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ABSTRACT

The dynamio behavior of the liquid-piston

Stirling engine is analyzed using the vector or

phasor method of representing the motions of con-

pled systems. The result, for the first time, is

a simple physical explanation of the feedback

mechanism most frequently employed in these ma-

chines. In addition, the method leads to an easy

derivation of certain results already known from

experiment or from more complex analyses.

NOMENCLATURE

A ratio of tuning and displacer colaum areas

Ad area of displacer

At area of tuning column

C linear velocity-dependent force (load) on

tuning column

g acceleration due to gravity

H equilibrium height of liquid surface above
junction of tuning line and displacer

h displacement of cold column surface

hd displacer movement (he - hc )d h 0

he displacement of hot column surface

ht displacement of tuning column surface

AL horizontal length of displacer (difference
between hot and cold column lengths)

Ld length of displacer column

Lt length of tuning column



P gas pressure

P ambient pressure
o

P pressure at junction of tuning line and

displacer

Rd viscous resistance coefficient in displacer

tube

Rt viscous resistance coefficient in tuning line

AT difference between expansion and compression
space gas temperatures

T compression space gas temperature

T expansion space gas temperature

V mean volume of gas

9 phase angle between displacer and tuning
column movements

p liquid density

w operating frequency

Md natural frequency of lossless displacer

oscillations

t natural frequency of lossless tuning line

oscillations

INTRODUCTION

The dynamics of the liquid piston Stirling

engine have been analyzed mathematically1 - s and

numerically.4-' The complexity of these excel-

lent analyses and the lack of closed-form solu-

tions inherent in computer models make it diffi-

cult to approach a clear physical understanding of

the mechanisms at work in the operation of the



simplest of all Fluidyne engines, the liquid feed-

back machine. 7 For the same reasons, there has

been no equivalent for the Fluidyne of the methods

available for approximate analyses of the expected

behavior of conventional kinematic and free piston

Stirling engines. -x 4

One of the most successful methods of approx-

imate dynamic analysis of the free piston engine

has been the use of the vector or phasor method,

pioneered for this purpose by Cooke-Yarborough, in

which the amplitudes and phase angles of the vari-

ous oscillating parts of the engine are repre-

sented as vectors on a two-dimensional plot; the

length of the vector represents the amplitude of

the oscillation, and the angle between the vectors

representing different components of the movement

corresponds to the phase angle between their os-

cillations, which are assumed to be sinusoidal.

The method is entirely analogous to the standard

method of describing oscillating electrical and

mechanical circuits in forms of complex numbers,

represented on an Argand diagram as two-dimen-

sional vectors.

In this paper, the linearized equations of

motion for the various components of a liquid

feedback fluidyne are derived in a very simple

way, and represented by their vector or phasor

diagrams. The diagrams give a physical insight



into the operation of the system and also, in this

preliminary paper, some quantitative results for

important parameters of the Fluidyne's operation

are simply derived.

EQUATIONS OF MOTION

Figure 1 shows the basic layout of the ma-

chine to be analyzed; it consists of liquid fitted

U-tube displacer section, with a tuning or output

column connected to it. The other end of the

tuning column is open.

When the liquid columns are much larger than

the amplitude of oscillation of the liquid sur-

faces, as is the case for all the engines de-

scribed in the present literature, the change in

the mass of liquid in each column as the surfaces

oscillate is relatively small and may be ignored.

In such circumstances, the equations of motion are

easily written down.

We may take as a reference point for the

lengths of the columns the junction of the dis-

placer and tuning line, where the instantaneous

pressure is called Pr (see Fig. 1). The equations

of motion generally take the following form:

pressure difference X area - viscous force = aver-

age mass x acceleration. Expressed mathematically

this becomes



Hot column

[P- P +pg(H- h,)]Ad RdAdHh

pAdHhe (1)

Cold column

[P - Pr + P(H- hc)]Ad (2)

- RdAd(H + AL)h c - pAd(H + AL)h

Tuning column

[o- + pg(H - ht)] At - RtAtLt t

- pAtLtht + CLt (3)

CL represents a linear velocity dependent

force (for example, from a dashpot or an electri-

cal alternator with a resistive load) on the out-

put column.

