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The physics emphases of the PHENIX collaboration and the design and current status of the
PHENIX detector are discussed. The plan of the collaboration for making the most effective
use of the available luminosity in the first years of RHIC operation is also presented.1

1. Physics and Design Aims

The primary goals of the heavy-ion program ofthe PHENIX collaboration are the detection
of the quark-gluon plasma and the subsequent characterization of its physical properties. To
address these aims, PHENIX will pursue a wide range of high energy heavy-ion physics topics.
The breadth of the physics program represents the expectation that it will require the synthesis
of a number of measurements to investigate the physics of the quark-gluon plasma. The broad
physics agenda of the collaboration is also reflected in the design of the PHENIX detector it-
self, which is capable of measuring hadrons, leptons and photons with excellent momentum
and energy resolution. PHENIX has chosen to instrument a selective acceptance with multiple
detector technologies to provide very discriminating particle identification abilities. Addition-
ally, PHENIX will take advantage of RHIC’s capability to collide beams of polarized protons

1Visit http://www.rhic.bnl.gov/phenix for the most current PHENIX information.
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with a vigorous spin physics program, a subject covered in a separate contribution to these
proceedings[1].

The first measurements PHENIX will make willbe of global event properties such as charged
particle multiplicity, ET production, the〈p⊥〉 of charged particles, and fluctuations in these
quantities. Charged particle multiplicity andET , alone or in correlation with zero-degree
calorimetry, will provide information about the geometry of each collision. From these data
one can also deduce the energy density achieved in each event. The geometry of the collision,
charge particle multiplicity,ET and energy density may all be used to classify events for other
analyses.

PHENIX will study many proposed signatures of thedeconfinement transition and the restora-
tion of chiral symmetry. The first of these, thedeconfinement transition, should produce a num-
ber of signals observable in the PHENIX detector. For instance, the suppression of J/ψ andψ ′

production relative to that of theΥ will yield information about the strength of Debye screening
in the deconfined plasma. Measuring J/ψ suppression relative to the Drell-Yan continuum will
allow comparisons with current results such as those from NA50[2]. Comparison of charmo-
nium production relative to that of open charm—primarily identified through the semi-leptonic
decay of charm mesons—will allow PHENIX to disentangle initial state effects such as gluon
shadowing from the later dissolving of any created charmonium. The many DD̄ pairs that are
expected in central Au+Au collisions will also give PHENIX a solid base from which to inves-
tigate open charm enhancement in the quark-gluon plasma.

An examination of chiral symmetry restoration will complement the study of deconfinement.
The in-medium modification of meson properties due to the restoration of chiral symmetry is
predicted to cause changes in the mass and width of theφ meson. Since the mass of theφ meson
is only 33 MeV greater than twice the charged kaon mass, changes in its properties will also
affect the relative branching ratio ofφ mesons decaying via K+K− or e+e− channels.

The thermal history and available degrees of freedom will be studied through directγ pro-
duction andγ∗ → e+e−, µ+µ− channels. Photons, like leptons, are unperturbed by the strong
interactions that plague hadronic signals and thus retain information about the early history of
the collision. Whether the colliding system forms a plasma with many degrees of freedom,
remains a hot hadronic gas, or evolves through a long-lived mixed state, all have effects on
the spectrum of emitted photons. Very highp⊥ photons may also serve as a reliable flag for
an oppositely directed jet, the properties of which may be measured via the leading particle
spectrum.

The measurement of bosonic or fermionic Hanbury-Brown Twiss correlations and the coales-
cence likelihood of various nuclei and anti-nuclei will give insights into the space-time extent
and evolution of heavy-ion collisions at RHIC.

Enhanced strangeness, already a staple feature of relativistic heavy-ion physics, will be stud-
ied in PHENIX by determining the production cross section of K± andφ mesons. This will be
complemented by an investigation of enhanced charm production.

