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LIST OF SYMBOLS
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4 ch 4e





THE STIRLING ENGINE WITH ONE ADIABATIC CYLINDER

C. D. West

This report shows that integration around the P-V loop
of a Stirling-like cycle with an adiabatic expansion or com-
pression space is possible through careful application of the
ideal gas laws. The result is a set of closed-form solutions
for the work output, work input, and efficiency for ideal
gases. Previous analyses have yielded closed-form solutions
only for machines in which all spaces behave isothermally, or
that have other limitations that simplify the arithmetic but
omit important aspects of real machines. The results of this
analysis, although still far removed from the exact behavior
of real, practical engines, yield important insights into the
effects observed in computer models and experimental machines.
These results are especially illuminating for machines in-
tended to operate with fairly small temperature differences.
Heat pumps and low-technology solar-powered engines might be
included in this category.

i. INTRODUCTION

The ideal Stirling cycle has a four-cornered P-V diagram in which the

basic processes of compression, heating, expansion, and cooling take place

one at a time, and each process is an isothermal one. The working gas is

expanded at a relatively high temperature and compressed at a lower tem-

perature (Fig. 1). Analytical expressions (closed-form solutions) for the

pressure variations and for the power output, power input, and efficiency

are fairly easy to find in this case. The efficiency, of course, is sim-

ply Carnot efficiency for a machine operating between the same tempera-

tures.

Real Stirling machines, although similar in principle, usually oper-

ate on a cycle that is significantly different from this ideal one; the

piston movements are usually more or less continuous, so that the basic

processes merge with expansion and compression taking place while the gas

is distributed between the high- and low-temperature spaces, and the cyl-

inders are often more nearly adiabatic than isothermal. This report is

primarily concerned with the effects of an adiabatic cylinder but will
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Fig. 1. The ideal Stirling cycle has constant-temperature compres-
sion and expansion phases separated by transfer of gas, without volume
change, between a hot and a cold space.

begin with a brief discussion of past work on the analysis of Stirling

machines and their departures from ideality.

The analytical problem posed by the continuous, merged processes was

finally solved in the 1870s, half a century after the invention of the

Stirling engine, when Gustaf Schmidt integrated the equations relating

pressure and volume for sinusoidal piston movements. This integration

yielded a closed-form expression for the power output of the cycle that

has since been rewritten in many ways but is still usually known as the

Schmidt equation. A useful format is shown below:

1 - 6 SIN

m T I +: 1+1

THE SCHMIDT EQUATION IS A CLOSED FORM
SOLUTION FOR THE POWER OUTPUT OF AN
ISOTHERMAL STIRLING ENGINE. IT IS
DECEPTIVELY SIMPLE IN APPEARANCE.

The apparent simplicity of this equation is deceiving; when written in

terms of the basic machine parameters it takes on quite a different

appearance, as shown on the next page. Note the true complexity of theappearance, as shown on the next page. Note the true complexity of the
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T Pmean Vc (1-TcITe) SIN a
W

VT/Te2 + 2TCV cos a/(TeVe T) + V e2

1 -- 2/ Tc V 2Tc Vc de Tc 2 9 (TeT) + 2Vdc

hTe Ve Ve Te Ve(Te - Tc> Ve

1

Tc V + Vde Tc + 2 VrTc log (Te/T, 2 Vd

Te Ve VeTe Ve(T e - Tc Ve

WHEN WRITTEN IN TERMS OF THE BASIC ENGINE
PARAMETERS, THE SCHMIDT EOUATION IS SEEN
TO BE RATHER COMPLEX.

Schmidt equation, for it is a measure of the difficulties encountered in

searching for closed-form solutions to all but the most basic of approxi-

mations to a real Stirling machine. The Schmidt equation, in fact, is

apparently the only case that has been solved, and even simple departures

from pure sinusoidal motion, such as might be introduced by the use of

connecting rods that are not infinitely long, lead tc integrations that

have no known solutions in terms of elementary functions and can only be

performed numerically. This is no longer a great burden, as pocket cal-

culators can now perform such integrations with a single keystroke.

The Schmidt equation also allows for the effect of "dead volume,"

that is, for those gas spaces; that are not swept by the pistons at any

time during the cycle. These spaces usually represent the regenerator

and the heat exchangers used for heating and cooling, as well as the vol-

ume remaining in the cylinders at the top dead center piston positions.

Accounting for the dead volume leads to a more realistic representation

because in most real Stirling machines the cylinder spaces do not behave

isothermally, and so heat exchangers external to the cylinders are needed

to add and remove the cyclic heat. Regeneration, which clearly requires

a regenerator of finite volume, is needed in any case if high efficiency

is sought.

The Schmidt analysis retains the assumption of isothermal processes

so that cycle efficiency is equal to the efficiency of a Carnot machine
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operating between the same temperature limits, even though during the ex-

pansion and compression phases, part of the gas is hot and part of it is

cold.

If one or more of the cylinders is not isothermal, no solutions have

apparently been published to the work integral (f PdV) except by numerical

integration. The necessary equations were set up by Finkelstein 1 some 90

years after the publication of Schmidt's results, and they represented a

major advance, opening the way for computer models of the nonisothermal

Stirling cycle. There were seven simultaneous equations, of which two

were differential equations. The system could be reduced algebraically

to two simultaneous differential equations that, however, could only be

solved numerically. Many computer codes for doing so now exist.

An analytical (closed-form) solution for the power output, but not

the power input and efficiency, of a simplified, three-cornered model of

a Stirling machine with one adiabatic cylinder has been published 2 and

allows for the effect of dead volume. It provides a convenient physical

explanation for some of the effects known from computer simulations and

from experiment but is recognized to be an even less accurate represen-

tation of reality than a four-cornered cycle. A different simplification

was used by Rallis and Urielli, s who assumed that all the gas (not only

in the cylinders, but also in the heat exchangers) behaved adiabatically

during the expansion and compression phases.

This report is an analysis of a four-cornered analog of a Stirling

cycle with an adiabatic expansion space; it yields closed-form solutions

for the power output, power input, and efficiency. Although the movements

of the displacer and power pistons are separated from each other in the

analysis, the expansion of the gas is allowed to take place simultaneously

with its transfer between the hot and cold cylinders during the expansion

phase.

Whether or not there is any point in pursuing such analyses is a rea-

sonable question; after all, computer time is readily available and any-

way, of what practical application is a solution that permits only one

cylinder to be adiabatic?

