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EXECUTIVE SUMMARY

An almost closed-form solution method called the linear harmonic
analysis (LHA) has been developed for the coupled thermodynamic/dynamic
problem that is associated with a free-piston Stirling engine (FPSE).

The governing equations are differential because most of the parameters
describing an FPSE (pressure, temperature, piston position, etc.) are
time—-dependent. The LHA method is based on three primary assumptions:
(1) linearization of the ideal gas law, (2) representation of all time-
dependent variables with harmonic functions, and (3) replacement of terms
in the governing equations that contain products of harmonic functions
with truncated Fourier series. The assumptions reduce the nonlinear
differential equations to a system of almost linear algebraic equations
that are solved using standard matrix algebra, with iterations as re-
quired. The motivation for developing this simplified analytical method
was not that it saves computer time (although it does do that), but that
it reveals causes and effects much more effectively than a column of
numerical output.

In the LHA solution, the load is initially represented by a linear
function of power piston position and velocity so that the nonlinear
differential equations can be solved in almost closed form. This pro-
cedure allows the engine analysis to be performed independently from the
load analysis. The FPSE calculations are completed first; the character-
istics of a particular load, including nonlinearities, are accounted for
later in the LHA solution during an FPSE/load matching analysis.

A computer program called LHA Version 1 (LHAl) was written for the
Sunpower RE-1000 FPSE configuration. A listing of the program is in-
cluded in Appendix D. The RE-1000 engine contains a single power piston
and a displacer sprung to the engine housing. The working space of the
engine is divided into only three control volumes, and motion of the
engine housing is neglected. However, the LHA method is not limited to
such a simple representation, and more control volumes or dynamic equa-
tions could be added if they were desired. Cylinder heat transfer, pres-—
sure drop, and seal leakage losses are all included in the present version
of the LHA program. These losses are not calculated separately and then
added to the analysis. They are included as a simultaneous part of the
thermodynamic/dynamic calculations so that all of the interactions be-
tween the losses, thermal performance, and dynamic behavior are accounted
for.

The time required for execution of the LHAl program is about 100
times less than the execution time required for an equivalent numerical
integration method. Even with its speed, the LHA method has sufficient
mathematical accuracy for most practical Stirling engine applications.
The mathematical accuracy of the LHA assumptions was verified by inde-
pendently solving the same nonlinear differential equations using a nu-
merical integration method and comparing the results with those from the
LHAl program. The differences between the LHA and numerical predictions
were <5% for all important parameters, which is about equal to or 1less
than the uncertainty associated with typical Stirling engine experimental
measurements. This combination of computational speed and mathematical
accuracy makes the LHA method ideal for FPSE optimization programs.
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In addition to speed, the LHA method has other advantages over
numerical integration methods. Numerical techniques usually require some
artistic guesswork to select step sizes and initial conditions so that
the solution is numerically stable, mathematically accurate, and con-
verges quickly to a periodic steady state. The closed-form analytical
approach of the LHA method avoids these problems. The LHA method does
require iterations, but the assumption of isothermal cylinders provides a
good starting point for the calculations, and LHA convergence usually
occurs in <20 iterations.

‘The LHA method also has advantages over other linear closed-form
solution methods that have been developed for FPSE dynamic problems. All
previously published closed-form solutions treat the thermodynamic losses
separately. In the LHA method, the thermodynamic losses, as well as their
interactions, are included intrinsically in the FPSE dynamic solution.
Sample calculations using the LHAl program have shown that substantial
errors in predicting dynamic behavior can occur 1f an isothermal calcula-
tion is used to represent an adiabatic FPSE. LHA predictions have also
indicated that unrealistic assumptions about the pressure drop losses can
lead to additional errors.



LINEAR HARMONIC ANALYSIS OF FREE-PISTON
STIRLING ENGINES

N. C. J. Chen F. P. Griffin

ABSTRACT

The equations that govern the behavior of free-piston
Stirling engines are nonlinear differential equations. Tradi-
tional solution methods have been time-stepping integrations
that can be plagued by numerical instabilities and can use
large amounts of computer time. Closed-form analytical solu-
tions are possible if the working gas behaves isothermally or
if the nonlinear terms in the governing equations are replaced
with accurate approximations. An almost closed-form solution
method, called the linear harmonic analysis (LHA), has been de-
veloped for free-piston Stirling engine applications by repre-
senting all of the periodic variables with harmonic functions.
The solution method accounts for the important thermodynamic
losses that are coupled together in free-piston engines, yet it
is efficient enough for optimization studies. The LHA method
was compared with a standard numerical integration method to
verify its mathematical accuracy. The LHA and numerical pre-
dictions for a sample free-piston Stirling engine configuration
differed by <5% for all important parameters. Sensitivity
studies using the LHA method have also shown that the thermo-
dynamic loss assumptions used in an analysis can have a sig-
nificant impact on the predicted dynamic behavior of a free-
piston Stirling engine.

1. INTRODUCTION

As a prerequisite to dealing with interactions between thermo-
dynamics and dynamics that occur in a free-piston Stirling engine (FPSE),
a simplified thermodynamic analysis with applications in kinematic en-—
gines has been performed.l’2 The analysis is based on an almost closed-
form solution called the linear harmonic analysis (LHA). 1In the analy-
sis, variables are represented in terms of harmonic oscillations, and
nonharmonic terms in the conservation equations are replaced with trun-
cated Fourier series so that the equations can be solved in almost closed
form, leading to a better understdnding of Stirling engine behavior. The
theory further includes a Second Law analysis, where the efficiency and

power losses resulting from effects of adiabatic cylinders, cylinder heat



transfer, pressure drop, and seal leakage can be allocated unambiguously,
and the degree of coupliﬁg between different losses.can be assessed.

Because of inherently strong thermodynamic and dynamic interactions,
a simultaneous coupled solution is required to predict free-piston
Stirling engine performance. For kinematic machine performance predic-
tions, a decoupled solution is sufficient because the thermodynamics can
be solved separately once volume variations are specified. However, for
free-piston engines, the volume variations are no longer specified; in
fact, there exists 'a significant coupling between thermodynamics and dy-
namics. The pressure waves (thermodynamics) in the respective spaces
determine the power piston and displacer motions (dynamies); the piston
motions, in turn, produce the pressure waves that act on the pistons.
This complicated problem is further compounded by'load interactions. The
load must be represented properly and considered as an integrated part of
the syseem analysls before complete FPSE performance predictions can be
made. Generally, the energy absorbed.by thevload depends on the piston
motions (displacement and velocity) on the one hand; the load modifies
the motions on the other hand. |

The objectives of this report are twofold: to extend the existing
LHA methodology from kinematic to free-piston Stirling engine épplica—
tions and to discuss the advantages of the LHA solution method. The
basic methodology that applies to kinematic engines femains valid, but
additions are needed because of coupled thermodynamics and dynamics. The
FPSE additions include the piston and displacer dynamic formulation with
proper load representation and the displacer gas spring thermodynamic
formulation. LHA advantages include fast execution times with good
mathematical accuracy andbrealistic representation of the thermodynamic
losses and their interactions with each other and withAthe dynamic»be—
havior. . : ‘ |

The formulation in this report focuses on the Sunpower_RE—lOOO FPSE,
although.the analysié can be extended to othef configurations if desi;ed.
Sample ealcuiations are presented for an RE-1000 base case es well asbfor
sensitivity studies around the base case{ Correlations for hea; trans-
fer, pressure drop, and seal leakage have not been‘added to the analysis

yet, so the loss coefficients:must be specified in the inpﬁt data. The



loss coefficients for the RE-1000 base case were selected so that the LHA
predictions were in general agreement with experimentally measured per-
formance.

