
Investigation of Tritium Pathways
in the JET Tokamak

A view inside the JET Vacuum Vessel



Tritium Pathways in JET

• In addition to record fusion power, JET D-T experiments have
provided an opportunity to study the link between core, edge, and
wall plasmas

• The D-T inventory in the graphite walls of a tokamak ultimately
determines the isotopic composition found in the core plasma

- “Dynamic” inventory : controls the fueling behavior within a discharge,
     and determines the isotopic composition

 - continually growing inventory - usually found in co-deposited layers

• If the continually growing T inventory proceeds, this can have
profound consequences  for the safety and environmental
acceptability of future fusion reactors



Tritium Retention Issues

• Tritium uptake and retention by tokamak wall materials requires a
detailed understanding of tritium processes which take place:

1. during a shot: implantation
(dynamic inventory) trapping/detrapping

recombination

2. between shots: outgassing
pumping
diffusion into bulk

3. over many shots: diffusion into the bulk
tritium accumulation in co-deposited
material (continually growing inventory)

• This presentation will primarily address topics 1 and 3



Outline

• Address the dynamics of Tritium retention/loading by the graphite walls
of JET -

• Utilize new JET diagnostics which provide tritium concentration
measurements in the divertor and sub-divertor regions

• Analysis and modeling with Eirene and W-Diffuse(wall model)
- Combining divertor and sub-divertor T concentrations with Eirene

modeling provides T recycling coefficients at wall surface
- various wall models can be tested to evaluate fundamental rate

coefficients for:
Recombination, trapping, thermal detrapping,
 and particle induced detrapping

• As an example of plasma core- wall interaction: Apply inferred T
recycling coefficients to H-mode Trace T Transport Experiments

• Long term tritium storage in co-deposited material
- over many shots



Spectroscopy and Penning Gauge Provide
Tritium Concentrations in the Divertor
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Tritium Concentration in the Divertor of JET
 via ORNL Designed Penning Gauge
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Tritium Concentration Measurements in
JET during DT Operation
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   Measurements throughout the JET DT campaign



Comparison of T Concentration in the
Divertor and Sub-Divertor
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Tritium Wall Loading
during first 3 shots
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Tritium Uptake Processes

• Difference between divertor, sub-divertor T concentration
indicates wall status, as the wall evolves from D-rich to T-rich

• EIRENE neutrals transport code relates sub-divertor D/T
concentrations to measured divertor concentrations and
Langmuir probe measurements by varying local wall D/T
recycling

 - simulation includes D, T, D2 , T2 , DT and  impurities
• Utilize wall model (W-Diffuse) to test fundamental rate

coefficients for:
-  recombination, trapping, thermal detrapping, and particle

induced detrapping
• Basis for current wall parameter choice are those determined

by JET-PTE post shot decay (no plasma), and by Ehrenberg for
plasma-induced detrapping (DTE1)



EIRENE database: sub-divertor T concentration vs RT
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Eirene data base results

• Calculated sub-divertor T
concentration depends  ~linearly
on assumed wall T recycle
coefficient
– very weakly on strike point

concentration

• because sub-divertor T
measurement samples particles
after many surface interactions:
– energetic atom reflection
– thermal molecular re-emission

• The latter is dominated by the
saturation status of the wall

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Recycle Coefficient, RT

EIRENE

Vary strike point
T concentration

0.1-0.6

S
ub

-d
iv

er
to

r 
T

rit
iu

m
   

  C
on

ce
nt

ra
tio

n



dcs
D

dt
= − k0(cD)s

2
− k0cs

Dcs
T− dcD

dt
+ Σ

D

dcs
T

= − k0(cs
T)

2
− k0cs

DcT
s )− + Σ

T

dt
dct

T

dt

d
dt =ks,t (1−

( + )
ct,s

)− kt,s

− kd ( Σ + ΣT)D 1/2ct
D

− σdt (ΣD+ΣT)ct
D

ct
D

ct
D

cs
D ct

Tct
D

d
dt = ks,t cs

T ( 1 −
(cT cD)t + t

ct,s
) − kt,s ct

T

−

ct
T

σdt (ΣD+ΣT)ct
T− kd ( Σ +ΣT)D 1/2ct

T

trapped concentrations

solute concentrations

 µm - ...   - mm
...