The second part of the question is most easily answered. Several

schemes4- 6 exist for rendering the cylinders of a real machine isothermal
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(or nearly so) that involve the fitting of many fins or small tubes to

the displacer piston and allowing liquid to penetrate their interstices

during part of the cycle. Without using exotic materials, this method is

limited to the rather low temperatures at which commonly available liquids

are thermally stable and have an acceptably low vapor pressure. Thus, in

practice, this method can only be used at the cold end of the displacer,

and therefore only the compression space is isothermalized, leaving gas

in the expansion space to behave nearly adiabatically.

With regard to the first part of the question, if a closed-form solu-

tion could be found, it would certainly have great value. First, an ex-

plicit formula (however complex) is easily portable from one computing

system or code to another. Second, it can be evaluated to almost any de-

sired degree of precision without a noticeable increase in computing time

and cost. Third, no stability or other numerical problems are involved

in the evaluation.

The potential saving in computing time is a very important practical

aspect, because the cost of computing the many hundreds of cases that may

be required in the course of an optimization search is high enough with

present codes to impose a limitation on such exercises. "Second order"

codes - those that compute the output and efficiency of an idealized,

lossless machine and then subtract the effects of the various known power

and thermal loss mechanisms one by one - seem to be the most suitable for

optimization searches, 7 and these are just the kind of codes that would

benefit (in terms of computational speed and accuracy) if closed-form

solutions for the basic cycle parameters could be developed.

Even if a complete analytical solution of the equations proves to be

impossible, the attempt to find one may lead to equations that, although

they require numerical solution, are faster or easier to evaluate than the

present systems of differential equations.

Finally, physical insights into the processes involved in an adia-

batic cylinder machine, insights that may not be gained simply from pe-

rusal of computer printouts, are offered by the closed-form solutions.

This report, then, comprises another step toward the desirable goal

of an equivalent to the Schmidt equations that can be applied to adiabatic



cylinder machines. The results are more advanced than we now have, but

they are not as complete as we would like. Nor do they reveal whether

that eventual goal is achievable even in principle. But they do give

some analytical insight into the effects associated with the combination

of isothermal heat exchangers and adiabatic cylinder spaces, and they do

provide a picture that helps to explain some of the trends and effects

predicted by the computer models.
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2. ISOTHERMAL CYLINDERS

To demonstrate the physical significance of the procedure to be used,

first consider the standard case of a machine - such as the one shown dia-

grammatically in Fig. 2 - in which the expansion and compression spaces

ORNL-DWG 80-11356A

REGENERATOR D DISPLACER PISTON

_ ol g COOLER P POWER PISTON

HEATER

D P

PHASE 1 WITH THE GAS AT THE COLD END AND ITS PRESSURE LOW,
THE POWER PISTON IS MOVED IN

^-- SGAS FLOW

c I ,> D3 1. P

IL II

PHASE 2 WITH THE POWER PISTON STILL IN, GAS IS TRANSFERRED FROM
THE COLD TO THE HOT END OF THE DISPLACER CYLINDER

GAS FLOW--- "

,D -- , ':- P

PHASE 3 WITH THE GAS AT THE HOT END AND ITS PRESSURE HIGH,
THE POWER PISTON IS MOVED OUT

GAS FLOW--- -

D Pl D <=;^=|_ P =

PHASE 4 WITH THE POWER PISTON STILL OUT, GAS IS TRANSFERRED FROM
THE HOT TO THE COLD END OF THE DISPLACER CYLINDER

Fig. 2. Basic operation of a Stirling engine.
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are both isothermal. The starting point, labelled 0 in the P-V diagram

shown in Fig. 3, has all the gas in the (cold) compression space and the

power piston fully withdrawn. During the first phase of the cycle, the

power piston is moved in, thus compressing the gas, but the displacer pis-

ton is stationary. Next, the displacer is moved rightwards, thus displac-

ing all the gas into the expansion cylinder. During this, the second

phase, no net volume change occurs, and the action is therefore repre-

sented on the P-V diagram by a vertical line. The power piston is now

moved all the way out, under the influence of the higher pressure result-

ing from some (initially, all) of the gas being at the temperature of the

hot end; this is Phase 3. Finally, the displacer piston only is moved

leftwards, thereby returning all of the gas to the compression space; at

the end of this fourth phase, the initial conditions again exist, and the

cycle is complete. The connecting tubes are assumed to be of negligibly

small volume.

An evaluation of the power input and output during each of these

phases follows.

Phase 1. The volume of the expansion cylinder does not change; thus,

no work is done. The work in the compression cylinder, all done on the

ORNL-DWG 81-20088 ETD

P2- SUBSCRIPT 2

PHASE 3
PHASE 2

SUS
3 SUBSCRIPT 3

p _SUBSCRIPT 1PHASE 4
1 PHASE 4

Po PHASE SUBSCRIPT OR 4-

V, V,, + V,

TOTAL VOLUME

Fig. 3. Nomenclature used in the cycle analysis.
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power piston, is denoted by Wp , and

P=P1
V=V

e
WV = PdV ,

J P=P
V=V°+V

e p

where V is the compression space volume, and P is the pressure at some

stage during this phase. From the ideal gas equation we have

PV P (V + V) P V (1 + k)
o e p oe

T T T
c c c

where k is defined as the ratio between power piston and displacer piston

swept volume. Therefore,

1
P = P V (1 + k) V ; (1)0 e V

Ve dV V

p* = P V (1 + k) P-= = V (1 + k) log Ve
Pi o e V o e + V

V +V e pe pP

W = -P V (1 + k) log (1 + k) . (2)

The pressure in the system at the end of this phase is Pi, where from

Eq. (1),

P1 = P (1 + k) . (3)

Phase 2. The power piston does not move, but work is done on the

displacer piston in the expansion space (and an equal but opposite amount

is done on the compression end). The work at the expansion end is W
ez

where

/-P=P,
I V=V
* e

V = I PdV
e2 1

JP=-P
V=O
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and

PV P(V - V) P V (1 + k)
e o e

T T T
e c c

P V (1 + k) 1 P V (1 + k)
o e o e

P = (4)
* = T V/T + (V - V)/T V(n - 1) + V

c e e c e

fe dV P V (1 + k)
e o e

· ' W = P V (1 + k) J - = - 1
e2 o e V(x - 1) + V T - 10 e

V (T - 1) + V
e e

x log ;
e

P V (1 + k)
o e

W = - log · . (5)
e 1 -

The pressure in the system at the end of this phase is P2 where, from

Eq. (4)

P V (1 + k) P (1 + k)
o e o

e = = : .... (6)· V (T - 1) +V ( 6 )
e e

This is the highest pressure reached during the cycle.