The formulation in the main text is based on the assumption of per-
fect heat transfer in the heater, cooler, and regenerator. However, a
simplified thermal analysis that accounts for imperfect heat exchangers
is described in Appendix A. 1In the formulation, heat transfer is assumed
to occur during two steady flow processes: the hot and cold blows. When
incorporated into the engine analysis, the simplified heat transfer
analysis shows that the effects of imperfect heat exchangers are signifi-
cant with regard to thermodynamic performance, but are less significant
in dynamic performance.

A brief literature survey of existing free-piston Stirling engine
analyses revealed that the analyses may be conveniently categorized into
two approaches: isothermal and nonisothermal cylinders. Many previous
approaches to the analysis of coupled FPSE dynamics/thermodynamics begin
with the assumption that the gas in the cylinders is isothermal with
respect to time; representative works include those of Cooke-Yarborough,3
Marusak and Chiu,“ Berchowitz and Wyatt-Mair,> Goldberg,6 West,’ and
Chap. 3 in Urieli and Berchowitz.® When the analysis is extended to
nonisothermal cylinders, as it must be for a physically realistic formu-
lation, most work has depended entirely on numerical solutions to the
equations, such as analyses by Vincent et al.,9 Gedeon,10 Giansante,11
Tew,12 General Electric Co.,13 and Martini.l* The works of Rauchl!5—17
are among the few that attempt to treat by nonnumerical methods the
coupled dynamics and thermodynamics of free-piston machines with noniso-
thermal cylinders; however, few details have been released because of
proprietary restrictions. Rauch's approach uses a linearized approxi-
mation in which the variables are represented by harmonic functions.

This literature review leads to the belief that there is a need for
further development of linearized analyses because closed-form analytical
solutions provide a much clearer understanding of the physical processes
occurring in Stirling machines than do numerical treatments. However, a
closed-form, or almost closed-form solution should not oversimplify the

physics of the problem; major losses and their interactions must be



included to provide a realistic representation of free-piston engine
behavior. Therefore, a form of the LHA method that takes into account
interactions between major losses has been chosen for studying free-

piston Stirling engine performance.




2. THEORETICAL FORMULATION

The coupled thermodynamic and dynamic analysis described in this
report is derived for an engine configuration similar to the RE-1000 FPSE
manufactured by Sunpower, Inc. The engine, shown schematically in Fig.
2.1, contains a displacer sprung to the engine housing and a power piston

connected to a dashpot load that is controlled by a variable orifice.
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Fig. 2.1. Simplified schematic of RE~1000 free-piston Stirling
engine.



The thermodynamic formulations for the engine working space (consisting
of the expansion space, heater, regenerator, cooler, and compression
space) and displacer gas spring are identical to those described in
ORNL/CON-155 (Ref. 1). Dynamic equations are added to the analysis to
relate the gas pressure and load forces to the power piston and displacer

motions.

2.1 Governing Equations

The working gas in the engine is represented by five control vol-
umes: expansion, dead (sum of heater, regenerator, and cooler), com-
pression, gas spring, and buffer spaces. The primary assumptions for the
analysis are (1) pressure and temperature of gas in the buffer space are
constant and equal to, respectively, the average working space pressure
?; and the cooler temperature Tgs (2) finite heat transfer between the
gas and walls in the expansion, compression, and gas spring spaces;

(3) isothermal gas behavior in the dead space; (4) pressure drop between
the expansion and dead spaces and the dead and compression spaces;

(5) power piston seal leakage between the compression and buffer spaces;
(6) displacer gas spring seal leakage between the gas spring and buffer
spaces; and (7) ideal working gas with constant properties. Constant
buffer space pressure is assumed because the power piston volume stroke
in the RE-1000 engine 1is very small relative to the total volume in the
buffer space. Also, the gas spring seal leakage assumption is based on
the fact that the primary leakage path in the RE-1000 engine is from the
gas spring through the displacer rod clearance seal to the centering port

in the displacer rod, which communicates with the gas in the buffer space.

Most of the variables describing an FPSE are time~dependent, and the
governing equations are therefore differential. The masses and tempera-—
tures of the gas in the control volumes and the positions of the pistons
were selected as the independent variables in the current FPSE analysis.
Nine independent variables are needed to describe the engine shown in
Fig. 2.1: the masses and temperatures of the gas in the expansion, com-
pression, and gas spring spaces; the mass of gas in the dead space; and

the positions of the power piston and displacer. Variable volumes and



pressures are treated as dependent variables. Volumes are a geometric
function of the power piston and displacer positions. Gas pressure in a
control volume is related by the ideal gas law to the mass, temperature,
and volume of the gas.

The conservation equations that govern the behavior of the free-
piston Stirling engine shown in Fig. 2.1 are derived as follows. The
mass conservation laws for the expansion space, expansion and dead spaces

combined, and working space can be stated, respectively, as

dme 1

T " PaF) (2-1)
pe

dme dmd 1

at tae T (B — By (2.2)

pc
dme dmd dmc _
dt + dt + at kmc(Pw.— Pc) ’ (2.3)

where all variables are defined in the list of nomenclature in Appendix C.
By the First Law of Thermodynamics, the instantaneous energy balances

in the expansion and compression spaces are, respectively,

dme _ _ dVe d(meTe)
¢p dt Te flux * he Age (Twe _'Te) =Pe3 S dt ° (2.4)
dmc _ _ ch d(chc)
cp dt Tc flux + hc Asc (Twc —'Tc) = Pc dt + v dt ’ (2.5)
where the enthalpy flux temperatures are defined by
dme
TH, if-aE— >0
Te flux (2.6)
dme
Te’ if I <0



for the expansion space and

dm
TK’ if IE >0
Tc flux (2.7)
dmC
TC, if-ar(O

for the compression space.

Equations (2.1)—(2.7) are identical to those derived in ORNL/CON-155
(Ref. 1). Thus, there is no need to define variables and explain physical
meanings for each term again. Readers who require more detailed infor-
mation should refer to the previous report.

The dynamic equations are derived from Newton's Second Law of Motion,
which states that the sum of the external forces acting on a mass are
equal to the rate of change of momentum of the mass. Engine housing
motion is neglected because the housing of the RE-1000 FPSE is much more
massive than the power piston or displacer. The dynamic system therefore
contéins only two degrees of freedom: displacer motion and power piston

'motidn.