Subtracting Eq. (1) from Eq. (2) and dividing

by Ad yields

pg(h - h ) + pH(h - b ) - p&L

+ d(h - h) - RdALh - . (4)d e a d c

DISPLACER ACTION

The basic physics of the Stirling cycle are

most simply analyzed by treating the displacer

action and the total volume change separately. 1 0

This is easily done by defining a single variable

to represent the displacer motion (the change in

total volume of the working fluid is already rep-

resented by a single variable, being simply equal



to h t multiplied by the cross-sectional area of

the tuning column). As it turns out, this separa-

tion of the displacement and volume change compo-

nents of the motion is also a convenient and sim-

ple approach to analyzing the dynamics of the liq-

uid feedback fluidyne. The variable depicting the

displacer action is he - ha, the differential move-

ment of the pistons in the hot and cold cylinders,

which we shall call hd. Similar variables were

used by Stammers.' Note that h and h are both
e c

time dependent and even with the simplifying as-

sumption that all the movements are sinusoidal,

there will, in general, be a phase difference be-

tween them and hd will not be in phase with either

h or h.

Obviously, if there is a fixed amount of

liquid in the system h + h - -Ah t , where A is
e o t

the ratio between the cross-sectional areas of the

output tube and the displacer U-tube. A little

further arithmetic shows that h - -l/2(hd + Ah t )

Substituting these relations into Eq. (4) and sim-

plifying gives

hd + (2g/Ld)hd + (Rd/p)d + A(AL/Ld)ht

+ A(Rd/p)(AL/Ld)ht . (5)



The first two terms represent the free oscillation

of the liquid in the displacer U-tube at its nat-

ural frequency wd - 2 g/Ld . The third term rep-

resents the flow losses associated with the dis-

placement motion, and could easily be extended to

include in addition the flow losses due to the

displacement of gas through the heat exchangers

and regenerator. The fourth term is the most in-

toresting: it arises from the tuning column move-

ment which is the source of power generation in

the engine and has, as we shall see, a component

in the right phase to overcome the displacer flow

losses.

If the movements are reasonably sinusoidal,

their phase relationships are conveniently repre-

sented on a phasor or vector diagram, a technique

that is well established in electrical engineering

and has also been applied to Stirling cycle analy-

sis. ,13-14 Figure 2 represents the displacer

motion, as a solid line, and the tuning column

motion, as a broken line. As in any Stirling en-

gine, the displacer must move gas into the hot

space before it is expanded, although of course

with a sinusoidal motion of the pistons these

phases of the cycle overlap somewhat. This phase

relationship is represented in the diagram by the

phase advance, 9, of ht relative to hd (remember



that a positive and increasing ht corresponds to

lowering the liquid surface at the free end of the

output tube, thereby decreasing the gas volume; in

other words, ht and the gas volume are 180° out of

phase, as shown by the dotted line in Fig. 2).

The velocity of a point moving sinusoidally

leads its position by 90° (e.g., when the point is

passing through its center position and its dis-

placement is zero, its speed is maximum; con-

versely, when the point is at its extreme distance

from the center position, its velocity,is instan-

eously zero). Similarly, the acceleration is 180°

out of phase with the position. This is repre-

sented in Figs. 3(a) and 3(b), where the quanti-

ties pertaining to displacer action (hd) are shown

by solid lines, and the quantities relating to mo-

tion of the tuning column (ht) are shown by broken

lines. The relative lengths of the vectors repre-

senting position, velocity and acceleration are in

the ratio 1:t*: 3. corresponding to cos wt:d(cos

wt)/dt:d3(cos »t)/dt 3 .