Phase 3. Beginning with this higher pressure the power piston is

moved outwards. The displacer piston does not move, and no work is done

on either end of it. The work on the power piston is W , where

IV-Vp
v v

W = | PdV
p*s

JP=P2
V=O
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and

PV PV P V (1 + k)
e o e

T T T
e c c

P V (1 + k) 1 P Ve(1 + k)
p = - * (7)

T V /T + V /T V + V '
c e e e c e

fp dV V + TV

W = P V (1 + k) -,= P V (1 + k) log
ps o e J + V + o e 'TV

+ k
W = P V (1 + k) log . (8)

ps o e T

The pressure in the system at the end of this phase is P3 where, from

Eq. (7),

P V (1 + k) P (1 + k)
o e o

P = V + V + (9)
p e

Phase 4. In the final phase, with the power piston stationary, the

displacer piston is moved leftward, returning all the gas to the compres-

sion space. The work on the expansion end of the displacer piston, W
e4

is given by

P=P0jv=oo
W = PdV

e4

JP=P,
V=V

e

and

PV P(V - V) PV P V (1 + k)
e p o e

T+ T +.
T T T T
e c C c
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P V (1 +) 1
o e

T V/T + (V - V)/T + V /T
c e e c p c

P V (1 + k)
o e

(10)
V(v + 1) + V (1 + k) ; (10)

Pe4 Ve(1 ) JV V(T - 1) + V (1 + k) T - 1e
eV~~~~~o e

V (1 + k)
e4 o e V(( -1) + V (1 + k)

e el~~+kh ~~V (+k)

1 + k l + k
W P V - 8log . (11)

e4 eol-t l+k

The pressure at the end of this phase is equal to the initial pressure

P .
o

Work otutut, input, and efficiency. The mechanical work output over

the whole cycle, W t is the sum of the work done on the power piston

during Phases 1 and 3.

W =W +W
out pi p»

1 + k r r + k1
= -P V - [log (1 + k) - log

o0e 1- +

T +k

Wut = PV (1 + k) log (1 + k) (12)

According to Rios and Smith' the power input (heat) is equal to the

work done at the hot-space end of the displacer piston. This work is all
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done during Phases 2 and 4. Thus,

W. =W +W
in es e4

1 + k / r + k
- PoVe 1 - log T - log 1+ k)

l+k ~+ k

in O e 1 - lo (1 k)

The efficiency it is the ratio of output to input power and is easily

obtained from Eqs. (12) and (13):

t + k
W P V (1 + k) log (1 +out o e

in W= (1 + k) ~+ k
in p V log

o e (1 - q;) l (1 + k)

i = 1 -- T . (14)

This is equal to the Carnot efficiency, as we should expect.
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3. ADIABATIC EXPANSION CYLINDER

The analysis of this new case (Fig. 3) allows the expansion cylinder

to behave adiabatically but assumes that the heat exchangers and regenera-

tor, although perfectly isothermal, are of negligible volume.

Phase 1. This phase is identical to the isothermal analysis, because

the expansion cylinder volume remains at zero during this phase and thus

plays no part - adiabatic or isothermal - in gas behavior. The results

may therefore be copied from Eqs. (2) and (3):

W = -P V (1 + k) log (1 + k) , (15)
pi o e

and

P = P (1 + k) . (16)
1 o

Phase 2. Although this phase of the process is described as "heating

at constant volume," note that not all the gas in that volume undergoes

the same heating process. Indeed, over any portion of this phase only the

gas passing through the heater at that time is being heated. The gas that

passed through the heater earlier in this phase, and is already in the

adiabatic expansion cylinder, receives no further energy from the heat

source, except that which is carried in by new gas entering the cylinder.

The gas entering the expansion cylinder as the displacer is moved

rightwards does so at the temperature Teh of the hot-end heat exchanger.

The gas in the cylinder will generally be at a higher temperature than Teh

because it will have been compressed by the rise in pressure as the dis-

placer movement proceeds in an adiabatic space. The gas in the expansion

cylinder is continually being compressed and mixed with fresh incoming gas

at temperature Teh as the displacer movement proceeds. The mixing of gas

at two different temperatures is an irreversible process, so the system

no longer has Carnot efficiency.

When the displacer has moved rightwards through a volume V and then

moves through a further volume dV, the mass of gas leaving the isothermal
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cold space, dM , is given by
c

PdV - (V - V)dP

dMc
c RTch

The first term on the right hand side is simply the mass of gas contained

in the volume dV at pressure P and temperature Tch. The second term is

the change in mass of gas contained in a volume V - V (the volume remain-
e

ing in the cold cylinder) when the pressure is increased by dP.

The corresponding equation for the mass of gas entering the hot

cylinder, dM , is slightly more complicated, because this space is adia-
e

batic:

PdV + VdP/y
dM =

de RTh

This equation was a basis of the numerical cycle analysis done by

Qvale and Smith' and is also a result contained, although in a somewhat

disguised form, in the original Finkelstein equations for nonideal Stirl-

ing cycles.

Physically, the first term on the right hand side represents the mass

of a volume dV of gas when it leaves the heater at a temperature T h and

pressure P.

The second term represents the change of mass in a volume V when the

pressure changes by dP: it is really a combination of the fractional in-

crease in density - dP/P - caused by the pressure increase and the frac-

tional decrease in density - dT/Teh - caused by the adiabatic increase in

temperature. The temperature increase is given by the usual relationship

dT dP
Y = (Y - 1) p

and the net result is a fractional increase in density given by

dp dP dT dP / - 1 1 dP

p P T P Y Y P -
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The total mass of gas in the system is constant. Therefore, the mass

leaving the cold cylinder must equal the mass entering the hot cylinder

(i.e., dl = dM ) or
e c

PdV - (V - V)dP PdV + VdP/Y

RTh RT

e

RTch RTeh

/1 V V V

' PdV T = dP T + - T ;T TTT
\ch eh ch YTeh ch

dP (1 - r)dV

P V - V(1 - /) (17)
e

Integrating from the starting point of this phase, when the displacer is

fully leftward and P = P,, we find

P=P dP V=V
PdP f V (1 - r)dV

p=P JV=O Ve V(1 - /Y)

Both sides can be integrated, yielding a relationship between P and

V:

1 - r V y(1 - r)
e

log P/P - /¥ log V - V(1 - T/¥) Y - r
e

V
e

x log V - V(1 - T/Y)
e

and

/ V )Y(1--:)/(Y-r)

P = Poe v - V(1 - r/Y)) (18)

The work done at the hot end of the displacer piston during this phase is
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We where

P=P2

ee
V=V

W j= PdV .
e,2

JP=P1
V=O

Substitute for P from Eq. (18)

Ve / v (l-) /(yr)
Ve

We = Pi v - v( - r/Y) dV

rVe 1 7 ( 1-T)/(Y-)

= J o 1 - V(1 1- /rT )/Ve dV .