There are three pressure forces acting on the displacer of the
RE~1000 FPSE shown in Fig. 2.1. The gas spring force P;A. and the com-
pression space force Pc(Ad-— Ar) act in a downward (positive) direction,
where all variables are defined in the list of nomenclature in Appendix
C. The expansion space force P Ay acts in an upward (negative) direc-

tion. The dynamic equation for the displacer is, therefore,

d?X

(2.8)

Referring again to Fig. 2.1, two pressure forces and the load force
act on the power piston. The buffer space force §§Ap acts in a positive
direction, and the compression space force PcAp acts in a negative direc-
tion. The force the load produces on the power piston depends on the type
of load; dashpots, linear alternators, compressors, and hydraulic pumps

will all have different characteristics. For now, the load force will be



represented arbitrarily by F1, and the power piston dynamic equation is

written as

- d2xp
—P A +F =n . 2.9
Py A ¢ A \ pp 352 (2.9)

To complete the formulation, mass and energy conservation equations
for the gas spring are needed. The rate of change of mass inside the gas
spring is assumed to be linearly proportional to the pressure difference
between the buffer and gas spring spaces. A gas spring leakage coeffi-
cient kms lumps the combined effects of leakage caused by the displacer
rod clearance seal and the centering port. The gas spring mass conserva-

tion equation is

de _
" Fas By~ FQ (210)

The instantaneous energy equation for the gas spring, similar in form

to the ones for the expansion and compression spaces, is

dmS _ _ dVS d(mSTS)
cp dt Ts flux T hs Ass (Tws —'Ts) =PI YOS T ’ (2.11)
where the enthalpy flux temperature is
dms
TK’ if I >0
Ts flux . (2.12)
dmS
Ts’ if HE"'< 0

Equations (2.10)—(2.12) were derived in ORNL/CON-155 (Ref. 1) and,
thus, a detailed description will not be repeated here. The enthalpy flux
associated with the gas spring arises from the mass leakage between the
gas spring and buffer spaces, whereas the enthalpy fluxes in the expansion

and compression spaces arise from the motion of the displacer, which
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shuttles gas between the hot and cold ends of the machine. The gas spring
enthalpy flux temperature is based on the assumption that the buffer space
gas temperature is constant and equal to the cooler temperature.

This completes the formulation of the coupled thermodynamic and
dynamic equations for the RE-1000 free—piston Stirling engine configura-
tion. There are nine differential equations to solve for nine independent
variables (m,, my, m,, mg, Ty, T., Ty, Xp, X4)+ The ideal gas law is used

to express the pressure variables (P,, P4, P., P;) in terms of the

c’
independent variables. The volume variables are geometric functions of

the piston positions (see Fig. 2.1)

Ve = Ve - Adxd ’ v (2.13)
V.=V, + (Ay—A) X — AX (2.14)
VS = VS + Aer . (2.15)

2.2 Engine Performance Parameters

When the thermodynamic analysis for kinematic Stirling engines
described in ORNL/CON-155 (Ref. 1) was extended to include free-piston
dynamics, thermodynamic calculations were added for the displacer gas
spring. The presence of the gas spring changes the overall energy bal-
ance in the FPSE analysis. Leakage and heat transfer losses in the gas
spring reduce the indicated power output from the engine, and the resul-
tant thermal energy either increases the heat rejection or reduces the
heat input. The assumption in this analysis is that all thermal energy
from the gas spring losses ends up in the engine cooler. The physical
implications of this assumption are that heat transferred to the gas
spring walls and heat lost to the buffer space by leakage must be con-
ducted or convected to the cooler.

After an engine has reached a periodic steady state, the heat input,

heat output, and indicated pdwer are calculated as

éin = ﬁe ’ . (2.16)
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6.out = 1; —;as ’ (2.17)

-V;out = ."?e + Ec + _ﬁs . (2.18)
where

W =£§r av_, (2.19)

5; =f§Pp dav_, (2.20)

5; =f§p v (2.21)

are the cyclic integrals of pressure and volume in the expansion, com-
pression, andiggs spgipg spaces. In general, the value of E; will be

positive, and Wc and WS will be negative. Note that the heat input is
indeed equal to the sum of heat output and indicated power. Indicated

thermal efficiency is calculated from Eqs. (2.16) and (2.18) as

=

n, = oYt » 100% . (2.22)

Qin
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3. LHA SOLUTION METHOD

All of the LHA solution procedures for kinematic engines described
in ORNL/CON-155 (Ref. 1) apply equally well to free—piston machines.
However, some additions are needed for FPSE applications because the
operating frequency is not known at the beginning of the solution, and
power piston amplitude cannot be solved for directly. The LHA method-
olbgy as it applies to FPSE dynamic problems is described in this chapter.
To conserve space, some equations that are identical to ones already pre-

sented in ORNL/CON-155 (Ref. 1) will be referenced rather than repeated.

3.1 Equivalent Load Representatioh

Free—-piston Stirling engines have driven a number of different
loads, including dashpots, linear alternators, compressors, and hydraulic
pumps. None of these loads display purely linear behavidr; that is, the
force they produce on the power piston is not a linear function of piston
position and velocity. The linearity of a load has a significant impact
on the stability of an FPSE, where stability is defined as the tendency
of an engine to maintain constant piston strokes with no beating oscilla-
tions. Nonlinear loads are actually desirable in FPSE applications be-
cause they improve engine stability. For example, a load that produces a
force proportional to velocity squared will result in greater stability
than a load with a force directly proportionél to velocity.

An FPSE analysis cannot completely ignore load nonlinearities be-—
cause of their impact on engine stability. 1In the LHA solution, the load
is initially assumed to be linear so that the differential equations can
be solved in almost closed form. Later in the LHA solution, load non-
linearities are included during an FPSE/load matching analysis. All
loads are initially represented by an equivalent linear spring and dash-
pot. The load force in Eq. (2.9) is assumed to have the form

d X
F = —C X (301)

—_e. . —P
1 1s “p 1d dt
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where c)g and cy4 are the equivalent spring and damping coefficients.
The equivalent load spring accounts for the reactive forces that the load
produces on the power piston. Negative values of C1g can be used if the
load acts like additional inertia in the system. The equivalent load

dashpot accounts for the power absorbed by the load.

3.2 Nondimensional Equations

To simplify subsequent analysis, it is convenient to deal with the
governing equations in dimensionless form. Many of the dimensionless
variables and parameters were defined in ORNL/CON-155 (Ref. 1) [Eqgs.
(3.10)—(3.18)]. Additional dimensionless parameters are defined below.

Rate constants:

by = ——, kt = — (3.2)

Ms Ts
mE == T (3.3)
Mg Ts
Dependent variables:
Ps Vs
B —— * = » ()
P*=—, vk = — (3.4)
Pw Vs
Temperature constants:
T
— ws
T‘*JS =¥— - (3-5)
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Enthalpy flux temperature variables

Ts flux

TS flux =

Volume constants:

K3 l.is Ky éws
* —3 * =
s T T s m T
Cymsts® CVMsts
Area constants:
Ad ~ Ar
a11 =3~ 21253 213 7
% p
Dynamic mass constants:
m w? X "
n* = PP P % =
PP T A dp
w p
Load coefficients:
CI - 1s "pm , 3, =
P A

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Using the dimensionless parameters defined previously and the lin-

earized ideal gas laws

* * * *
P =m + T —V_ ,
e e e e

* *
Pd = md R
(3.12)
* *
P =m +T —V ,
c c
*
P =m + T —V_,
s

the governing equations {Eqs. (2.1)>-(2.12)] transform into a system of

dimensionless differential equations

— *

m, x dmg * * * *
— k ——=m, —m_ —-T + V_ (3.13)
— pe * d e e e
m dt

W
—_ 4 * 4 *
m % dm my x dm * * %
___e—kc—i+__dkc—d;=mc+trc—vc—md, (3.14)
m PC 4t w PE 4¢

