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ABSTRACT

A simple thermodynamic theory for Stir-—
ling machine performance has been developed.
By representing variables in terms of harmonic
oscillations and representing the nonharmonic
terms in the conservation equations with trun-—
cated Fourier series, the equations can be
solved in a semi-closed form, leading to a
better understanding of Stirling engine behav-
ior. The theory further includes a Second Law
analysis; therefore, the efficiency and power
losses resulting from effects of adiabatic
cylinders, transient heat transfer, pressure
drop, and seal leakage can be allocated unam—
biguously, and the degreé.of loss coupling can
be assessed.

NOMENCLATURE
Ay heat—transfer surface area (mz)
p specific heat at constant pressure
{J/ (kg *K)}
<y specific heat at constant volume
{3/ (kg X))
h cylinder-to-gas heat-transfer coeffi-
ctent [W/(m2+K)]
L mass leakage coefficient [kz/(Pa+s)]
kp hressure drop coefficient [(Pa*s)/kg]
m mass of gas (kg)
P pressure (Pa)
éin total heat input (W)
Qouc total heat output (W)
R gas constant [J/(kg+K)]
T temperature (K)
|T| amplitude of temperature fluctuation
T temperature for enthalpy flux (K)
T;n average gas temperature at which heat

is absorbed into the system (K)

out

e <

average gas temperature at which heat
is rejected from the system (K)

time (s)
volume (m3)
PV work (W)

n=1,2,..., amplitudes of thermo-
dynamic variable harmonic components

Superscripts

time rate of change

average over a cycle

Subscripts

c
d

n

Greek

S
4 loss

compression space
dead space

expansion space

heater

cooler

working space or wall

entropy production by internal {rre-
versibilitles (W/X)

entropy production by mixing (W/K)

entropy production by mass leakage

(W/K)

entropy production by pressure drop

W/K)

entropy production by heat transfer
(W/K)

entropy production by cylinder heat
transfer (W/K)

entropy production by transient heat
transfer (W/K)
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A"EHT efficiency loss by extz=rnal heat-—
transfer irreversibility (%)

Anl ss efficlency loss by internal {rre-
° versibilities (%)

e indicated thermal efficlency (X)

n Carnot efficlency (%)

ca

w frequency (rad/s)

INTRODUCTION

This paper presents a simple Stirling
cycle analysis that allocates efficlency and
power losses unambiguously to each of four
loss mechanisms acting simultaneously. The
engine thermodynamics are formulated by a con-
trol volume approach, and the resulting equa-
tions are solved by a linear harmonic analy-
gsis. The losses are allocated by a Second Law
analysis. Although recent work has extended
the analysis to Include the dynamics of free-
piston machines, this paper describes only the
thermodynamic analysis. The engine used for
the numerical example is essentially the Sun—
power RE-1000 with the piston motions
specified.

Four {important loss mechanisms that sig-
nificantly affect the engine performance are
adiabatic cylinder effects, transient heat-
transfer 1loss+ In semi-adiabatic cylinders,
pressure drop across the heat exchangers, and
gas leakage from the compression space. These
four loss mechanisms are characterized by ir-
reversible thermodynamic processes that occur
when heat is transferred across a finite tem—
perature difference, when gases at two differ-
ent temperatures are mixed, or when there s a
mass flow through a pressure difference. Each
one contributes to a reduction of efffclency
below the Carnot level.

Numerous cycle analyses with various com-
plexities exist. Schmidt's (1) {isothermal
analysis with sinusoldal volume variations
provides a closed-form solution and estab-
lishes a standard for Stirling engine theo-
retical studies. However, it is far from rep-
resenting real engines because the gas 1inside
the cylinders behaves more adlabatically than
isothermally. Unfortunately, 1f any depar—-
tures from the 1isothermal assumptions are
made, then the equations describing the gas
behavior become a nonlinear set of differen-—
tial equatfons. Finkelstein (2) was the first
to study the effects of adiabatic cylinders.
Subsequently, Quale (3), Rios (4), West (5),
and Urielf and Berchowitz (6) all have con-
tributed to the understanding of engine per-
formance under .varfous loss mechanisms. But
surprisingly enough, none of these studies
{except Ref. (5)] offers a nonnumerical solu-
tion.