Despite its rather overwhelming appearance, this integral is an ele-

mentary one of the form (a + bx) dx and is easily performed, with the aid

of a handbook of common integrals °1 if necessary. The general result is

f c (a + bx) c + l1

f (a + bx) dx = b(c + 1)

in this case

a1,a = 1 ,

b = -(1 - r/Y)/V ee

c = -y(l -I)/(y - t)

[1 - V(1 - T/Y)/V ]-(1-)/( +1
w = P' -

e2 (1 - t/y)- =PL * I[-y(l - r)/(Y - r) + 1]
e J0

r -/. ̂s(Y-1)/(Y-0)
= -P V - 1 ,

I e T(¥ - 1) Y)
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and by substituting from Eq. (16) for P , we can write W in terms of
2 e2

the initial conditions:

W =-P V (1 + k)r(y- 1) [Y -1 . (19)
e2 o e T(Y

By making the substitution x = 1(y - l)/(y - t), Eq. (19) can be rewritten

as

[(T/y) - 1]
W = -P V (1 + k)

e2 o e
(1 - T)x

As y-l and the gas behavior in the cylinder becomes the same whether the

space is considered adiabatic or isothermal, x-0:

limit limit (1 + k)r - 1
= -PV

y-l1 ez x--0 o e (1 - c)x

It is known (e.g., Ref. 11) that

limit a - 1
x- -= loge a

and therefore

limit log r
W = -P V (1 + k)

Y--1 we oe ( - y

This expression is, as we should expect, in exact agreement with the value

given by Eq. (5) for an all-isothermal machine.

The pressure in the system at the end of this phase is P. where, from

Eq. (18),

r V ly(l-y)/(y/s)

P2 LVI - V(1 - r/Y)

( Y(l-))/(Y-()

P (1 - k) . (20)
0\O
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To carry out the calculation of pressure and work output during the

next phase of the cycle, we need to know the temperature of the gas in the

expansion cylinder at the end of Phase 2, T
e6

From the ideal gas law

P V P V (1 + k)
2 e o e

T T
2e ch

a ch

.-. T =T

2e = P (1 + k)
o

(-X ) ] TchP0 (I + k) \J c

= T ch * (21)

At this stage, a new variable can be defined to simplify the equa-

tions:

T,= (-Y ) * (22)

When --1 (i.e., when the heater and cooler are kept at the same

temperature), -2 l. Furthermore, when y-1, so that the gas behavior is

the same whether the space is considered isothermal or adiabatic, then

,-rT, and the new variable fills the same role as the actual heat ex-

changer temperature ratio. The variable T2 represents the actual heat

exchanger temperature ratio modified by the effect of the adiabatic space.

With this substitution, we can rewrite the equations for W , P , and
e2 2

T in more convenient and compact forms:
»e

T(y-1)

Y(1-t)
r[1 - ) ( ]

W = P V (1 + k) - (23)e2 o e '(y - 1)
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(1 + k)
P = P ' (24)
> o X,

ch
T - - T (25)

ze t 2 r1 eh

Equation (25) may be thought of as a physical definition of the modi-

fied temperature parameter T,.

Phase 3. With the displacer stationary at the cold end, the power

piston is withdrawn so that the compression-space volume increases from

zero to V . During this phase, gas is always leaving the expansion cyl-

inder; the gas remaining in the expansion cylinder therefore does not

receive any admixture of gas from the outside, so its behavior is simply

adiabatic. If the temperature of the gas in the hot cylinder at any mo-

ment during this phase is T , then from the usual adiabatic gas law

p .1-1/ ¥

TzeC

T ~~~~~~~~~~~~T ~(26)
. e se (P2

The change of mass in the hot cylinder as the pressure falls can be

calculated by the same methods used during the Phase 2 analysis, with the

additional simplification that volume of the expansion space does not

change during Phase 3:

V dP

dM
e yRT

During this phase the pressure is always falling, that is, dP is

actually a negative quantity.

The compression space is isothermal, and the gas in it is always at

temperature Tch so that calculation of the increase of mass at the cold
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end of the machine is easy:

PdV VdP
dM - +

c RTc RT
ch ch

Once again, the mass leaving the expansion space must all enter the com-

pression space. Therefore

V dP PdV VdP
e

yRT RT RT 0+ + +-
RTe RTch RTch

· ' PdV = -dP (V + - . (27)

From the ideal gas law

PV PV P V
e 2 e

-T~~~~~~- + T- ~~ = I~- ~(28)
e ch 2e

T P V PV Th P Pch 12 e e ch (a
V = = -

\ e T e

First, substitute for T from Eq. (26)

Tc h P P 1 /P 1 T P /P 7
ch 2 1 T ch 2 /

2e T= -- V =- _ - V (28)
T T P \PT eeT ( 2 0

2e » e 2e

Then, substitute for T from Eq. (25)

eV P

V
.- (29)
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Now, substitute this expression for V into Eq. (27):

P 1 -1 ^ T

PdV =-dP L - p ) / V, e
St1 1 ( 2 ) + Te Ve

Substitute for T from Eq. (26)
e

Pv -dp ( ) - p -l T[h (P)1/Y] v
=P T - + V

Finally, substitute for T from Eq. (25)

ie-

r 1 -1-1/ P 11

PdV = dP [- - -- TV . (30)
L Y \P / P 2 e

The work done on the power piston during this phase is W , where
ps

PV=V

W = PdV

P=P
V=O

and by substituting for PdV from Eq. (30) this integral becomes

P s (Y - 1 p /Y- 1 I
Wp = P V f - - dP

fr - 1 rfl/T

2 2 e 1/Y

P2
[Y P. p

= P V (Y ) - 1 - lo g
L[ log
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Substitute for P from Eq. (24)

~~2~~~~~~
W = PoV (1 + k)[(.Y 1)(1^7 - 1) - log (31)

Returning to Eq. (29) and writing V = V to find the pressure/volume rela-
p

tionship at the end of Phase 3 yields

P2 /P \ 1- 1

V r 2 p e [1 -() ]V

2 I 2 V

ZY P

2

-V1 k I-V L P

: -V \ - =J - p -= (32)p hsP Tb P /
ae 2 2

Substitute this into Eq. (31)

k P P

W = -P ¥ (1 + k) ( - 1) - _ + log ( 33)s o e -C P It '

To find P,/P, we numerically solve Eq. (32), that is,

+- =1. (34)

Only in special cases is it possible to solve this equation analytically.