= *  _ 4 x 4
m_ dm m, dn m_ dm
e e d “d c e * * * *
— =tttk A-—m T +V), (3.15)
m dt m dt m dt
W W w
* *
AmeTe) F (Y =D@ +T —v) e YT e
N - - N *
dt e e e e e flux dt
+ h* (iﬁ T*)
o we — To) (3.16)
* % *
d(chc) x * x ch * dmc
—5—+t (=D @ +T —V)—5=YT o —5
dt ¢ dt dt

+h (T —TZ) , (3.17)
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2o *
x d X4 ( * T* * % * %
mdp dt*z = ajg3 mc + c —VC) + ajy (mS + TS —_ VS)
% % *
—ap (me + Té —-Ve) ,
* *
2
x d Xp - a T* N V*) £ % x W pr
"o 7% 0 T Te T e TV T % T %14 BoW o
*
s k(1 T+ v
dt ms s s
% % * *
dm Ty f (= D@+ T — v vy T* dmg
—_— Y — m _ — =¥ —_—
* * *
dt s s " 4t s flux dt
* % *
+ hS (TWS-— TS) .

where the dimensionless enthalpy flux temperatures are

* *
. TH , dme >0
T =
e flux * * ’
T , dm < O
e e
* d *
. TK , m >0
T =
c flux x * ’
T , dm < 0
c c
_ *
. TK/TS’ dm_ > 0
Ts flux N *

% *
T , dm < O
s s

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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3.3 Harmonic Oscillations

The nine governing equations [Eqs. (3.13)—(3.24)] will contain only
constants and the nine independent variables, after the volume variables

are replaced with dimensionless forms of Egqs. (2.13)—2.15)

* ) *
Ve = -2, Xd s

% * *
Vc =1+ a, X.d —a, Xp , (3.25)
V* =1+ X*

s a4y %q

Because steady state solutions are the only ones of interest, the nine
independent variables are assumed to undergo simple harmonic oscilla-
tions. This assumption is very reasonable because the piston motions in
most free—piston engines have waveforms that can be closely approximated

by harmonic functions. The harmonic assumptions are as follows:

* . i * *
m, = 1 y, sin t + y, cos t
=14y, sint *
my = yysin t +y, cos t
* o+ 4 * *
m, = 1 Y5 sin t + Yg cos t

T  =1+y, sin t* + £

. = y, sin Yg cOS H

* * *

Tc =1+ Yq sin £t + Y, COS t (3.26)
* i * + *

Xd = Y¥,, sin t ¥y, COS t

* * * /

Xy = Yy sin t, ey = ¥y3/yy 3
* * *
m, = 1+ Y15 sin t + Y6 €08 t 3
AR in £ + *
TS = Yy, 8in t ¥,g €08 t
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where Y, through Y,g are all unknowns to be solved for simultaneously by
the method of undetermined coefficients.

The dimensionless power piston position is arbitrarily defined to
have only a sin t* component, with an unknown amplitude represented by

y L2
14
relative amplitudes that depend on the phase angle between the variables

All other variables contain both sin t* and cos t* components, with

and power piston position. The equivalent load damping coefficient is
treated as one of the unknowns, Yi3° This mathematical procedure is
necessary because of the linearized representation of the load and is
very important to the success of the LHA solution. The physical explana-
tion is that the magnitude of the equivalent load damping force is calcu-
lated so that it balances the power piston dynamic equation. Nonlinear
load behavior is accounted for later in the LHA solution during an
FPSE/load matching analysis. o '

When the assumed harmonic solutions [Eq. (3.26)] are substituted
into the governing equations [Eqs. (3.13)—(3.24)], the resulting instan-
taneous equations will be in harmonic form except for the instantaneous
power, internal energy, and enthalpy flux terms in the energy equations,
which will contain products of sin t* and cos t*. These nonharmonic
terms are replaced by truncated Fourier series. The procedure for trun-
cated Fourier series expansion of each nonharmonic term was described in

detail in ORNL/CON-155 (Ref. 1) and will not be repeated here.

3.4 Integrated Energy Equations

After the nonharmonic terms are replaced by truncated Fourier
series, the instantaneous energy equations [Egqs. (3.16), (3.17), (3.21)]
are separated into two systems — integrated and fluctuating equations.
The system of integrated energy equations comes from the constant terms
(zero-order coefficients) in the Fourier expansions, and each equation

represents the steady state average energy balance for a control volume.
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The integrated energy equations in nondimensional form are

He + Qwe e ?
Tk o+ 0% = Uk .27
Hc * ch wc ’ G )

where the average energy flow rates in the expansion and compression
spaces were defined in ORNL/CON-155 (Ref. 1) [Eqs. (3.44), (3.56),
(3.59), and (3.78)—(3.80)]. The average energy flow rates in the gas

spring are

s - —_—— '-—*= ——
HS (cvaTsw) HS Z1(5) (TK TS) + Z1(6) ,

(3.28)

where

w - 2 2
Z1(5) = = Cp m Vy15+ Yies

- Y ST
Z1(6) R IC2=S)] w Pw VS (y15 Yis — Y16 y17) . (3.29)
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After the unknowns (y1 to y18) have been determined, the integrated

energy equations are'rearranged to calculate the mean gas temperatures

) ZI(l)TH + Z1(2) + he ASe '1‘we —-we

=)
)
-

Z1(1) + he ASe

_ ZI(DT, + ZI(4) +h KA T W |
Tc - K _F s¢c we c , (3.30)
Z1(3) + hc ASc
s - Zl(5)TK + Z1(6) + hS Ass TWS —-WS
s bJ

Z1(5) + hS AsS

where Z1(1) to Z1(4) were defined in ORNL/CON-155 (Ref. 1) [Eqs. (3.83)—
(3.86)]. The solution for the unknowns is discussed in Sect. 3.5.

3.5 Homogeneous Algebraic Equations

Taking the difference between the instantaneous and integrated equa-
tions results in the system of fluctuating equations. The gederal form

of each fluctuating equation is
¥ sin (wt) terms + I cos (wt) terms = 0 . (3.31)

Because sine and cosine are orthogonal functions, a solution exists at

all times only if

T sin (wt) terms = 0 ,

0 . | - (3.32)

T cos (wt) terms

This leads to a set of homogeneous algebraic equations with Y, to Y,g 38

unknowns, which may be represented by an 18 x 18 matrix:
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where

D(7,1) = FF(1),

D(7,2) = =1 + v T, + FF(2),

D(8,1) =1 —¥ L FF(3),

D(8,2) = —FF(1),

D(9,5) = FF(4),

D(9,6) =—1 + Y T_ + FF(5),

D(10,5) = 1 — v T+ FF(6),

D(10,6) = —FF(4), (3.34)

*

p(11,11) =—n, + a,a,, + a,a,, + aja;;

13 4712

D(12,12) = D(11,11),

* *
= +
D(13,14) —mpp a, + g

D(17,15) = FF(7),
D(17,16) = —1 + ¥y Tt FF(8),
D(18,15) =1 —-y'&s + FF(9),
D(18,16) = —FF(7),

and the Fourier correction factors FF(1l) to FF(6) were defined in
ORNL/CON-155 (Ref. 1) [Egs. (3.51), (3.52), (3.54), and (3.71)—(3.73)].