With these relationships in mind, Eq. (5) can

be represented on a single vector or phasor dia-

gram (Fig. 4). The vectors represent the quanti-

ties appearing on the left-hand side of Eq. (5),

and to satisfy the equation their resultant must

be zero.



Here then is the physical basis for the suc-

cess of the liquid feedback system. The h term

in Eq. (5), arising from forces exerted on the

output column by the gas pressure inside the en-

gine, clearly has a component that is opposite to,

and can therefore compensate for, the flow losses

arising from the velocity, hd. of the fluid taking

part in the displacer action. There are also, as

can be seen, vectors with a component able to

overcome the smaller amount of dissipation in the

displacer arising from the t term in Eq. (5).

OPERATING FREQUENCY

The vector method is, as we have seen, a sir-

ple and useful way of visualizing the motions of

the various liquid columns, and provides a satis-

fying explanation of the operation of the liquid

feedback system. The method has, however, more

power than we have used so far, and can provide

quantitative predictions about the Fluidyne dynam-

ics.

As a first example, covered here in outline

only, it is easy to show that for most practical

designs with a single-phase working fluid, the

operating frequency will be within a few percent

of the natural displacer frequency.



Referring to Fig. 4, we shall generally be

designing the displacer so that the losses are

small, and the ht term in Eq. (5) will be negligi-

ble. The component of (AAL/Ld)ht along the hd

direction is (AALILd)ht cos 9. For the vector

components along the line of hd to equate to zero,

and remembering that the amplitude of the acceler-

ation vector is simply wa x the displacement, we

must have

(AAL/Ld)a h t cos 8 + w3hd - w h d - 0
d t d d d

AL Ah t

.. »/U» - 1 + L- h cos 8 (6)
Ld hd

Figure 5 shows the relationship between ha,

which is by definition the vector difference be-

tween the hot and cold piston displacements, and

-Aht, which is their vector sum. In practical

machines, the phase angle between the hot and cold

piston movements is in the range 90° to 150° for

optimum output,s and the amplitudes of the two
s 3 ,

movements are made approximately equal - within

+20% of each other. Figure 5 illustrates the case

where the movements are equal and with a 90° phase

difference, and also the case where h - 1.2 h
c e

and the phase angle between them is 1500. By in-

spection of all such similar combinations, it may

be seen that the maximum value of (Aht/h d ) cos a

occurs when the hot and cold cylinders are moving



with a 90 e phase difference. In that case, for a

20% difference between h and h , solution of the

vector triangles shows that (Aht/h d ) as - +0.18,

according to whether ho or ho is the larger.

In a typical engine, the junction between

displaoor and timing line is not more than, say,

4/5 of the way from cold to the hot end of the U-

tube - i.e., the oold leg is not more than four

times longer than the hot. Therefore, the maximum

value of AL/Ld is (4/5 - 1/5) - 0.6. Therefore,

the extreme values of the operating frequency, as

determined by Eq. (6), are given by

W2/wi = 1 + 0.6 x 0.18 - 1 + 0.11

.-. »r17 o1 - /(110 + 0.11) )

Therefore, the operating frequency of a typical,

practical engine will be close to the natural fre-

quency of the displacer. This is borne out by

experimental observation. 1

OUTPUT COLUMI MOTION

Next, let us consider the equation governing

the motion of the tuning or output column, for

which phasor analysis leads to a remarkably simple

derivation of the minimum temperature difference

that can give rise to self-sustaining oscilla-

tions. At the same time, the diagrams give a



clear picture of the physics behind the well-

known, but somewhat puzzling, result that a finite

temperature difference is needed to initiate os-

cillations even in a completely lossless system.