The gas temperature in the expansion cylinder at the end of this

phase, T , may be found by substituting P /P for P/P in Eq. (26) and
»e J 2 2
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then using the expression for T in Eq. (25):
ze

/p A- T ch
T = T - - * (35)se se

A new temperature ratio x, can be defined for convenience such that

T - /P '
Ch / * E

*rT = T (t[ l * (36)
se \/

With the aid of these relationships, Eq. (33) can be rewritten in terms of

the gas temperature rather than gas pressure, a form that may sometimes be

more convenient.

k / Y/(y-) / \/(Y-l'

=-P (1 + k ) ( - 1) + log ( 3 7 )
pa o e

Phase 4. We now have enough information [in Eqs. (15) and (33)] to

calculate the work output from the power piston for the cycle, but to cal-

culate the efficiency we need the work input as well; therefore, we must

continue the analysis through Phase 4. The gas in the expansion space

continues to behave adiabatically, so we may continue to apply Eq. (26);

therefore

T =T· =t p~ch
e e P

From the ideal gas law

PV P(V -V) PV P V (1 + k)
e p o e

T T T T
e h ch ch ch

I T1 \ (P - P)V (1 + k)

e Tch ch
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1/P - 1/P
0

V P V (1 + )(39)
o e 1 - Tch/Tech e

The work done in the expansion cylinder during this phase is W , where
e4

rP=P
:=0pvo:= °

W = PdV .
e4

_P=?3
V=V

e

Integrate by parts

W = -P V - fVdP
e4 3 e J

and substitute for V from Eq. (39)

V lPi - 1/p
r o0

W -P - P V ( + k) -- dPe4 3 e o e - T /T
chc e

l P r/ -/p

Substitute for P2 from Eq. (24)

P1 1/PP - 1/P

W = -P V (1 + k) + -T dP (40)

e o e Po(1 + I) \ ch /Te

The integral is most conveniently evaluated by using expansion-space gas

temperature T as the primary variable:

1/P - /P 1 dP dP

f 1 - ThT 1- T /T J P(-T /T )cli e o - Tch/Tl e.
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and for an adiabatic gas

dP Y dT

P y-1T

f= l- T /T 1 J
o J ch /e I T e ch

se

1 f dP Y T -T
c __ 4e ch

J PJ ~ J T~=n1 - h/T log T --T (41)
o ch e se ch

The variable T is the temperature of the small amount of gas re-
4e

maining in the expansion space as the displacer piston approaches its

extreme leftward position. At the time, the gas pressure approaches P

Therefore, from Eq. (38)

T P
4e

T P)
ze 2

Substitute for P /P from Eq. (24). and substitute for Te from Eq. (25):

T 1 /I \l-1/
4e 1

ch a 2

and we may define a new temperature ratio S4 such that

T + kTch 1 + k\

4 T T
4e C

=1-/ l/y 1+ -. T
=(1 + k) (1 + k) (42)
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The right hand term in Eq. (41) can now be rewritten in terms of

the temperature ratios Ta and t4 and the result substituted back into

Eq. (40):

e4 oe i P r-
2 2

(1 - ) 1 r dP
3 4

x l o g - J (43)

dP

4 ch e

The remaining integral looks more straightforward than it is:

JP=P

T=T

1 | e dP 1 i T

oC 'PP c = o e Tch

T=T
3e

o \ / e ch Te ch

1/ o /- dP P

P TP r dP

P cP T - T
o o e ch

PP T c 1P
p3 ch P

1 - p - + J T- * (44)
2 0 0 e ch

Substitute for P /P from Eq. (24) and insert the resulting form of
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Eq. (44) back into Eq. (43):

14 = - ^ k e [P ( r(1 +) Y-i

W = -P V (1 + k) -T + d
e4 o e +-

i 4 Tch dP
x log +

k /P \ Y T (I

r (1 - ) P T -

= -P V (1 + ) 1 -log 3
oe kP)1 -

Tch dP
+ Te J T h (45)

co e ch

T P

2 h c
r / \Y ( - )

Substitute for P. from Eq. (24)

Y 1 + k P(T Y /) ̂

ru2Te e

dP = h P· h T 1/(¥-1)dTdP p d
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We can use this relationship to evaluate the integral in Eq. (45):

IT dP r /(y) /T e T l/( Y- )dT

P T - T = - 1 (1 + k) T l J T -T (46)
o e ch ch T e ch

se

Under certain circumstances, the integral can be expressed in terms

of elementary functions. Fortunately, these circumstances include the

cases of most interest in this analysis. For an ideal monatomic or di-

atomic gas, y = 5/3 or 7/5, respectively; the exponent of T in the nu-
e

merator of the integral is then 3/2 or 5/2, and the integral may be evalu-

ated using reduction formulae given in tables of standard integrals (see

Ref. 10).

For a monatomic gas the integral becomes

Y / c \I/(T-l) T4e T /Y )dT 5 (1 + k)/' T VT TdT
(1 + k) = - I / 2

T - (1 + }T T 2 T - T 2 T T
\ ch Tse e ch ch

= 2T 2T + Tch + Th T2T5(1 3+ t ( /T T ()T )Ich L e ch T
Se

5 (1 + k)T 2 2

5 (- +--- - ---- - T T + 2T T T T
2 Ts/2 3 ' 4 e se ch 4e se / ch

ch

-Tc -T + 2T T T - T

ch se ch se se ch.

