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ABSTRACT

The dynsmic behavior of the liquid-piston
Stirling engine is analyzed using the vector or
phasor method of representing the motions of cou-
pled systems. The result, for the first time, is
a simple physical explanation of the feedback
mechanism most frequently employed in these ma-—
chines. In addition, the method leads to an easy
derivation of certain results already known from

experiment or from more complex analyses.

NOMENCLATURE

A ratio of tnnihg and displacer colums areas

Ad area of displacer

At area of tuning column
linear velocity-dependent force (load) on
toning column

F'4 acceleration due to gravity

H equilibriuvm height of liquid surface above

junction of tuming line and displacer
h displacement of cold column surface
h. displacer movement (he - hc)
h displacement of hot columm surface
h. displacement of tuning columm surface

AL horizontal length of displacer (difference
between hot and cold column lengths)

length of displacer columm

L length of tuning column



P gas pressure
P ambient pressure

P pressure at junction of tuning line and

displacer

R, viscous resistance cooffici@nt in displacer

tube
R, viscous resistance coefficient in tuming line

AT difference betweon expansion and compression
space gas temperatures

'1'c comprossion space gas temperature

Te expansion space gas temperature

V; mean volume of gas

0 phase angle betwoeen displacer and tuning

column movements
p liquid density
M operating frequency

natural frequency of lossless displacer

oscillations
», natural frequency of lossless tuning line

oscillations

INTRODUCTION

The dynamics of the liquid piston Stirling
engine have been analyzed mathematicallyi—7 and
numerically.4~¢ The complexity of these excel-
lent analyses and the lack of closed-form soluo—
tions inherent in computer models make it diffi-
cult to approach a clear physical understanding of

the mechanisms at work in the operation of the



simplest of all Fluidyne engines, the liquid feed-
back machine.’ For the same reasons, there has
been no equivalent for the Fluidyne of the methods
available for approximate analyses of the expected
behavior of conventional kinematic and free piston
Stirling engines.®~14

One of the most successful methods of approx-—
imate dynamic analysis of the free piston engine
has been the use of the vector or phasor method,
pioneered for this purpose by Cooke~Yarborough, in
which the amplitudes and phase angles of the vari-
onsboscillating parts of the engine are repre—
sonted as vecfors on a two—-dimensional plot; the
length of the vector represents the amplitude of
the oscillation, and the angle between the vectors
representing different components of the movement
corresponds to the phase angle between their os—
c¢illations, which are assumed to be sinusoidal.

The method is entirely analogous to the standard

method of describing oscillating electrical and
mechanical circuits in forms of complex numbers,
representea onran Argand diagram as two—dimen—
sional vectors.

In this paper, the linsarized esquations of
motion for the various components of a liquid
feedback fluidyne are derived in a very simple
way, and represented by their vector or phasor

diagrams., The diagrams give a physical insight



into the operation of the system and also, in this
preliminary paper, some quantitative results for
important parameters of the Fluidyne's operation

are simply derived.
EQUATIONS OF MOTION

Figure 1 shows the basic layout of the ma-
chine to be analyzed; it consists of liquid fitted
U—tube displacer section, with a tuning or output
column connected to it. The other end of the
tuning column is open.

When the liquid columns are much larger than
the amplitude of oscillatiom of the liquid sur—
faces, as is the case for all the engines de—
scribed in the present literature, the change in
the mass of liquid in each column as the surfaces
oscillate is relatively small and may be ignored.
In such circumstances, the equations of motionm are
easily written down.

We may take as a reference point for the
lengths of the columns the junction of the dis—
placer and tuning line, where the instantaneous
pressure is called Pr (see Fig. 1). The equations
of motion generally take the following form:
pressure differencs x area - viscous force = aver—
age mass x acceleration. Expressed mathematically

this becomes



Hot column
(P, - P+ pg(H - 1b,)IA, - R,A R
= pAaBﬂe , (1)
Cold column
IPs - P_+ pg(H - h)1A, (2)
R, (H + ALVA_ = pA (H + AL)E_ ,
Tuning column
(P, =P +pg(E-1h)lA, - RAL D
AL B, + Ch (3)
CL represents a linear velocity dependent
force (for example, from a dashpot or an electri-
cal alternator with a resistive load) on the out-
put column.