PARTIALLY
SATURATED

DEEPER
LAYER

TRANSGRANULAR
DIFFUSION

ENERGETIC
ATOM FLUX

FROM PLASMA

aH:C
GRAPHITE

POROSITY

THERMAL
PARTICLE

RANGE ENERGETIC
PARTICLE

RANGE

CHEMISORPTION
AND SURFACE

DIFFUSION
THERMAL

MOLECULAR
 FLUX

FROM PLASMA

SATURATED
SURFACE

LAYER

D / T
D2 / DT / T2

Main mechanisms for formation of
hydrogen inventory in graphite

[from. K.Wilson, W. Hsu, J. Nucl. Mater, 1987]

~ 10 nm

~ 20-50 nm

MODEL      Recombination     Trapping    Thermal detrapping             Particle-induced
                                    detrapping
     k0 (cm3/s )   kst (s-1)       kt,s(s-1)     kd  (cm3/2 s-1/2)     σσσσdt (cm2)

Ehrenberg      2.5 10-21         104             0.                                6 10-13         -
Moeller-Scherzer 1.2 10-18         10-4          1.9  10-12                              -     5  10-17

Grisolia       1.0 10-20      102        5  10-2                               -                     8 10-17

Hydrogenic Inventory in Graphite



Tritium Recycling in
JET Divertor

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

Sub-Divertor Tritium Concentration

 T
ri
tiu

m
 C

o
n
ce

n
tr

a
tio

n
 

Accumulated time (s)

41677

4168041679
41678

41685

• T Concentration-Penning

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

41677-85 Eirene Modeling

R_T avgA
vg

. T
 R

ec
yc

le
 C

oe
ffi

ci
en

t,
R

T 

Accumulated time (s)

41677 41678 41679 41680
41685

Band of Recycling Coefficents

Average Tritium Recycling Coefficient

¥ Beginning T Concentration of subsequent shot is determined
  by T Concentration at end of last shot



0.75

0.00

0.375

0.0                  5.0                  10.0
                  Time (sec)

T recycle
fraction

1/2 x

2 x

Vary particle-induced detrapping rate

5 x

1/ 5 x

0.0                  5.0                  10.0
                  Time (sec)

0.75

0.00

0.375

R
an

g
e in

 41677

Vary volume recombination rate

T
ri

ti
um

 
Re

cy
cl

in
g

, 
R

T

T
ri

ti
um

 
R

ec
yc

lin
g

, 
R

T

ko = 10-21 cm3/s kD = 6 X 10-13 cm3/2 s-1/2

- particle-induced detrapping rate governs
  magnitude of plasma-induced isotope exchange

- recombination coefficient governs time scale

• Wall rate coefficients from Ehrenberg Semi-empirical model

Comparison of Ehrenberg Semi-empirical
 Wall Model with RT



Wall model comparison:
T uptake experiment 41677
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Tritium Transport
- by Trace T  injection -

16 18 20
Time (s)

22 24

10

1

0
1

0

0

(M
W

)
D

α 
(a

.u
.)

Pin

T2 puff

Pulse No: 42529
ΓD2   = 0.6

Pulse No: 42532
ΓD2  = 2.5

20 Hz 

150 Hz 

D
α 

(a
.u

.)

ORNL 98-2802 EFG

r/a = 0.81

0

4

8
r/a = 0.04

0

2

4

19.5 20.0 20.5 21.0

Time (sec)

r/a = 0.39

0

0.4

0.8

(1
014

  n
/m

2 s
ec

)

JET 42529

T puff

ORNL 98-2801 EFG

ELM frequency varied

neutron brightness
measurements provide 

T density profile

¥ 1 - 2% trace amounts of T were injected into D plasmas
            via short 40 ms puffs to study Tritium transport



Connection between wall
 recycling and transport

Examine  JET pulses with trace T injection into D plasmas

•  Neutron brightness profiles were  analyzed to find
"kinematic" fit1:

i.e., the DA, VA which reproduce these signals when the
    Ehrenberg semi-empirical tritium recycling model is used:
RT(t) = RT0+ [ R T∞∞∞∞ - RT0 ]  ( t / tT ) αααα    

                                           [ RT0 = 0.2, R∞∞∞∞    = 0.98, tT = 0.75 s,  αααα = 1.0]

• Connect T evolution with fundamental transport
• Issues:

- ELM effects on inferred radial transport
- Effect of wall diffusion models (recycling)
- Relation of residual transport to neo-classical (NCLASS code)

1K-D. Zastrow et al, EPS Prague, 1998



MIST ELM Model
Expulsion of Core Density by ELMs
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When ELMs are explicitly included DA
approaches neo-classical values
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A large unrecoverable tritium inventory is found
near the cold surfaces of the divertor louvers

Cryopump

Inner Louver

Outer
Louver

CFC tiles

Tritium rich 
Flakes

JET MKIIa Divertor

¥ ~13 mg T stored per JET Pulse

- Troubling when scaled to ITER, 
   may limit  ITER to  < 100 pulses before the T site limit is reached



Summary

• Analyzed the first T shots with D saturated walls to
determine the rate of tritium uptake by JET walls.

• Utilizing divertor measurements of T combined with Eirene
modeling the relation between the dynamic evolution of the
T recycling and wall status was determined within a shot.

• Utilizing  the deduced Tritium Recycling -  various wall
models were tested to determine fundamental rate
coefficients for: 

- recombination, trapping, thermal detrapping, and 
particle induced trapping.

• Wall Rate coefficients from the Ehrenberg Semi-empirical
model were found to give good agreement with observed T
recycling.

• Trace tritium experiments with ELMs demonstrate the wall-
edge-core linkage.
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