5 2 /1 1 1 1
-- (1 + k), -/+ -,- -

2 k) 2[; a »» / 2 / i I/2
2 3 T ./ T 4 '.

s,(l - T,') s,(1 - c,)

+ log - log
4^ lc^(l - Tr'*)* T,(1 - ~C)

:II-~~~~~~~~~~~~~~~~~~~~~
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Substitute this back into Eq. (45). while setting y = 5/3:

k P\ 5
W -P V (1 + k) 1 - + (1 + k)e4 o e T p

2

(· T - ) 1 <it 4 - 1/)

P(1 //2 3/2 I/ 2 2 1 ?'# = -P V (1 + k)I' / k - --2

F<1-^J T^'d - T1 e

1/ 1 + 1 (e c )

I 2

(1/ul -D 1 7 '-s log + 5(1 + k)uT log
(1/ ch 21 l/.C/ -1/

+ (1/% 1/ 2 - 1/~./2) + (1/C/'2 - 1/c:/2)/3 (47)

Equation (47) is valid for a monatomic gas only.

For a diatomic gas the integral in Eq. (46) becomes

¥\ · '^ /* T 4e T ¥-l)d T 7 (1 + k)- 2
f1(1/(-) fT

\se Te Tch 2 T /2
ch

tT T 2' -

40 e efx dT
T T - T e

se e ch
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7(1 + k)t 2 /Te TT
_____ 1/2 I e e)ch , 1

2T s/ 2 e 5 3 ch
ch

g- dT
T3 -__e_
c+ h T (T Tch)

-(T2 - T ) + (T - T ) + 2T
r/Z *e re2 TS/2 5 4e se 4 e se ch

ch

-T -T + 2/T TT T - T
/2 4/2 ch 4e ch -e 4e e h

x (T -T )+ log -log
4 e 's +- -Tc - T + 2V/T T T -

ch se eh se se ch-

= - (1 + k) T2, -/- + 2

(i 5 r2 r3 _ 1/22 3/ 2
2 ' 3

4 1 \ T,(l - -C4 ) t 3 (1 -T

1+7( 0 2 -|/log22-- -/ log I- zc^+ (.r'/,(1- ' / ) q:4(1 - rt,)

Substitute this back into Eq. (45), while setting y = 7/5:

k P 7 T (1 -r)
W =-P V (1 + k) 1 - - - - + (1 + k)2 log ---
e4 oe P 2 (1 - )

2 2 4 3

3/' ,l/ 1/1 1
,/2 [ (1 - / )

+ 7 (1 + k)T, log -- -- + - -

t 4 (1 - r,) 5

3 /2 » /2 ) /2 I/2
3 %'4 

T
.

T
4 IC.
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k P
r /2

W = -P V (1 + k) 1 - - - 7[1 + (1 + k)T ]
e4 o e t· P '

2 2

(1/T 1 - I) 1 I 1/ T/ 1 -1

x log + 7(1 + k)t log - /-

(1I/T - 1) 1 ' 1 - 1

+ (1/Tr4 - l/t 3 /) + (1/T/' - 1/T 1^)/3

2 2I1)
+ (I./T 2 - 1/T 2)/5 . (48)

Equation (48) is valid for a diatomic gas only.

Work output, input, and efficiency. The work output is the sum of

the work done on the power piston during Phases 1 and 3, which may be

obtained from Eqs. (15) and either (33) or (37).

From Eqs. (15) and (33)

W + W = W = -P V (1 + k)log(l + k)
pi pI out o e

k P P

- P V (1 + k) (-1) - + log ;
O e P

2 2 2

P k P '

W ut= PV ( + k) log ( ( - ) k (49)
out Poe k P

In evaluating Eq. (49), the temperature ratio T, must first be cal-

culated from Eq. (22), and P,/P, is then calculated by solving Eq. (34).

According to Rios and Smith' the heat input to the heat exchanger is

equal to the indicated work done in the adjacent adiabatic cylinder. The
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work input is therefore the sum of the work done in the expansion space

during Phases 2 and 4. These values may be taken from Eqs. (19) and

either (47) or (48).

For a monatomic gas, the work input is

5 k P 5
2r/(5;-3'r) a

W. = P V(1 + k) [1 - (3Or/5) 2 ] - + + -
in o e 2 P 2

2 2

1/r 4 - 1
1/2 *3 /2 1/2

/ - 1 1 1 1

X logs- + ~r~ ^ + [7 ~7 * (50)
l1/ s - 1 lT T 3 T

For a diatomic gas, the work input is

W. = P V (1 + k) [1 - (5T/7)2-c/(7-St)
in o e 2-c

k P 7 114 -1
l3 3'/2 /2 4

^ '2 2 1/2t - 1

31,1/' , /' S\tS ]

l/·T -1 1 \
-7(1 + k) 2 log 1

l/t -l

1/1 1 1/ 1 :/: 1
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In evaluating Eq. (50) or (51), T2 is obtained from Eq. (22), and

Ps/P, is calculated by solving Eq. (34). The temperature ratios ., and T4

are then calculated from Eqs. (36) and (42).

The efficiency is simply W out/Win , obtained from Eqs. (49) and (50)

or (51) as appropriate.
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4. SOME CONCRETE EXAMPLES AND PHYSICAL INTERPRETATIONS

Consider first an engine in which the displacer and power piston

swept volumes are equal, so that the compression ratio (i.e. the ratio

of maximum to minimum volume) is 2:1. Pressures and volumes will be ex-

pressed in terms of the initial pressure and displacer swept volume, re-

spectively (i.e., P = 1, V = 1, and V = 1).

The P-V diagram of the all-isothermal engine is easily calculated;

the vertices of the diagram are defined by Eqs. (3), (6), and (9). For a

similar engine with an adiabatic expansion cylinder, the vertices are de-

fined by Eqs. (16), (20), and (34). A particular example, with a heat

exchanger temperature ratio of 3:1, corresponding to hot and cold and tem-

peratures of ~650 and 350C, respectively, is given in Table 1 and plotted,

for a monatomic working gas, in Fig. 4. Note that the P-V diagram shows

that a three-cornered approximation of its shape can be quite a good one,

especially for the adiabatic cylinder engine, because the pressure does

not change very much during the final displacement phase.

Table 1. Cycle pressure and power output

Adiabatic expansion

Variable Isothermal cylinderVariable
cylinders

Diatomic Monatomic

P, 1.00 1.00 1.00

Pi 2.00 2.00 2.00

P , 6.00 7.02 7.65

P, 1.50 1.37 1.31

W 1.39 1.33 1.28out

Note also that the adiabatic expansion cylinder machine with a mon-

atomic working gas gives about 10% less output, but has almost 35% higher

peak-to-peak pressure, than the all-isothermal one when both machines have
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Fig. 4. Adiabatic and isothermal P-V loops.

the same initial pressure and volume (i.e., the same mass of working

fluid).