2. Construction and Current Status of the Experiment

Fundamentally, the PHENIX detector consistsof a large acceptance charged particle detec-
tor and of four spectrometer arms—a pair of spectrometers measuring electrons, photons and
hadrons which straddles mid-rapidity, and a pair of muon spectrometers at forward rapidities—



4

all working together in an integrated manner[3]. Each of the four arms has a geometric accep-
tance of approximately one steradian. The magnetic field in the volume of the collision region
is axial, while the magnets of the muon arms produce radial fields. The PHENIX detector is
comprised of eleven different subsystems, so that the task of integrating and commissioning the
detector is one of the biggest hurdles facing the collaboration.

Figure 1. A cutaway drawing of the PHENIX experiment. Labeled arrows indicate the major
subsystems of the detector.

The main sources of event characterization information are the beam-beam counter, which
consists of two arrays of quartžCerenkov telescopes surrounding the beam, and the multiplicity
and vertex detector, composed of concentric barrels of silicon strip detectors and end-caps made
of silicon pads.

Electromagnetic calorimeters are mounted outermost on each of the two central arms. PHENIX
uses two technologies for calorimetry: lead-scintillator with good timing properties, and lead-
glass with better energy resolution.

The central arm tracking system in PHENIX uses the information provided by several de-
tectors. Pad chambers yield the three-dimensional space points that are essential for pattern
recognition, drift chambers provide precise projective measurements of particle trajectories,
and time-expansion chambers provider-φ information as well as particle identification. Using
this tracking information the mass resolution ofφ → e+e− is determined to better than 0.5%
for p⊥ < 2 GeV/c.

Particle identification also hinges on several detectors. Panels of time of flight scintillators
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cover part of the central arm acceptance, and the 85 ps timing resolution of this time of flight sys-
tem separates kaons from pions up to 2.5 GeV/c. The timing resolution of the lead-scintillator,
280 ps, can separate kaons from pions up to about1.4 GeV/c, and its large acceptance greatly
improves the rates for measurements such asφ → K+K−. For electron identification, informa-
tion from the ring-imaginǧCerenkov detector, thedE/dx measurement of the time-expansion
chamber, and information from the electromagnetic calorimeter are combined to reject pion
contamination of the identified electrons to one part in104 over a wide range in momentum.

The first part of each muon arm (following a thick hadron absorber) contains three stations
of cathode strip tracking chambers. The back part of each arm consists of panels of Iarocci
streamer tubes alternating with plates of steel absorber. The pion contamination of identified
muons is below one part in104, matching the high degree of confidence in particle identification
as is the case with the central arm electron identification. The excellent momentum resolution
of identified tracks in the muon arms yields a mass resolution of 100 MeV/c2 for J/ψ → µ+µ−.

3. Physics Opportunities Grow with Luminosity

During its first two years of operation the luminosity of the RHIC accelerator will gradually
ramp up to its full design value. In order to make the most effective use of the available lu-
minosity, the collaboration has developed a planwhich matches priorities for physics studies
to the anticipated profile of integrated luminosity. Early in the first year of RHIC operation,
when the luminosity will be about 1% of the design value, PHENIX will concentrate on mea-
surements such asdNch/dη, dET /dη, hadronic spectra, HBT and inclusiveγ andπ0. Each
of these measurements can be made with just a fewµb−1. Toward the end of the first year of
operation, as the luminosity rises to 10% of the design value, measurements ofφ → K+K−,
single highpT leptons andJ/ψ → µ+µ− become feasible. By the end of the first year of RHIC
operation, PHENIX should have seen an integrated luminosity of roughly 100µb−1. It is in the
second year of RHIC operation, as the luminosity reaches its design goal, that the full physics
program becomes accessible. Atthat point, the machine will have sufficient luminosity for
measurements of the Drell-Yan continuum, open charm productionΥ → µ+µ−, and J/ψ and
other vector meson decays toe+e−. The PHENIX spin program also becomes possible in the
second year of operation. However, even this luminosity does not exhaust the PHENIX appetite
for physics. As the RHIC luminosity improves, the horizons of the PHENIX physics program
broaden still further.
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