The three remaining Fourier correction factors for the gas spring are

FF(7) = — %% (le cos3 es - Yy sin3 GS) ,
= 2Y 2 _ 3

FF(8) = I [y17 cos es (sin SS + 2) Yis sin es] .
FF(9) =.—-%% [y17 cos3 es - Yig sin es(c082 Bs + 2], (3.35)

Y15
sin B = ——— ,

2 2

Y15 * Y16

Y16

cos GS = .
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The algebraic equations are written as a linear system even though
some nonlinearities exist. Most of the elements of the coefficient
matrix are zeros or constants. However, careful observation reveals that
some of the coefficients in the matrix depend on the unknowns (yl to
yle); examples are elements that include the Fourier correction factors
[FF(1) to FF(9)] or the mean gas temperatures (Te, T, TS). Note that
Eq. (3.33) does not contain the mean gas temperatures explicitly, but
parameters such as the average masses of gas in the control volumes are
calculated from the mean gas temperatures. The problem of algebraic
nonlinearities is resolved by an iterative process where Eq. (3.33) is
treated as a linear system during each iteration. The iterative calcu-
lations are described in Sect. 3.7.

The homogeneous system in Eq. (3.33) has a nontrivial solution only
if the determinant of the coefficient matrix is zero. This condition is
used to calculate engine angular frequency w. Frequency appears explic-—
itly in one element of the coefficient matrix and implicitly in elements
that contain dimensionless parameters with * superscripts. The determi-
nant, in theory, could be evaluated using a pencil and large quantities
of paper, resulting in a complicated algebraic equation that could be
solved for the characteristic frequency (or frequencies). However, stan-
dard matrix algebra subroutines are used to calculate determinants, and a
numerical root—-finding routine 1is used to find the characteristic fre-
quencies where the determinant is zero.

A secant~bisection root-finding method is used in the LHA solu-
tion. The bisection logic ensures stable convergence while the secant
method minimizes convergence time. The root-finding routine is initial-

ized by specifying two frequencies ( ) that bound a point where

mlow’whigh
the determinant 1is zero. Then the secant method is used to find the
characteristic frequency where the determinant is zero. If the secant
method becomes numerically unstable, the routine automatically shifts to
the bisection method, but only until the secant method becomes stable
again. If multiple characteristic frequencies exist, then the root-

finding routine must be executed once for each zero crossing.
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3.6 Nonhomogeneous Algebraic Equations

When the determinant of the coefficient matrix in Eq. (3.33) is
zero, the number of independent equations is one less than the number of
unknowns. Therefore, one of the 18 rows can be eliminated without loss
of generality, after a characteristic frequency has been determined
(using the procedure described in Sect. 3.5) and substituted into Eq.
(3.33). It makes no difference from the theoretical viewpoint which row
is eliminated, though there may be some practical limitations because of
round off errors in the matrix algebra computations. In the LHA solu-
tion, row 14 is added to row 13 (which is allowable because the equations
are linear), and then row 14 is deleted. This reduces the algebraic
system from an (18 x 18) to a (17 x 18) matrix.

A unique solution for the 18 unknowns is not possible because there
are only 17 independent equations; any solution for Y, to Yie that satis-
fies the linear equations will also be a solution if all the unknowns are
halved, doubled, or multiplied by any factor. The number of unknowns in
the LHA solution is reduced to 17 by specifying a value for the power

piston amplitude X , or in dimensionless form

P

>

a
Yiu = 2= (3.36)
pm
Column 14 in the matrix in Eq. (3.33) can then be multiplied by ¥y, and
moved to the right-hand side. The result, after adding row 14 to row 13,
deleting row 14, and moving column 14 is a (17 x 17) nonhomogeneous

algebraic system:
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Standard matrix algebra subroutines are used to solve Eq. (3.37) for the
other unknowns, Yy to Y5 and Vs to Yig° Displacer amplitude and phase
angle (relative to the power piston motion) can then be calculated from
equations that are easily derived from the original harmonic assumptions
in Eq. (3.26),

(3.38)
Bd = (:OS--1 ——— ] .

2 2
SETRIR AT

All dynamic parameters have now been determined except for power piston
amplitude. A unique solution for the power piston amplitude cannot be
found until the engine analysis is matched to a specific load. This will
be discussed in Sect. 3.8.

3.7 Successive Approximations

The (18 x 18) algebraic system in Eq. (3.33) is not completely
linear because some elements in the coefficient matrix depend on the mean
gas temperatures defined in Eq. (3.30) and the Fourier correction factors
defined in Eq. (3.35) and in ORNL/CON-155 (Ref. 1) [Egs. (3.51), (3.52),
(3.54), and (3.71)—<«3.73)]. An iterative solution process is needed for
any case other than the isothermal one. A computer program was written
in FORTRAN to perform the iterative calculations more efficiently and to
check automatically for convergence. Two subroutines, called DECOMP and
SOLVE, were called from a standard FORTRAN library to perform the matrix
algebra, which simplified the programming effort. A listing of the com-—
puter program is given in Appendix D.

The procedure for the iterative calculations is shown in Fig. 3.1.
The solution is initiated by assuming that the expansion, compression,
and gas spring spaces are isothermal. The initial isothermal values for

T,» EL, i;, and FF(1) to FF(9) are shown in Fig. 3.1. Frequency must

also be assigned an initial value to provide a starting point for the

root—finding routine.
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y
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NEW T, T, T, FF(n) AND ITERATE

Fig. 3.1. Flow chart for successive approximations.

The computer program contains one large loop plus a smaller loop for
frequency root finding. At the beginning of the large loop, the current
values of Eé, EL,.ES, and FF(l) to FF(9) are used to calculate the matrix
elements. Then the algebraic equations are solved to determine Yy to y,,
and y15 to Yig® At the end of the large loop, the integrals in the inte~
grated energy equations are evaluated. If the average energy flow rates

balance in the expansion and compression spaces, then the solution is
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terminated. If the average energy balances have not converged, then new
approximations for T;, T;, i;, and FF(1) to FF(9) are calculated from the
new values of Yy to Yi8° and the calculations return to the top of the

large loop for another iteration.

3.8. FPSE/Load Matching

Up to this point in the LHA solution, the force that the load pro-
duces on the power piston of the FPSE has been assumed to-have the linear
form shown in Eq. (3.1). This assumptioﬁ was made temporarily so that
the differential equations could be solved in almost closed form. To
complete the solution, load nonlinearities must now be included in the
analysis so that a unique value for power piston amplitude can be deter-
mined. The general procedure for calculating power piston amplitude is
described in this section.

An FPSE will operate at a point where the power produced by fhe en-
gine just matches the power absorbed‘by its load,_as illustgated in Fig.
3.2. Power piston velocity amplitude wxpa is used as the abscissa in
Fig. 3.2 because power is generally a function of both frequency and
piston amplitude. 1In fact, the power absorbed by the generalized non-
linear dashpot load discussed in Aﬁpeﬁdix B is proportional to wxpa
raised to a power, which will appear as a straight line when plotted in
logarithmic coordinates. Many other loads and engines will also form
nearly straight lines on logarithmic plots similar to those in Fig. 3.2.