In contrast, the linear harmonic analysis
provides a semi-closed-form solution to the
governing equations. It can greatly enhance

theoret{cal undecstanding of Stirling engine
because the cause and effect are related ex-
plicitly by nature of the closed-form solu-
tion. The 1linear harmonic analysis Involves
lincarization of the waveforms and represents
each term 1in the conservation equations, {In-
cluding the enthalpy flux discontinufty {n the
cylinder, by a truncated Fourler series.

In conjunction with the 1linear cyvcle
analysis, the Second Law analysi{s provides a
rational method for allocating owverall effi-
clency losses to different loss mechanisms; it
does this despite the fact that all the loss
mechanisms are allowed to interact with each
other and thereby combines some of the advan-
tages of the second- and third-order methods.
Through the use of Maxwell relations, the
Second Law analysis can define preclsely each
irreversibility in terms of entropy produc-

tion. Further, the Second Law analysis can
relate entropy production to efficlency losses
by linear harmonic analysis. Moreover, the

Second Law analysis can show the degree of
coupling when two or more mechanisms act at
the same time.

FORMULATION AND LINEAR HARMONIC ANALYSIS

The engine under study is shown schemati-
cally in Fig. 1; it is a free-piston engine of
the Beale type with the displacer sprung to
ground. The buffer space contains a large
volume of gas to maintain a nearly constant
pressure. A dashpot-loading device {s used to
absorb power. This {s similar to the RE-1000
engine tested by National Aeronautics and
Space Administration—Lewils Research Center
(NASA-LERC) (7). Some 1important operating
conditions and basic dimensions are shown {n
Tables 1 and 2,

Table 1. RE-1000 nominal engine
operating conditions

Working fluid Helium
Frequency, Hz 30

Average pressure, MPa 7

Piston stroke, m 2.80 x 1072
Displacer stroke, m 2.80 x 1072
Power, W 1000
Displacer phase angle, deg 45

Heater temperature, K 900
Expansfon cylinder wall 9300

temperature, K
Cooler temperature, K 300

Coumpression cylinder wall
temperature, K 300
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Table 2. RE-IN00 rominal engine
dimensions and parameters

Maximum displacer stroke, n 4,04 x 1072
Maximum plston stroke, m 4,20 x 1072
Piston diimeter, m 5.721 x 1072
Displacer diameter, m 5.723 x 1072
Displacer rod diameter, m 1.66 x 1072
Mean volume, m3
Expansion space 6.36 x 1075
Heater 3,96 x 107%
Regenerator 5.94 x 1075
Cooler 2.85 x 1075
Compression space 1.036 x 1074
Mean heat-transfer surface areas
Expansion space, m2 1.392 x 1072
Compression space, m2 2,292 x 1072

Fig. 1. Schematic of the RE-1000 free-
piston Stirling engine.

Fw BUFFER
VARIABLE VOLUME
FINITE HEAT TRANSFER
Pctt) COMPRESSION SEAL LEAKAGE
CONSTANT VOLUME
Pqylt) DEAD ISOTHERMAL

-

Pelt) EXPANSION VARIABLE VOLUME
* FINITE HEAT TRANSFER

'

Fig. 2. Control volume representation of
the RE-1000 engine.

For the analysis, the working space 1is
divided {nto three control volumes depicted in
Fig. 2: an expansion space, a compression
space, and a dead volume. The volumes of the
cxpansion and compression spaces are time
varying ‘and nonisothermal. On the other hand,
the dead volume that consists of the heater,
regenerator, and cooler {s fixed and assumed
to be {isothermal. In addicton, mass leakage
is permitted betwecen the compression and buf-
fer spaces.

