tend to decrease more slowly than the D0 particle flux.
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D2
0 flux on walls D+  flux on limiter

The D+ ion flux on the limiter is recycled into the plasma as atomic and molecular
deuterium. The resultant D2

0 flux is larger on the inboard side walls due to recycling
from the inboard leading edge of the limiter in a cosine angular distribution.
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  Trapped Deuterium vs. Incident Fluence for Maxwellian Energy
Distribution Has Been Calculated with TRIM.

W. Eckstein
Garching Report
IPP 9/33
October 1980

• These calculated trapping curves are used as the basis
   for an analytic formula to describe the fluence-dependent
   recycling coefficient.
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The Recycling Coefficient as a Function of the
Trapped Fluence ntr  Is  Described as a tanh-Function

R n tr
 
 
  

 
 =a⋅tanh n tr −nsym

δ
 

 

 
  

 

 

 
  
+ c

Energy

eV

a c nsym

(x1020) (x1020)

20 0.23 0.77 0.9 0.5

50 0.29 0.71 1.6 1.2

100 0.326 0.674 3 2.4

200 0.385 0.615 5.5 4.8

Table I: Recycling parameters for different particles energies

a,c   -  determine initial value of R
nsym -  corresponds to penetration depth
      -  corresponds to depth distribution
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Recycling Coefficients for Different Energies as a Function
of Trapped Particle Number
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Particle Trapping Rate as a Function of Incident
Particle Flux inc

dntr

dt
=φinc⋅ 1− a⋅tanh

n
tr
−n
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( * The analytical solution is too complicated to reveal any functional correlations.
Hence, we solve the DE numerically!)

*

Assuming φinc = constant, the trapped particle fluence becomes a function
of time !
Solving this differential equation for four different energies, yields the
corresponding trapping curves.
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Trapped Particle Fluence as a Function of the Incident
Fluence inc for Maxwellian Particle Energies
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Comparison of tanh-Trapping Curves with Eckstein’s TRIM
Curves for 100 eV Maxwellian Particles

10 18

10 19

10 20

10 21

10 22

10 19 10 20 10 21 10 22 10 23

Ftrapped(TRIM)
Trapped fluence

tr
ap

p
ed

 p
ar

ti
cl

es
 (

p
er

 m2 )

incident fluence  (per m 2)

Slide 14



o
pkm-eps.2001

Recycling Coefficients for Mono-Energetic D-Particles
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Trapping Curves for Mono-Energetic D-Particles Agree
Well With TRIM Curves and Experimental Results
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The Tore Supra Vacuum Vessel Is Divided into 73
Segments Which are Grouped Into 4 Zones

The DEGAS grid of the vacuum
vessel consists of 73 wall
“SEGMENTS”.

The segments are grouped into
4 “ZONES” with fluxes
approximately of the same
order of magnitude.

The limiter-zone receives both
ion-and neutral fluxes.

Trapped particle
numbers, recycling
coefficients, and
recycling fluxes are
calculated for each of
the 73 segments.0
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Segment Areas, Fluxes, Particle Energies as Functions
of the Segment Number
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Number Of Trapped Atoms Per Unit Area For Selected
Typical Segments
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Recycling Coefficients as Functions of Time For Selected
Typical Segments
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Pumping Rates as Functions of Time For Selected
Typical Segments
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Pumping Rates as Functions of Time For the 4 Zones and
the Pump Limiter Exhaust
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Trapped Particle Fluence as Function of Time For the 4
Zones Compared with the Pump Limiter Exhaust
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Recycling Fluxes From Each Zone (Particles/s) As a
Function of Time
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Summary and Conclusions (1)

l Detailed local analysis (73 segments) of particle trapping and
recycling in Tore Supra indicates that the segments can be
grouped - according to the received particle fluxes -  into four
major zones (this is configuration-specific).

l Each of these zones has its own equilibration time reaching from
~0.1 s on the limiter surfaces to more than ~ 10,000 s in the upper
parts of the vessel.

l As an example, for a typical discharge in Tore Supra the calculated
recycling coefficients for the four zones indicate the following
characteristic times for equilibration:

l ~0.1 s limiter zone
l ~10 s  in the cx-zone
l ~100 s  in the side-wall zone
l ~1000’s to 10,000’s of seconds in the top wall zone
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Summary and Conclusion (2)

l The long time constants are a consequence of the low fluxes and
the zones with the lowest fluxes may be negligible for shorter
pulse-lengths.

l The plasma response to the wall equilibration time is given by

p* = p/(1-R)  which can be forced to shorter times by changing R
through external pumping.

l Future work will include

l analysis of multi-shot sequences,
l energy-dependent recycling coefficients
l use of time-dependent recycling coefficients in plasma edge codes,
l recycling analysis including external pumping.
l Self-consistent plasma and neutrals transport models.
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