The match point shown in Fig. 3.2 is stable because the’ FPSE has a
natural tendency to operate at a constant power pistbn velocity ampli-
tude. If the velocity amplitude 1is less than the match point, then the
engine produces more power than the load absorbs, which tends to drive
the velocity amplitude back toward the match point. 1If the velocity am-
plitude is greater than the match point, then the engine produces less
power than the load absorbs, and this also drives the FPSE back toward .
the match point. If the engine line is steeper than the load line, . then
the FPSE will bé unstable and will tend to either stall or overstroke.

A unique value for power piston amplitude is determined by matching

the power produced by the FPSE to the power absorbed by the load.  First,
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Fig. 3.2. Logarithmic plot showing FPSE/load matching example.

the power output of the engine is calculated for several different power
piston amplitudes and is plotted vs power piston velocity amplitude.
Then the power absorbed by the load (assuming it is driven sinusoidally)
is determined either from actual measurements or from a nonlinear analy-
sis, and it is also plotted vs power piston velocity amplitude. The

point where the engine and load curves cross defines the solution for
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power piston amplitude. Some specific FPSE/load matching examples are
presented in Chap. 4.

The load must also be Fourier analyzed to determine the equivalent
load spring coefficient ¢y defined in Eq. (3.1). A specific value for
the equivalent spring coefficient is needed at the beginning of the LHA
calculations. The Fourier analysis can be performed, in some instances,
before specific values for frequency and power piston amplitude are
known. In general, though, the load cannot be Fourier analyzed until
frequency and power piston amplitude are determined at the end of the LHA
calculations. The LHA calculations in these circumstances may have to be
repeated a few times to ensure that proper values of the equivalent

spring coefficient are used in the computations.

3.9 Summary of LHA Procedures

The LHA procedures can be summarized in 15 steps.

1. The working space is divided into control volumes.

2. Conservation equations (mass, momentum, energy) are written for the
control volumes, and dynamic equations are written for the moving
masses.

3. The force that the load produces on the power piston 1s represented
by an equivalent linear spring and déshpot.

4. P, m, T, and V of gas in each control volume are assumed to have
small amplitudes relative to their mean values. A linear form of
the ideal gas law is used to express P as a sum of m, T, and V.

V is expressed in terms of piston positions X.

5. The LHA method is restricted to steady state solutions. Solutions

for the independent variables (m, T, and X) are assumed to have

harmonic forms:

m=m+ y; sin (wt) + yy cos (wt) ,

T =T+ y3 sin (wt) + y, cos (wt) , etc.

The equivalent load damping coefficient is treated as one of the

unknowns (yl, Yy etc.).
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The harmonic solutions are substituted into the governing equations,
and terms containing products of harmonic functions are replaced by
truncated Fourier expansions.

The general form of each governing equation becomes

L constant terms + I sin(wt) terms + I cos(wt) terms = 0.

A solution exists at all times only if

L constant terms = 0,

T sin(wt) terms o,

O.

L cos{wt) terms

The I sin (wt) terms = 0 and I cos (wt) terms = 0 equations form a
homogeneous system of almost linear algebraic equations in terms of
the unknowns (yl, Yoo etc.). Products of the unknowns are treated
in a quasi-linear manner through iteration.

The homogeneous algebraic system has a nontrivial solution omly if
the determinant of the coefficient matrix is zero. Frequency is
calculated by finding the value or values that makes the determinant

ZE€TrO0e.

When the determinant is zero, the number of independent equations is
one less than the number of unknowns. The homogeneous system is
converted to a nonhomogeneous system by assuming a value for power
piston amplitude (one of the unknowns). The other unknowns (yl,yz,
etc.) are calculated with respect to power piston amplitude.

After Yo Y, etc. are obtained, the I constant terms equal 0 equa-
tions from the governing equations are solved to compute the values

of other unknown parameters such as E;, E;, T etce.

’
A few iterations back to step 8 may be neededsto include updated
values for the quasi-linear approximations T;, f;, and T;.

The power produced by the engine is determined by evaluating the
appropriate pressure~volume (PV) integral. Engine power is

calculated for several different power piston velocity amplitudes.
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The power absorbed by the load as a function of power piston veloc-
ity amplitude 1is determined either from actual measurements or from
nonlinear analysis. The equivalent load spring coefficient is also
determined by Fourier analysis. N

Power piston amplitude is determined by finding the value where ea-
gine power just balances the power absorbed by the load. Iterations
back to step 8 may be needed to account for coupling between fre-
quency, power piston amplitude, and the equivalent spriﬁg coeffi-

cient.
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4. LHA RESULTS AND DISCUSSION

Sample calculations and results of parametric sensitivity studies
are presented to demonstrate the advantages of the LHA method for pre-~
dicting FPSE dynamic behavior. References are made to other solution
methods as part of a general discussion of analytical theory. However,

a detailed comparison between the LHA method and other Stirling analysis
methods is not intended. The presentation of results emphasizes the im-
portant dynamic parameters: frequency, power piston amplitude, displacer
amplitude, and displacer phase angle. Thermodynamic performance (power,
efficiency, etc.) 1s discussed to a lesser extent because those results
were discussed previously in ORNL/CON-155 (Ref. 1).

Two types of LHA dynamic predictions are presented; to help avoid
confusion they are labeled either (1) constrained piston amplitude mode
or (2) free-dynamic mode. Constrained piston amplitude mode refers to
the engine analysis before it is matched to a specific load. In the
constrained piston amplitude mode, power piston amplitude is specified,
and the other dynamic parameters are calculated with respect to this
specified amplitude. This corresponds to step 12 in the LHA summary in
Sect. 3.9. Free—-dynamic mode refers to the complete analysis after the
characteristics of a particular load have been matched to the behavior of
the engine. In the free-dynamic mode, the load force as a function of

piston position and velocity is specified rather than piston amplitude.

4.1 Base Case Predictions

All sample calculations in this report are based on the dimensions
and typical operating conditions of the RE-1000 FPSE manufactured by
Sunpower, Inc. and tested by NASA Lewis Research Center.!8® First sample
calculations were performed for a base case and then sensitivity studies
were performed around the base case. The engine dimensions and operating
conditions selected for the base case are listed in Tables 4.1 and 4.2.
The engine dimensions were estimated from a report published by
Schreiber.1® The operating conditions were selected to match a particu-

lar data point that has been measured by NASA Lewis but, unfortunately,
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physical parameters

RE-1000 engine dimensions and

Maximum stroke, m

Power piston 0.0420
Displacer 0.0404
Diameter, m
Power piston 0.05723
Displacer "~ 0.05723
Displacer rod 0.01666
Average volume, m3
Expansion space 63.6 x 107°
Heater 39.6 x 1076
Regenerator 59.4 x 1078
Cooler 28.5 x 1076
Compression space 103.6 x 1078
Displacer gas spring 31.8 x 1078
Average heat transfer surface area, m?
Expansion space 0.01392
Compression space 0.02292
Displacer gas spring 0.00979
Mass, kg
Power piston 6.2
Displacer 0.426
Table 4.2. RE-1000 base case
operating conditions
Working gas Helium
Average pressure, Pa 7,085,000
Averagé wall temperture, K
Heater 853
Expansion cylinder 853
Cooler 326
Compression cylinder 326
Displacer gas spring cylinder 326
Equivalent load spring coefficient, N/m 0
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will not be published in their final report. The wall temperatures were
adjusted to yield proper gas temperatures in the expansion and compres-
sion spaces.