Figure 5 shows the work output as a function of heater temperature,

assuming that the cold-end temperature is 35°C, comparing the all--isother-

mal case and the adiabatic expansion cylinder machine. The work output of

the isothermal machine does not fall to zero until the temperature dif-

ference between hot and cold ends has fallen to zero, but the adiabatic

machine then has a negative output (i.e., work must be done to drive it).

At some higher temperature (850C in this case) the power output from the

adiabatic machine will be zero. At higher temperatures still, it will be

positive.

We can calculate the temperature difference at which the work output

will fall to zero by setting the left hand side of Eq. (49) equal to zero:

1
log (1 + k)(P /P 2 ) ( - 1)(k/i)(P 3 /P2) . (52)

(1 + k)(P /P32

Substitute for (k/T,)(P,/P2 ) from Eq. (34)

log (1 + k)(P/P) = ( - 1)1 - (P/P) 1 / ] (53)
(I + k)(P3/P2)
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Fig. 5. Work output vs heater temperature.

This equation can be solved for P,/P, and the result substituted

into Eq. (34) to give the value of x, for which the work output is zero.

Finally, this value of x, can be inserted into Eq. (22), which is then

solved to give the heat exchanger temperature ratio T for zero output.

Some results are given in Table 2 and plotted in Fig. 6.

To understand the reason for the negative work output of the adia-

batic machines at small temperature ratios, consider how the P-V diagram

changes as the heater temperature is reduced (Fig. 7). At a moderate

heater temperature, for example 350°C, the work output is positive. At

a somewhat lower temperature - 170°C in this case - the extra reduction

of pressure in the expansion stroke due to adiabatic cooling lowers the

pressure during Phase 3 as far as the original pressure. The cycle be-

comes three-cornered, but the work output is still positive throughout

the cycle. With a lower heater temperature (such as the 85°C example
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Table 2. Heat exchanger temperature for
zero work output

Heater Temperature
Temperature temperaturea differenceb

ratio ( 0 C) (oC)

Monatomic gas

k = 0.5 0.910 65 30
k = 1.0 0.861 85 50
k = 1.5 0.828 99 64

Diatomic gas

k = 0.5 0.940 55 20
k = 1.0 0.905 67 32
k = 1.5 0.882 76 41

aAssuming a cooler temperature of 35°C.

Difference between heater and cooler temperatures.
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Fig. 7. P-V diagrams for various heater temperatures.

shown), the pressure on the expansion stroke actually falls below the

initial pressure, and in part of the cycle the loop is traversed in a

counter-clockwise direction, therefore requiring a work input. In the

example shown for 85°C, this negative work exactly compensates the work

output available from the first part of the cycle, leaving zero net out-

put. When the heater temperature is lowered further still, the area of

the negative work portion of the loop exceeds that of the positive por-

tion, and instead of the machine running as an engine, a net work input

is needed to drive it.

For a machine operating across a small temperature difference then,

the work output (which may be negative) is the relatively small difference

between the larger quantities represented by the two parts of the loop

traversed in opposite senses. Consequently, the net output will be rathertraversed in opposite senses. Consequently, the net output will be rather
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sensitive to even relatively small additional irreversibilities in the

cycle. The same problem may occur in a Stirling machine operated as a

heat pump.

The effect of adiabatic heating and cooling is greater, the greater

the compression ratio (i.e., the greater the ratio of power piston to dis-

placer swept volume). The compression ratio is simply equal to 1 + k, and

Fig. 8 shows the work output per cycle as a function of compression ratio

for a monatomic gas. As expected, increasing the power-piston swept vol-

ume gives a larger output when the heater temperature is reasonably high.

ORNL-DWG 81-20093 ETD
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Fig. 8. Work output vs heater temperature with various compression
ratios.
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More surprisingly, however, the work output is actually reduced by in-

creasing the power-piston swept volume (and thus the mass of working

fluid) when the temperature difference is small. This result has impor-

tant implications for machines, such as heat pumps or engines designed to

operate with flat-plate solar collectors, that must operate with a small

temperature difference between heater and cooler.

Consider next the heat input required. Figure 9 shows that the heat

input required is higher for an adiabatic expansion-cylinder machine than

for an all-isothermal one. The increase is 10-15% (if the working fluid

is monatomic) when the displacer and power-piston swept volumes are equal.

The increase in heat input and the reduction in work output combine

to drive down the efficiency. Figure 10 shows that the ideal efficiency

is considerably lower for the adiabatic expansion cylinder machine than
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Fig. 9. Heat input for isothermal and adiabatic cases.
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Fig. 10. Efficiency for isothermal and adiabatic cases.

for the isothermal one even in this ideal case where the practical losses

(e.g., flow losses or transient heat transfer losses) are ignored. The

reduction is naturally proportionately larger at the smaller temperature

differences, and at high compression ratios it is also absolutely larger

for small temperature differences, at least for a monatomic gas (Fig. 11).

Again, there are important implications for machines operating across

small temperature differences.
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5. CONCLUSIONS

Integration around the P-V loop of a Stirling-like machine with an

adiabatic cylinder is possible. The problems of such a task arise mainly

from the complications caused by having a mixture of adiabatic spaces and

isothermal spaces exchanging gas with each other throughout the cycle.

The actual cycle treated is not that of a real Stirling engine, which usu-

ally has a near-sinusoidal variation of cylinder volume with time, but it

is much more realistic in some important respects than the isothermal cyl-

inder approximation that is usually made to facilitate analysis of the

Stirling cycle.

The effects of the adiabatic cylinder include a reduction in power

output and thermal efficiency but an increase in the heat input required,

for a given quantity of working fluid. These effects are most marked when

the temperature difference between the heater and cooler is relatively

small. The peak pressure in the engine is increased considerably when the

expansion cylinder behaves adiabatically rather than isothermally.

For small heater-to-cooler temperature differences, the P-V loop is

still fairly large for the adiabatic cylinder case (unlike the all-iso-

thermal machine, for which the loop closes up completely at zero tempera-

ture difference) but consists of a figure-eight shape with the two por-

tions traversed in opposite senses. The net work output is the difference

between these two larger areas, which explains quite clearly why the out-

put of an adiabatic expansion cylinder machine is so sensitive to even

small additional irreversibilities when the temperature difference is

small.