Five variables are chosen to define the
thermodynamic states of the engine at any {n-

stant: the mass 1in each control volume and
the instantaneous gas temperature in the cyl-
inders. These five time-depeandent unknowns

require five governing equatfons that are pro-
vided by the conservation laws of mass and
energy. The mass flow rate betwecen one volume
and another is assumed to be linearly propor-
tional to the pressure difference between
them., Thus, the mass conservation equatlons
{n the expansion, combined expansion and dead,
and working spaces, respectively, are:

dme 1
'd't"' = K (Pd - Pe) » (l)
pe

dme dmd 1

rrafbrab il U (2)
pc

dme mC dmd

Frar T T e (3)

The first two equations represent pres-—
sure drop as a function of mass flow rate; the
third represents mass leakage as a function of
pressure difference.
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By the Ffirst law of thermodynamics, the
energy equations in the expansion and com-
pression spaces are respectively:

dmn
o —_ —
—L - T
Cpre dt M heAse (Twe e)
dVe d(me Te)
= —_— ———————
Pe dt ‘v dt ’ (4)
dmc _
cprc dt hc sC (Twc -T)
ch d(mc Tc)
- —_— ——
e 0 O
where
r - TH , if f, >0 ]
fe T, if@m <O (6)
e e
and

The first term In the left—-hand side of
Eqs. (4) and (5) represents the enthalpy flux
discontinuity. When the gas flows out of the
heat exchanger and enters the cylinder, f{t
does so at the heat exchanger temperature (if
the heater and cooler are perfect). When the
gas flows out of the cylinder, it does so at
the {nstantaneous gas temperature within the
cylinder. It 1is the representation of this

~discontinuity by a truncated Fourier serles
that gives our approach the means to represeat
nonisothermal cyliaders with semi-closed-form
solutions. The second term 1in the left-hand
side represents the effect of heat transfer
between the cylinder wall and the gas inside
‘the cylinder. In the analysis, the cylinder
wall temperature and surface area are assumed
constant. The first and second terms in the
right-hand side are the PV work done by the
gas and the rate of change of gas ({nternal
energy, respectively.

We scek only the steady-state solution of
the governing equations, and the linear har-
monic method is sultable for this. 1In such an
analysis, {t s assumed that the relevant
variables can be adequately represented by a
sum of sine and coslne terms; {f the variables
are 1indeed approximately sinusoldal, the accu-
racy of a linearized harmonic solutfon will be
higher, the smaller the amplitudes of the
variables are compared with their mean values.,
The methodology of the linear harmonic analy-

3is has been explained elsewhere (8); there-
fore, no detafl will be provided other than a
summary. The lincar harmonic analysis can be
summarized by a nine-step procedure:

1. Divide the working space 1into control
volumes.

2. Write the conscrvation equatfons {mass,
momentum, and energy) for control volumes.

3. Assume that P, m, T, and V have small
enough amplitudes relative to thelr wmecad
values, and use a linear form of the {deal
gas law to express P in terms of m, T, and
V. Express V in terms of specified piston

positions.
4, A complete transient solution is not pur-
sued: the linear harmonic analysis method

i3 restricted to steady-state solutions.
Therefore, assume harmonic solutions for m
and T 1in terms of undetermined coeffi-
cients (y;, y,, etc.), and substitute them
into the governing equations.
5. Represent nonharmonic terms in the govern-—
ing equations by truncated Fourier expan-—
sions.
6. The general form of each governing equa-
tion 1is now:
L constant term + I sin (wt) terms + ¥,
cos (wt) terms = 0.

A solution exists for all times only if:
L constant term = 0
L sin(wt) terms = 0
I cos(wt) terms = 0

7. Most of the sin(wt) and cos(wt) terms are
linear functions of the undetermined coef-
ficients (y;, etc.). Nonlinear combina-
tions of y;, y,, etc., are treated in a
quasi-linear manner. The resulting linear
system of algebratc equations {s solved
using standard matrix theory to find the
values of y;, y,, etc. Y

8. After y), y,, etc. are obtained, the con-
stant terms in the governing equations are
solved to compute the values of other
unknown parameters such as T,, T., etc.

9. A few f{terations may be needed because of
coupling between T,, T., etc., in (8) and
the quasi-linear approximations in (7).