Correlations for heat transfer, pressure drop, and seal leakage have
not been included in the analysis as yet because the initial work was
directed towards verifying the LHA mathematical assumptions rather than
validating a computer code. The loss coefficients must be specified as
part of the input data; the values used for the base case are listed in
Table 4.3. The pressure drop and seal leakage coefficients were selected
so that the analysis yields reasonable predictions for displacer ampli-
tude, indicated power output, etc. The heat transfer coefficients were
estimated from equations that were derived by Lee?0 as part of an analyti-
cal study of cylinder heat transfer. Lee's analysis showed that the heat
transfer coefficient amplitude in nearly adiabatic cylinders is equal to
the square root of two times the gas conductivity divided by the thermal
boundary layer thickness for pure conduction. Heat transfer coefficients
calculated from this pure conduction model for the RE-1000 base case oper-
ating conditions are ~1280 W/(m2+K) at the cold end and ~1050 W/ (m2+K) at
the hot end. Thus, the heat transfer coefficient values of 1000 W/(m2eK)
shown in Table 4.3 appear to be the right order of magnitude.

Some of the RE-~1000 base case results predicted by the LHA con-

strained piston amplitude mode are listed in Table 4.4. A comparison of

Table 4.3. RE-1000 base case loss coefficients

Cylinder heat transfer coefficient, W/(mZ2K)

Expansion space, hg 1 x 103

Compression space, h, 1 x 103

Displacer gas spring, hg 1 x 103
Pressure drop coefficient, (Pae¢s)/kg

Between expansion and dead spaces, k 1.5 x 10%

pe

Between compression and dead spaces, kpc 1.5 x 108
Seal leakage coefficient, kg/(Pass)

Between compression and buffer spaces, kmc 6.8 x 1079

Between gas spring and buffer spaces, kns 2.0 x 1079
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Table 4.4. LHA constrained piston amplitude
mode predictions for RE-1000 base case

Parameter Base case

Specified value
0.01300

Power piston amplitude, Xpa’ m

Computed values

Frequency, f, Hz : v 29.44
Displacer amplitude, xda’ m 0.01260
Displacer phase angle, By, deg 46 .68
Conpression space pressure 1,121,500
amplitude, |Pc|, Pa

Compression space pressure phase —~17.11
angle, Bpc, deg

' Expansion space average gas 824.8

temperature, T,, K \ :

Compreséion spgpe average gas 336.6
temperature, T,, K

Total heat input rate, éin’ W 2852
Total heat output rate, éout’ W 1832
Indicated power output, .out’ W 1020

Indicated thermal efficiency, njy¢, % 35.76

these results and the NASA Lewis experiméntal data presented by Tewl?
shows that the base case dimensions, opefating conditions, and loss
coefficients listed in Tables 4.1—4.3 yield realistic LHA predictions for
the RE-1000 FPSE. The LHA predictions for frequency, displacer ampli-
tude, compression space pressure phase angle, and indicaﬁed‘power output
are all within the range of experimental data presented by Tew. The LHA
prediction for displacer phase angle is below the measured values; it 1is
interesting to notice that the NASA Lewis predictions also show a similar
trend. The indicated thermal efficiency predicted by LHA is high, but

some of this discrepancy is because parasitic losses such as regenerator
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reheat, appendix gap losses, and cylinder wall conduction are not in-
cluded in the results in Table 4.4. Regenerator reheat losses are dis-
cussed as part of the imperfect heat exchanger analysis in Appendix A.
An easy way to visualize the dynamic behavior of an FPSE is to plot
the dynamic equations in vector diagrams. The force balance for the
displacer in Eq. (2.8) and the power piston in Eqs. (2.9) and (3.1) can

be rearranged into the following forms:

d2x
(P, A) + (—PeAr) + (Pc—Pe) (Ay—A) + <—m __.d.> =0,

P g¢2
(4.1)
gas working pressure inertial
spring| + space + + =0 ,
drop force force
force force
. < pr> c12xp
(PWAP) + (—'PCAP) + —Clsxp —_ cld '(—l-t—' -—-mpp dtz =0,
bounce working i . (4.2)
inertial
space |} + space + (load force) + ( ) =0 .
force
force force

When these equations are plotted vectorially they form closed polygoans
because the sum of the forces is zero. Only the time-dependent portion
of the forces are plotted in a vector diagram. Thus, the bounce space
force vector will be zero because the bounce space pressure was assumed
to be constant. Also the load force for the RE-1000 base case will be a
pure damping force because the equivalent load spring coefficient was
assumed to be zero.

The LHA predictions for the RE-1000 base case are presented in vec-
tor form in Fig. 4.1. The pressure vectors are shown relative to the
position vectors in subplot a. The angle between the P, and —Xjy vectors
is caused by the heat transfer and seal leakage losses in the displacer
gas spring. These two vectors would coincide if the gas spring was per-
fect. Another interesting observation is that the magnitude of the pres-
sure drop (PC - Pe) vector is very small compared with the absolute

magnitude of the pressure vectors.
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The displacer force balance is shown in subplot b along with axes
that define the types of forces acting on the displacer. For example, a
force vector that points in the —Xd direction represents a pure spring
force. The magnitude of the pressure drop force [(P, — Po) (A3 — Ap)]
vector is about equal to the magnitude of the other displacer force vec-
tors. Even though the pressure drop across the displacer is fairly
small, the pressure drop acts on a much larger area than the other pres-—
sures, and the resulting forces are about equal.

The power piston force balance is shown in subplot ¢ along with axes
that define the types of power piston forces. The dominant forces in the
diagram are the spring component of the compression space force and the
inertial force. The power piston behaves like a resonant spring-mass

system, which is why the RE-1000 FPSE operates over a narrow and well-

defined range of frequencies.

4,2 Comparison with Nonlinear Solution

The LHA method depends on a number of mathematical assumptions used
to achieve an almost closed-form solution. The assumptions include
linearization of the ideal gas law, representation of all variables with
harmonic functions, and replacement of terms in the governing equations
that contain products of harmonic functions with truncated Fourier expan-
sions. To quantify the errors that are introduced by the LHA assump-
tions, an independent nonlinear solution of the same governing equations
was obtained* and compared with the LHA solution. The results of this
comparison for the complete thermodynamic/dynamic problem are presented
below. The mathematical accuracy of the simpler thermodynamic version of
the LHA solution was discussed in ORNL/CON-155 (Ref. 1).

The nonlinear solution of the governing equations [Eqs. (2.1)—<2.12)]
was based on a Runge-Kutta numerical integration method. The Runge-Kutta
method, like other explicit numerical methods, is a time-stepping integra-

tion where the variables at a new time are computed from previous values.

*The work on the nonlinear solution was performed by S. C. Byrd
between June and August of 1984 as part of the Oak Ridge Associated
Universities Summer Student Program at Oak Ridge National Laboratory.
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Calculations proceed forward in small time steps over many cycles of the
power piston until a steady state periodic solution is found. Existing
IBM software, the Continuous System Modeling Program (CSMP),2! was used
to avoid unnecessary programming efforts in numerical integration. The
CSMP software contains the Runge-Kutta integration logic as well as
flexible subroutines for data input and data output in both tabular and
graphical forms.