Dividing Eq. (1) by Ad, Eq. (3) by At and

subtracting them eliminates the Pr term from the

equation of motion of the output column. Rewrit-

ing the results so that h is expressed in terms

of hd and ht yields

(P - P ) + htpg(l + A/2) + ht(CL/At

+ RtL t + AR d H/2)

+ htP(Lt + AH/2) - (hdpg/2 + hdRdH/2

+ hdpH/2) - 0 . (7)

Equation (7) looks complicated, but that is partly

due to the large number of multiplying factors in

the terms relating to ht and its derivatives; as

we shall see, many of these terms are negligibly

small in practical machines and the appearance, at

least, of the equation can be greatly simplified.

To make use of the equation, we need an ex-

pression relating the gas pressure, Pg, to the

position of the displacer and tuning column. Sup-

pose that in the equilibrium position when all

three liquid surfaces are at the same height, half

of the gas volume is at temperature T and half at

Tc; then when the liquid surfaces are slightly



displaced, and the gas pressure becomes Pg, the

ideal gas laws require that

/2 V /2\ V/2 + Adh

° V T o T+ M T To

4v /2 + A h

T /

therefore

(Po - P) [(V/2 + Adhe)TC

+ (V /2 + AdhC)T e ]

- P A (h T + h T ) . (8)
o d o c c

For small movements of the liquid surface, we can

neglect the volume change terms (such as Ad h )

compared with the mean volume Vm, in which case

Eq. (8) simplifies to

h T + h T\
(p - p ) Va = 2P A o c -- o) (9)

0o g B o T +T )

And expressing this in terms of our preferred var-

iables h t and hd leads to an impressively simple

relationship between displacer action, volume

change and gas pressure:



PA

Pg Po (At Tt + T hd )

Substituting this into Eq. (7) yields

ht [PoAt/V + P8(1 + A/2)] + htp(Lt + AH/2)

+ ht(CL/At + RtLt + ARd/2) (11)

P AdAT

+ hd V(T 2 hd d 2

- hdpH/2 - 0 .

The first two terms represent the free oscillation

of the liquid in the output column at its natural

frequency at

PA

P- P (+ g(l + A/2)
t m (12)

Lt + AH/2

In practical machines, the compression of the

gas usually gives rise to a much greater restoring

force than gravity, and the total length of the

tuning line is usually much greater than the

N'



length of the displacer uprights. In such cases

the gravitational term and the term in H can be

neglected in Eq. (12), so that

/ P'A

t pVL t (13)

This is a familiar result. a s

The directions of the vectors representing

the various terms in Eq. (11) are shown in Fig. 6.

Even ignoring losses (i.e., with all velocity de-

pendent terms set to zero), only the hd and hd

terms can provide a component of force lagging ht

and so doing work on the tuning column to build up

the energy, and hence the amplitude, of its oscil-

lations. For this to happen, the diagram shows

that the sun of the hd and hd terms must point in

the hd direction, i.e., for the oscillation to

build up we must have

PoAd AT + > 0
V(T +T) 2 2me 0

or

poAd ST > 2 (1 -AT (14)
Vm T + T 2 \

Remembering that t - d , and that td 2 g/Ld

Eq. (14) can be rewritten as



AT > P gV /
T + T ~2P A Ld gT o od d

or

T + To 2PVP A LT *T - 2P A L
e o d d

This is the same result as predicted by the more

rigorous, and more complicated, analysis of Elrod1

and Stammers.' Using Fig. 6, it is also possible

to allow for the effects of viscous losses and a

linearly velocity dependent load.

CONCLUSION

The vector, or phasor, method of studying the

linearized dynamics of Stirling machines, already

used successfully for the design of free piston

engines, can also be applied to the Fluidyne li-

quid piston Stirling engine. The result is an

improved understanding of the physical principles

of operation, a demonstration that the frequency

of operation in practical engines is very nearly

equal to the natural frequency of the displacer,

and a very simple derivation of the minimum tem-

perature difference needed for self-sustained

oscillations.



Preliminary results indicate that the method

can also deal with the effects of losses or loads,

and can be used to give approximate predictions of

the dynamio behavior of the active system.
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