THE SECOND LAW ANALYSIS

As required by the steady-state solution
under consideration, the entropy of the system
should be conserved over a cycle. Thus,

) -

Q v —Q

Iy 45 es + =288 = 0 . (8)
Tin out

This_1s the general entropy equation where ?ln
and T,,r are the average temperatures at which
the heat enters and leaves the system. In ad-

ditfon, the cyclic entropy production (Aéloss)
refers to the sum of all internal losses due




ro mixing, transient heat transfer, pressure
drop, and mass leakage.

Efficiency losses

The 1indicated thermal efficiency (9) is
defined'as‘

-
~Qout

ne = 1+ 225 (9)
Qn

-

Substitute Qy,y from Eq. (8) into Eq.
(9), then add and subtract a term involving
the temperature ratio of heater and cooler,
resulting in

Me T Mea —.AnEHT _'Anloss ' (10)
where

Na = 1 “'TK/TH , (11)

gy ™ Toue/Ten ~ Te/Fu (12)

8n10ss = Tout 8510ss/Qn (13)

Equation (10) states that the efficlency
terms are additive and that the rveference ef-
ficlency 1is the Carnot value. All the effi-
ciency losses should be deducted from the
Carnot value that 1is represented by the first
term. The second term in Eq. (10) refers to
the efficiency reduction due to external heat
transfer. The external heat transfer 1is an
irreversible thermodynamic process with four
distinct components: heater, cooler, expan—
sion—- and compression-cylinder average heat
transfer. The corresponding cyclic entropy
productions for each component are derived
from Maxwell relations (8) at a constaat pres—
sure and are listed in Table 3.

Tha last term in Eq. (10) represents the
efficiency reductfon caused by {internal losses
that are expressed {n terms of entropy pro-
duction and are also shown in Table 3. Tt {is
of great {importance to note that Ty, Is the
temperature to be used in the efficlency loss
calculations.

Referring to Table 3, we sce that adia-
batic cylinders result 1in hoth external heat
transfer and mixing. Heater (cooler) heat
transfer takes place when gas flows out of the
expansion (compression) space and enters the
heater (cooler): 1in general, the gas will be
at a different temperature from the heat ex-
changer that it is entering, leading to an {ir-
reversibility. Similarly, there 1{s over a

complete cycle an average heat transfer be-
tween the cylinder wall and the gas in the
cylinders, which are not at the same tempera-
ture. In addition to these two external heat-
transfer losses, the mixing of gas leaving the
heater or cooler with gas already in the ad-
jacent cylinder, at a different temperature,
i1s characterized as au internal loss.

In addition to the average flow of heat
between cylinder wall and gas, the time-
dependent or transient heat transfer results
in entropy increase because giving away heat
at a high temperature and regaining it later
in the cycle at a lower temperature is an ir-
reversible thermodynamic process. The ap-
proximate formulas 1listed in Table 3 reveal
that the cyclic entropy production due to
transient hecat transfer is proportional to the
heat—transfer coefficlent, the total heat-
transfer surface area, and the square of the
relative temperature amplitudes. The formula
shows that no entropy is produced for either
perfectly adfabatic or perfectly {isothermal
conditions. The physical reason 1is simple:
in an adiabatic cylinder, there 1s a tempera-
ture difference between the gas and the wall,
but (by definition) no heat 1is exchanged; in
an isothermal cylinder heat 1is exchanged, but
there 1s no temperature difference. There is,
of course, a “worst case” between perfectly
adiabatic and perfectly 1isothermal conditiouns.

Mass flowing across a pressure drop 1is an
irreversible thermodynamic process. In the
present study, pressure drop through the heat
exchanger 1{is represented by two throttling
processes: one between the expansion and dead
volume, the other between the dead and com-
pression volumes. During a throttling process
the enthalpy remains unchanged, and for an
ideal gas the temperature remains unchanged
too. Therefore, by use of the Maxwell rela-
tions, the resulting cyclic entropy production
due to pressure drop 1s shown in Table 3.

Mass leakage Dbetween the compression
space where pressure fluctuates and the buffer
space where pressure stays constant is another
irreversible . thermodynamic process. Such a
process is irreversible because mass flows out
at a high pressure and returns at a low pres-
sure. The cyclic entropy change associated
with this process is no different in principle
from that of pressure drop and 1is included in
Table 3.