The results clarify some of the difficulties that have been encoun-

tered or that are to be expected in operating Stirling engines or heat

pumps with a low temperature difference between the hot and cold heat

exchangers. The results also help to provide a physical background and

explanation for some of the effects that are routinely observed when

running computer models of Stirling engines, models that invariably use

numerical integration of the gas behavior equations in adiabatic spaces.

The cycle analyzed is a version of the ideal Stirling cycle that does

not allow for the near-sinusoidal piston movements of most real machines,
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but the same general effects and trends must be present in both cases,

although their magnitude will probably be reduced by the merging of dif-

ferent parts of the cycle that takes place when the piston movements are

continuous. The magnitude of the adiabatic effects will be considerably

reduced, although they will neither be eliminated nor (probably) qualita-

tively changed, when allowance is made for the presence of the heat ex-

changer volumes; preliminary work shows that finite-volume heat exchangers

can be included in this type of analysis, and a future report may attempt

to do so.
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Appendix

ADIABATIC COMPRESSION SPACE

Although less interesting practically than the adiabatic expansion

cylinder machine, the case of an engine with an adiabatic compression

space turns out to be much simpler mathematically. Some of the results

are derived in this Appendix, using the same nomenclature as the main

text.

The analysis can be conveniently begun at Point 2 on the P-V loop

when all of the gas is at the temperature T h of the isothermal expansion
eh

space.

Phase 3. The process is similar to that for the case already

treated, except that the gas in the expansion cylinder is always at tem-

perature T h.

VedP/y VdP/y + PdV

+ = (A.1)
eh ch

(TV + V) dP/ = -PdV ;

dP dVJ _, =p r_J2 ' PJ -TV +V ;

*- P = Pp 2 e (A.2)
'"g P =P2 l +V

The work done, W , is given by
P»

V e
Wp PdV = P f Ve + V dV

O O~~~ e
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W = P -- 1 -1T A ) (A.3)
2 e -1 + k

The pressure at the end of this phase, P,, may be obtained by substi-

tuting V = V into Eq. (A.2):

.P 3 PI (C T k ) * ~(A.4)

Note that when the heater and cooler are at the same temperature, T =

1, the pressure ratio during the expansion stroke is simply (1 + k) , as

it would be if all the gas were expanded adiabatically. The gas tempera-

ture in the expansion cylinder, however, remains at T h during the expan-
eh

sion, and so is higher than it would have:been if the gas had all expanded

adiabatically. To offset this, the gas temperature in the compression

space at the end of this stroke must be lower than it would have been in a

purely adiabatic expansion. In fact, if the temperature in the compres-

sion space at the end of the stroke is T , then (for r = 1)
cs

PV PV PV
e s e s p

T T T
eh eh Tc

Substitute for P, from Eq. (4) and substitute Teh = Tch:

k
T =T . (A.5)

C= ch (1 + k)¥ - 1

Phase 4. The displacer piston is moved leftwards through a volume V,

moving gas from the expansion cylinder into the compression cylinder,

which it enters with the temperature Tch imparted by the cooler.

(V - V)dP/y - PdV (V + V)dP/y + PdV
e p

-h+ = 0 (A.6)
eh ch

dP -ydV

+ k
P V +V

1 - T e
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integrate both sides, and

log P/Ps = log ;

1 + 7
\ k

'" P = P i V

' 1 s + k V

Substitute for P, from Eq. (A.4)

P = Pa + k + (1 - ) V/V (A.7)

The pressure at the end of this phase, P , is obtained by substituting

V = V , corresponding to the displacer in its far leftward position with

all the gas in the compression space

= i *P (A.8)

Phase 1. The gas, now all in the compression space at an initial

pressure Po, is compressed adiabatically by moving the power piston

inwards. From the usual adiabatic gas laws

P(V + V)T = P (V + VY) (A.9)
e o e p

V ( 1 + k ) \
'" P=P +V

Substitute for P from Eq. (A.8)

/ e V0
P = P + V V * V(A.10)

\
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The work done on the power piston during this phase is W , where

/JP=PI
l v = o = P = r° (V)Y I dV

W rf| PdV = P, (rV ) -
Pi =Id e J (V + V) ¥

V=V° P
p

and

W =-P 1 - 1 (A.11)
Wpi e Y - 1 ( + Y-l

The pressure at the end of this phase, P1, is calculated by substituting

V = 0 into Eq. (A.10)

Pi = P2Y . (A.12)

Work output and P-V loop. The work output Wu is the sum of the

work done on the power piston during Phases 3 and 1, given by Eqs. (A.3)

and (A.11):

P V
2 e

*W W= + - 1- -
out ps pI y - 1 +

- [ - 1 + k) (A.13)

With the aid of Eq. (A.13) we can also calculate the temperature ratio for

which the power output falls to zero. The work output Wu t = 0 when
out

t l- +r -k ] 1 -= kTl
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or

·1-v [i - ( k) ] = - (1 + k)

that is, when

1 1 1
-- = 1 - (A.14)

- (I- + k)- (1 + )- 1

By inspection, this equality is fulfilled when c = 1, that is, when there

is zero temperature difference between the heater and cooler. When the

temperature difference is positive, the work output is positive. Table

A.1 lists the ideal output for an all-isothermal machine and an adiabatic

compression-space machine when both have the same mass of monatomic work-

ing fluid and the same cooler temperature (35°C), such that MRTch = 1.

When the temperature difference is moderately low (less than about 400 K),

the adiabatic machine gives more output than the all-isothermal one.

The vertices of the P-V loop are given by expressions (A.4), (A.8),

and (A.12) for the pressure at the end of each phase. The shape of the

P-V loop may be obtained from Eqs. (A.2) and (A.10) relating the pressure

and volume during the expansion and compression phases, respectively. The

constant volume transfers are represented by vertical lines joining the

vertices P , P and P , P.
3 o 1

Table A.1. Comparison of power output
for all-isothermal and adiabatic

compression-space engines

~Teh QOutput power
Teh
(c) Isothermal Adiabatic

35 0.00 0.00
100 0.10 0.13
200 0.24 0.28
300 0.36 0.38
400 0.47 0.48
500 0.56 0.55
600 0.65 0.61
700 0.73 0.66
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