Subtracting Bq. (1) from Eq. (2) and dividing

by Ad yields

Ps(h° - hc) + pH(h° - hc) - pALhc

+RE(h - h) - ndALic =0 . (4)

DISPLACER ACTION

The Snsic physics of the Stirling cycle are
most simply analyzed by treating the displacer
action and the total voluome change separately.2°
This is easily done by defining a single variable
to represent the displacer motion (the change in
total volume of the working fluid is already rep—

resented by a single variable, being simply equal



to ht multiplied by the cross—-sectional area of
the tuning column). As it turms ont, this separsa-—
tion of the displacement and volume change compo—
nents of the motion is also a convenient and sim—
ple approach to analyzing the dynamics of the ligq~
uid feedback fluidyme. The variable depicting the
displacer action is he - ho’ the differential move—
ment of the pistons in the hot and cold cylinders,
which we shail call hd. Similar variables were
used by Stammers.® Note that h° and hc are both
time dependent and even with the simplifying as—
sumption that all the movements are sinusoidal,
there will, in genmeral, be a phase difference be—
tween them and hd will not be in phase with either
h° or hc.

Obvionsly, if there is a fixed amount of
liquid in the system h° + hc - -Aht, where A is
the ratio between the cross—sectional areas of the

output tube and the displacer U—tube. A little

further arithmetic shows that h° - -1/2(hd + Aht)'
Substituting these relations into Bq. (4) and sim-

plifying gives

h, + (Zg/Ld)hd + (Rd/p)hd + A(AL/Ld)ht

+ A(Rd/p)(AL/Ld)ht =0, (5)



The first two terms represent the free oscillation
of the liquid in the displacer U-tube at its nat-
ural frequency 0y = 753752-. The third term rep—
resents the flow losses associated with the dis—
placement motion, and could easily be extended to
include in addition the flow losses due to the
displacement of gas through the heat exchangers
and regenerator. The fourth term is the most in-
toresting: it arises fr&n the tuning column move—
ment which is the source of power generatiom in
the engine and has, as we shall see, s component
in the right phase to overcome the displacer flow
losses.

If the movements are reasonably sinusoidal,
their phase relationships are conveniently repre—
sented on a phasor or vector diagram, a technique
that is well established in electrical engineering
and has also been applied to Stirling cycle analy-
sis.$,13~24 Figure 2 represents the.displacor
motion, as a solid line, and the tuning column
motion, as a broken line. As in any Stirling en—
gine, the displacer must move gas into the hot
space before it is expanded, although of course
with a sinusoidal motion of the pistons these
Phases of the cycle overlap somewhat. This phase
relationship is represented in the diagram by the

rhase advance, 6, of ht rolative to hd (remember



that a positive and increasing ht corresponds to
lowering the liguid surface at the free end of the
output tube, thereby decreasing the gas volume; in
other vords, ht and the gas volume are 180° out of
phase, as shown by the dotted line im Fig. 2).

The velocity of & point moving sinusoidally
loads its position by 90° (e.g., when the point is
passing through its center position and its dis—
placement is zero, its speed is maximwm; conr-
versely, when the point is at its extreme distance
from the center position, its velocity is instan—
eously zero). Similarly, the acceleration is 180°
out of phase with the position. This is repre~
sented in Figs. 3(a) and 3(b), where the quanti-
tiesrpe:taining to displacer action (hd) are shown
by solid lines, and the quantities relating to mo—
tion of the tuning column (ht) are shown by broken
lines, The relative lengths of the vectors repre—
senting position, velocity and acceleration are in
the ratio 1:w:w3, corresponding to cos wt:d(cos
wt)/dt:d3(cos wt)/dt3,

VWith thess relationships in mind, Eq., (5) can
be represented on a single vector or phasor dia-
gram (Fig. 4). The vectors represent the guanti—
ties appearing on the left-hand side of Eq. (5),
and to satisfy the equation their resultant must

be zero.