Power losses

Besides the efficiency loss, the concept
of power loss 1s useful; 1in particular, the
entropy change relates various losses to the
energy balance. This can be calculated {f Eq.

-
(10) {s multiplied by Q4. Thus,

Wout = Qn "ca — Qn AnEHT _
~ Tout 8S10ss * (14)




Table 3.

Cyclic entropy production due to ll basic irreversible thermudynamic processes

Irreversible process

Cyclic entropy production (W/K)

Heater heat transfer?

External heat transfer

Cooler heat transfer? & Ic TK
~ (T
Expansion-cylinder average heat transfer® ASQwe = heAse %7—-— l)
e
e T;c
a & e _wc
Compresgion cylinder average heat transfer Asch = hcAsc = 1
c
Internal loss
(-] i _C_p_ d dme Te TH
- —= — |+ — =1 wt
Mixing 1in expansion cylinder 85 ixe = 3% _[ It 1n T, T, d(wt)
/
e e d dmc TC TK
— PR
Mixing in compression cylinder Asmixc 5 .[ It In TK Tc 1] d(wt)
a I heAse |TeI ?
Transfent heat transfer in expansion cylinder 4Ss, =
TQe 2 T
e
: : e hcAsc chl :
Transient heat transfer in compression cylinder? 4s = —
. TQc 2 T
c
e -~ R 2n dme Pd
Pjessure drop across expansion and dead spaces ASPDe =37 fo T In _F; d(wt)
e — LR f21r dmn dmd Pc
- —= 4+ — ——
Pressure drop across compression and dead spaces‘ ASPDC ™ J it it 1n Pd d(wt)
e ~ R fzn dm dmd dmc P
- b e e =
Mass leakage across compression and buffer spaces ASMLC 77 Jy at It S 1n 7 d(wt)

%Heat transfer across a finite tenperature difference.

blntegration over the half cycle where the mass of gas leaves

heat exchangers.

cHlxlng gases at two different temperatures.
dIntegration over the half cycle where the mass of gas leaves the heat exchangers and enters the

adjacent cylinders.

®Mass flowing over a pressure difference.

the cylinders and enters the adjacent




The -first term on the right-hand side of
Eq. (14) reprcsents the maximum possible power
output of a Carnot cycle that has a heat input

0 he ad
Qqne This term Qyunc, is also the basic power
output that can be defined as the reference

-
value. However, Qyp, strongly depends on the
losses present and varies from case to case
(see loss coupling 1in Tables 5 and 6 to be
discussed later). The second term signifies
the power loss due to the external heat-trans-
fer 4irreversibility, and the last terms in-
dicate power loss due to internal {irrevers-—

ibilities.

SPECIFICARESULTS AND DISCUSSIONS

Combined Efficiency Effects of Adiabatic and
Transient Heat Transfer Losses

The 1linear ~harmonic analysis supplemented
with the Second Law analysis has been applied
to the RE-1000 nominal engine to quantify the
efftclency loss allocations. Figure 3 pre-
sents the effect on efficiency of the combined
adiabatic and transient heat-transfer effects
for a wide range of heat-transfer coeffi-
clents. In the figure, tHere are four curves.
Curve 1, 1labeled THT, which 1is bell~shaped,
represents the transfent heat-transfer effi-
clency 1loss. There 1is no transient heat-
transfer loss 1in efther adiabatic (left side
of plot) or 1isothermal (right side of plot)
cylinders, but there 1s a maximum efficlency
loss (worst case) in between.

Curve 2, marked EHMT, represents the ef-
fects resulting from the external heat trans-
fer for nonisothermal cylinders. This effect
is most significant at the adlabatic limit and
decreases gradually as heat transfer in-

16
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Fig. 3. Efficlency loss allocation ver-
sus cylinder heat transfer.

creases, because the heat transfer works to.
reduce the temperature amplitude within the
cylinder.

Curve 3 represents the effect of mixing.
For this engine at least, mixing is less im-
portant than ‘the external heat-transfer loss
by almost an order of magnitude at the adia-
batic limit. Note that mixing reaches a maxi-
mum away from the adiabatic limit; this can be
attributed to the temperature overshoot in the
expansion space and undershoot in the compres-
slon space.

Finally curve 4, labeled total, repre-
sents the sum of these individual loss mecha-
nisms and shows the overall efficlency loss.

In summary, the following general conclu-
sions concerning this particular engine size
may be stated:

1. external heat-transfer [{rreversibilities
predominate {in the range of small heat-
transfer coefficients,

2. transient heat transfer is by far the
larger effect in the range of intermediate
heat-transfer coefficlents, and

3. temperaturc mixing losses remain rela-
tively small in magnitude over the whole
range of heat-transfer coefficients.

In addition, a specific conclusion {is
that in the RE-1000, which is believed to have
a heat-transfer coefficient of about 1000
W/(m2+K) in both spaces at nominal operating
conditions, the efficlency loss contributions
resulting from external heat transfer, tran-
s{ent heat transfer, and mixing are {In the
ratio of approximately 10:2:1.

Coupling of Loss

The degree of coupling between various
loss mechanisms {s an {mportant Issue for
numerical analysts seeking to make a chofce
between second- and ‘third-order codes. The
question can be addressed bv the Second Law

analysis. An extensive study consldering a
wide range of loss coefficlents has been per-
formed. The 1loss coefficlents of 12 cases

studied are listed in Table 4. 1In the table,

Table 4. Loss coefficlents
for coupling studies

Loss

mechanism Case Coefficient
Cylinder heat None 0 W/ (m?+K)
transfer Medium 62,500 W/(m?K)

High 3 x 108 w/(m2+K)
Pressure drop None 0 (Paes)/kg

High 6.7 x 10% (Pa+s)/ky
Seal leakage None 0 kg/(Pa+s)

High 1.0 x 10-% kg/(Pa-s)




-

the rate constants for both the pressure drop
and seal leakage are chosen to exaggerate the
coupling effects beyond those to be expected
in a well designed and coastructed englne.
The highlights of the results are summarized
in Tables 5 and 6.

The tables reveal some Iinteresting loss
{nteractlions. First of all, pressure drop
appecars to have a significant effect on the
other losses. Compare the cases that have
seal leakage and no pressure drop with the
cases that have both seal leakage and pressure
drop. An 1Increased pressure drop causes an
increase In the seal leakage power and effi-
ciency losses. These effects hold true for
the adiabatic, semi-adiabatic, and 1isothermal
cases. The physical explanation can be at-
tributed to the fact that pressure drop causes
the amplitude of the pressure wave in the com-

pression space to lncrease. Therefore, a lar- '
ger pressure difference exists across the pls-
ton seal and hence leads to a larger leakage
loss. In addition, an increased pressure drop
tends to 1iuncrease the transient heat-transfer
toss . for those cylinders which are semi-
adiabatic.

Second, seal leakage appears to have a
reverse effect on pressure drop losses. Com—
pare the cases that have pressure drop and no
seal leakage with the cases that have both.
An fincreased seal leakage causes a reduction
in the pressure drop loss. However, 1t 1s
difficult to infer a physical reasoning. In
fact, the trends dlscussed so far may not hold
true for all Stirling machines. Nevertheless,
for the example configuration presented here,
the results show rather coavincingly that the
losses do couple in a highly complex mamner.