Here then is the physical basis for the suc~
coss of the liquid feodback system. The ;t torm
in Bq. (5), arising from forces exerted on the
output column by the gas pressure inside the en-
gine, clearly has a component that is opposite to,
and can therefore compensate for, the flow losses
arising from the velocity, id‘ of the fluid taking
part in the displacer action. There are also, as
can be seen, vectors with a component able to |
overcome the smaller amount of dissipation in the

displacer arising from the ht term in Eq. (5).
OPERATING FREQUENCY

The vector method is, as we have seen, a sim
ple and useful way of visoalizing the motions of
the various liquid columns, and provides a satis—
fying explanation of the operation of the liquid
feedback system. The method has, however, more
power than we have used so far, and can provide
quantitative predictions about the Fluidyne dynam-
ics.

As a first example, covered here in outline
only, it is easy to show that for most practical
designs with a single~phase working fluid, the
operating frequency will be within a few percent

of the natural displacer frequency.



Referring to Fig. 4, we shall generally be
des;gning the displacer so that the losses are
small, and the ﬁt term in Eq. (5) will be negligi-
ble. The compoment of (AAL/I.d)it.t along the hd
direction is (AAL/Ld);e cos 8. For the vector
components along the line of hd to equate to zero,
and remembering that the amplitude of the acceler—
ation vector is simply w3 x the displacement, we
must have

(AAL/L;)w* b,  cos § +wdh, -~ wih, =0

. AL Aht
. . u:/u’ =1+ T"—cos @ . (6)

Ly B,

Figunre § shows the relationship between ha,
which is by definition the vector difference be—
tween the hot and cold piston displacements, and
—Aht. which is their vector sum. In practical
machines, the phase angle between the hot and cold
piston movements is in the range 90° to 150° for
optimum output,2$ and the amplitudes of the two
movements are made approximately equal ::3;tﬁin
+20% of each other. Figure 5 illustrates the case
where the movements are equal and with a 90° phase
difference, and also the case where hc =1.2 he
and the phase angle between them is 150°., By in-
spection of all such similar combinations, it may

be seen that the maximum valus of (Aht/hd) cos 0

occurs when the hot and cold cylinders are moving



with a 90°® phase difference. In that case, for a
20% difference between h° and hc, solution of the
veotor triangles shows that (Aht/hd) as = +0.18,
sccording to whether lx° or hc is the larger.

In a2 typical engine, the junction between
displacer and timing line is not more than, say,
4/5 of the way from cold to the hot ond of tho -
tube — i.es., the cold leg is not more than four
times longer tham the hot. Therefore, the maximum
value of AI./Ld is (4/%5 - 1/5) = 0.6. Therefore,
the oxtreme values of the operating frequsncy, as
detoermined by Eq. (6), are given by

w3/w? =1+ 0.6 x0.18 =1%0.11

. o =y1/(1 + 0.11) w, = (1.00 + 0.05)«d .

Therefore, the operating frequency of s typical,
practical engine will be closs to the natural fre—
quency of the displacer. This is borne out by

experimental observation,’
OUTPUT COLUMN MOTION

Next, let us consider the equation goverming
the motion of the tuning or output column, for
which phasor analysis leads to a remarkably simple
derivation of the minimum temperature difference
that can give rise to self-sustaining oscilla-

tions. At the same time, the diagrams give a



clear picture of the physics behind the well-
known, but somewhat puzzling, result that a finite
temperature difference is needed to initiate os-
cillations sven in a completely lossless system.
Dividing Bq. (1) by A,, Eq. (3) by At and

subtracting them eliminates the Pr torm from the
equation of motion of the output colummn. Rewrit-
ing the results so that h. is expressed in terms

of hd and ht yields

(P, = P)) + hpg(l + A/2) + B (C /A,

+ RtLt + ARd H/2)

+ hp(L, + AB/2) - (hpg/2 + bR H/2

+ hpH/2) = 0 . (n
Equation (7) looks complicated, but that i; partly
due to the large number of multiplying factors in
the terms relating to ht and its derivatives; as
we shall see, many of these terms are negligidbly
small in practical machines and the appearance, at

least, of the equation can be greatly simplified.