Table 5. Coupled efficiency loss of RE-1000 type engines
Indicated
Cylinder heat Pressure Seal Carnot Adiabatic Pressure Seal thermal
transfer drop leakage efficiency ™T drop leakage efficiency
%) EHT? Mixing )
None Zero Zero 66.67 —3.45  —0.25 0.0 —0.00 0.00 62.97
(adiabatic) Zero High 66.67 -=3.51 —0.21 0.0 0.00 —17.72 45.23
High Zero 66.67 -3.37 —0.29 0.0 —-19.40 0.00 43.61
High High 66.67 -3.34 —0.23 0.0 —-16.90 —26.18 20.02
Medium Zero Zero 66.67 —0.34 -0.18 —8.65 —0.00 0.00 57.50
Zero High 66.67 -0.32 -0.19 ~8.94 —0.00 -~14.01 43.21
High Zero 66.67 -0.32 —0.26 —-13.12 =20.02 0.00 32.95
High High 66.67 -0.30 ~0.26 —-13.9) —~18.17 -22.22 12,14
High Zero Zero 66.67 —0.00 ~0.00 —0.00 -=0.00 0.00 66.67
(isothernal) Zero High 66,67 —0.00 —0.00 ~0.00 -0.00 —12.49 54.18
High Zero 66.67 —0.00 -0.00 --0.00 -22.50 0.00 44,17
High High 66.67 —0.00 —0.00 -0.00 -19.8) -20.490 26.44
9External heat-transfer irreversibility is made of four components: heater, cooler, expansion- )
cylinder, and compression-cylinder average heat transfer.
Table 6. Coupled power loss of RE-1000 type engines
a
Cylinder heat Pressure Seal Reiz:’::ce Adiabattc THT Pressure Seal sjtr
e
transfer drop leakage ™) EHT Mixing drop leakage P(w)
None Zero Zero 2636.9 —~136.3 -9.9 0.0 -0.0 0.0 2490,7
(adiabatic) Zero High 2363.7 —124.4 -~7.4 0.0 0.0 —628.4 1601.5
High Zero 2137.9 -108.1 —9.3 0.0 —622.2 0.0 1398.3
High High 1867.6 —93.4 —-6.5 0.0 —473.3 -733.5 560.9
Medium Zeto Zero 2118.9 -10.9 -5.8 =275.0 -0.0 0.0 1827.2
Zeto - High 1904.2 —9.2 —5.3 —255.4 -0.0 —400.3 1234.0
High Zero 1622.9 -7.7 —6.3 -319.5 —487.3 0.0 802.1
High High 1419.0 —6.4 -5.6 -288.0 —386.7 —472.9 259.4
High Zero Zeto 2027.0 —0.0 —0.0 -0.10 © 0.0 0.0 2027.0
(isothermal) Zero " High 1914.4 —0.0 -0.0 —0.10 -0.0 —-358.7 1555.7
High Zero 1507.0 0.0 -0.0 0.1 —508.6 0.0 998.3
High High 1412.3 0.0 —0.0 -0.10 —420.2 —432,2 559.8

9Reference power is defined as the heat Input multiplied by the Carnot efficiency.




Some final comments about the Socond Law
analysis and loss allocation are 1ia order.
Efficiency losses are subtracted from the Car-
not efficlency to arrive at an overall effi-
ciency. The Carnot value depends on only the
heater and cooler temveratures and represents
the highest efficiency an engine can achieve.
The 12 cases shown in Table 5 all have the
same Carnot value. On the other hand, power
losses are subtracted from a reference power
output that 1s defined as the heat 1input to
the eagine multiplied by the Carnot effi-
cleacy. The reference powers shown in Table 6
vary from case to case because the engine heat
inputs, which equal the expansion space pres-
sure-volume integrals, are dJdifferent. Thus, a
comparison of power losses from case to case
may be considered 1less meaningful than an
efficiency loss comparison because the refer-
ence power outputs vary whereas the reference
efficiencies remain the same.

CONCLUSIpPN

A linear harmonic cyclic analysis, com—
bined with a Second Law analysis of losses,
provides a straightforward and physically
meaningful way to calculate the efficiency and
power losses due to various causes, even when
several loss mechanisms may be acting simul-
taneously and 1interacting with each other.
From the calculations on the particular engine
that has the dimensions similar to the Sun-
power RE-1000, the following observations are
made:

1. Nonisothermal cylinders result 1{mn both
mixing and external heat-transfer 1{irre-
versibilities, but mixing 1loss {is the
smaller by an order of magaitude.

2. Transient heat-transfer loss 1is zero for
both adiabatic and ({sothermal cylinders
and reaches a maximum for intermediate
cases.

3. The coupling between pressure drop and
mass leakage losses can be significant.

Notice:

This document contains information of a preliminary nature.
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