To make use of the equation, we need an ex-
pression relating the gas pressure, Ps, to the
position of the displacer and tuning column. Sup—
pose that in the equilibrium position when all
three liquid surfaces are at the same height, half
of the gas volume is at temperature Te and half at

Tc; then when the liquid surfaces are slightly



displaced, and the gas pressure becomes Ps. the
ideal gas laws require that

v/2 VJ/2 V/2+Ah
P (_5_,,_9._)_1, (_a.___u
8

o T° T° T°

’_a__.r_.é_e
[+

7/2+Ah>
therefore
(P° - Pa) [(V.IZ + Adho)Tc
+ (v;/z + Adhc)T.]

=PA(T +hT). (8)
od e ¢ c o

For small movements of the liguid surface, we can
neglect the volume change terms (such as Ad he)
compared with the mean volume Vﬂ. in which case

Eq. (8) simplifies to

BT, * BT,
. (9)

(Po - Pg) V& - 2P°Ad <-ﬁf_f:—i__-
e c
And expressing this in temrms of our preferred var—

iables ht and hd leads to an impressively simple

rolationship between displacer action, volume

change and gas pressure:



PA
- ~od AL __
P - BT (’“‘: *TOT nd> . Qo

Substituting this into Eq. (7) yields

ht [PoAt/vn + pg(1 + A/2)] + htp(Lt + AH/2)

+ ht(cL/At + RtLt + Akdnlz) (11)
P A AT
od~ __ px|_:
*hIV(T +T) 2 h, RH/2
m e [+

- hdpﬂlz =0,
The first two terms represent the free oscillation
of the liquid in the output column at its natural

frequency »,

P A
2ot
oV + g(1 + A/2)

t m (12)
Lt + AH/2 *

In practical machines, the compression of the
8as usually gives rise to a much grester restoring
force than gravity, and the total length of the

tuning line is usually much greater than the



length of the displacer uprights. In such cases
the gravitational term and the term in H can be

neglected in Eq. (12), so that

. (13)

This is a familiar result.t$

The diresctions of the vectors representing
the various tetﬁs in Eq. (11) are shown in Fig. 6.
Even ignoring losses (i.e., with all velocity de-
pendent terms set to zero), only the hd and id
terms can provide a2 component of force lagging ht
and so doing work on the tuning column to build up
the energy, and hence the amplitude, of its oscil-
lations. For this to happen, the diagram shows
that the sum of the hd and Hd terms must point in
the hd direction, i.e., for the oscillation to

build up we must have

P A, AT
o d _2g w3oH 5 0
V(T +T) 2 2 ’
m e )
or
Do a1 o () _wm (14)
v '1‘° + Tc 2 8 *

Remembering that o ~ ®y, and that 0y = V237Ed

Eq. (14) can be rewritten as



Te + Tc 2p Ad Ld 8
or
Vv AL
_ar > % T (15)
T + T “2PA, L
° o od d

This is the same rosult as predicted by the more
rigorous, and more complicated, analysis of Elrod?
and Stammers.? Using Fig. 6, it is also possible
to allow for the effeots of viscous losses and a

linsarly veloocity dependent load.

CONCLUSION

The veétor, or phasor, method of studying the
linearized dynamics of Stirling machines, already
used successfully for the design of free piston
ongines, can also be applied to the Fluidyne 1li-
quid piston Stirling engine. The result is an
improved understanding of the physical principles
of operation, a demonstration that the frequency
of operation in practical engines is very nearly
equal to the natural frequency of the displacer,
and a very simple derivation of the minimum tem—-
perature difference needed for self-sustained

oscillations.



Preliminary results indicate that the method
can also deal with the effects of losses or loads,
and can be used to give approximate predictions of

the dynamic bshavior of the active system.
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