The comparison between the nonlinear CSMP and LHA solutions was done
for a generalized nonlinear dashpot load. The load force in Eq. (2.9)

was assumed to have the form

F) =k % (abs ip)“‘l . (4.3)
Equation (4.3) reduces to the simple linear dashpot formula when the
dashpot load exponent n is equal to one. For n > 1, the load force is a
power function of power piston velocity. The absolute value is needed in
the force equation to ensure that negative values of velocity will not be
raised to fractional powers. The free-dynamic mode of the LHA solution
is needed for the comparison with the nonlinear CSMP solution because a
specific load is involved. In the LHA free-dynamic mode, the power
absorbed by the load as a function of power piston velocity amplitude is
used in the FPSE/load matching analysis. A relaﬁionship for the power
absorbed by the nonlinear dashpot load in Eq. (4.3) can be derived in
closed form; this derivation is given in Appendix B.

The results of the comparison between the nonlinear CSMP and LHA
predictions for the RE-1000 base case are presented in Tables 4.5—4.7 for
three different dashpot load exponents: n = 1.5, 2.0, and 2.5. To make
a valid comparison, the CSMP numerical predictions were Fourier analyzed
to calculate cyclic averages, amplitudes, and phase angles. The calcula-
tion of the Fourier and PV integrals from the CSMP data was complicated
by the fact that the operating frequency and, therefore, the number of
time steps per engine cycle were not known at the beginning of CSMP com-
putations. Problems also occurred because there was no logic in the CSMP

solution to keep the power piston and displacer centered as helium leaked
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Comparison between nonlinear CSMP pred}ctions and LHA
free-dynamic mode predictions for F, = X, Xé‘s loads

Parameter Example A Example B Example C
Specified values
Fi, N —252.26 X1-5 —239.65 X1-5 —226.4 X1+5
— P P P
Vg, md 65.6 x 1076 65.5 x 1076 64.9 x 1078
V., m 105.2 x 1076 105.6 x 1078 106.2 x 1078
Vg, md 31.6 x 107° 31.6 x 107® 31.7 x 1076
Computed values

CSMP LHA CSMP LHA CSMP LHA
Xpas @ 0.01264 0.01263 0.01356 0.01355 0.01463 0.01466
£, Hz 29.39 29.36 29.41 29.38 29 .43 29.38
Xga» @ 0.01220 0.01218 0.01305 0.01304 0.01404 0.01406
By, deg 46.95 46 .89 47 .09 47 .06 47.31 47 .21
|p.|, Pa 1,083,200 1,084,000 1,162,200 1,163,000 1,254,100 1,256,600
Bpe, deg  —17.54 —17.12 —17.25 —16.87 —16.91 ~16.58
Ee, K 824.8 826.0 822.2 823.5 819.1 820.5
’fc, K 335.4 336.1 336.3 337.1 337.4 338.3
('zin, W 2710 2664 3110 3058 3605 3561
éout, W 1746 1708 2015 1973 2352 2313
Eout, W 964 956 1095 1085 1253 1248
Nies % 35.57 35.89 35.20 35.50 34 .75 35.05

past the gas seals.

cycles to achieve a steady state periodic solution.

The CSMP numerical integration

required 10 to 20

During this time,

enough preferential gas leakage occurred to cause the average volumes in

the expansion, compression, and displacer gas spring spaces to change

away from the RE-1000 base case values listed in Table 4.l1.

Preferential

leakage is accounted for in the comparison by calculating the actual

average volumes from the nonlinear CSMP predictions and using these CSMP
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Table 4.6. Comparison between nonlinear CSMP predictions and
LHA free-dynamic mode predictions for F1 = —kl Xg'o loads

Parameter Example D Example E Example F

Specified values

Fy, N —217.0 ig-O ~173.605 i§~° —147.0 ig-O

V., m3 65.9 x 1076 65.0 x 1076 64.1 x 1076
V., nd 104.6 x 1076 105.8 x 1078 106.9 x 1078
Vg, nd 31.6 x 1076 31.7 x 1076 31.8 x 1076

Computed values

CSMP LHA CSMP LHA CSMP LHA
Xpas ® 0.01080  0.01071  0.01299  0.01292  0.01483  0.01479
£, Hz 29.31 29.32 29.35 29.35 29.39 29.37
Xgge ™ 0.01049  0.01039  0.01254  0.01246  0.01425  0.01418
By, deg  46.75 46.58 47.16 46 .94 47.53 47.26
|p.|, Pa 926,000 920,000 1,117,200 1,107,700 1,275,500 1,266,300
Bpc, deg —18.21 —17.66 —17.04 -17.07 —~16.53 —16.57
i;, K 830.1 831.1 823.9 825.2 818.5 820.2
T,, K 333.0 334.1 335.1 336.5 336.9 338.5
Qo W 1980 1930 2831 2782 3662 3617
a ., 1246 1222 1811 1786 2375 2350
out
ﬁout’ 734 708 1020 996 1287 1267
Nies % 37.06 36.70 36.02 35.80 35.15 35.03

values in the corresponding LHA calculations. The average volumes used
in the LHA calculations are listed in Tables 4.5-%.7.

The mathematical accuracy of the LHA solution method should be
highest for FPSE configurations where the load force is most nearly har-
monic. The errors associated with the LHA assumptions should increase
for load forces that are far from harmonic. This trend is clearly evi-
dent in Tables 4.5—4.7. The nonlinear CSMP and LHA predictions are
nearly identical when the dashpot load exponent is n = 1l.5. The differ-

ences between the two solutions increase, but still remain rather small,
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X2+5 10ads
p

Comparison between nonlinear CSMP predictions and
free-dynamic mode predictions for F, = —%

Parameter Example G Example H Example 1
Specified values
Fi, N ~133.63 i§-5 —~121.48 %25 ~109.33 X2-%
Vg, m3 65.4 x 107 65.1 x 1076 64.8 x 1076
V., mS 105.2 x 107® 105.6 x 107® 106.0 x 1078
vy, md 31.6 x 107% 31.7 x 1078 31.7 x 1078
Computed values

CSMP LHA CSMpP LHA CSMP LHA
Xpa» © 0.01227 0.01213 0.01297 0.01283 0.01377 0.01364
£, Hz 29.29 29.35 29.31 29.35 29.33 29.37
Xga» ™ 0.01189 0.01172 0.01253 0.01238 0.01328 0.01312
By, deg 47.10 46.84 47.25 46.91 47.41 47.06
|p.|, Pa 1,059,900 1,041,400 1,116,300 1,100,700 1,185,500 1,169,500
Boo» deg  —16.81 —17.26 -17.10 —~17.09 —16.88 —16.87
Té, K 826.1 827.3 824 .1 825.5 821.8 823.3
'TC, K 338.8 335.6 334.5 336.4 335.2 337.2
'Ein, W 2531 2463 2816 2748 3162 3094
Q. 1594 1574 1783 1763 2014 1996
out
W, 937 889 1033 985 1148 1098
out
nNit, % 37.00 36.10 36 .69 35.83 36.32 35.49

as the load becomes more nonlinear.

Even when n = 2.5, the LHA predic-

tions differ from the CSMP predictions by a maximum of only —l.1% for

power piston amplitude, —1.47% for displacer amplitude, —0.35° for dis-

placer phase angle, —5.1% for indicated power output, and —0.90 percen-

tage points for indicated thermal efficiency.

These differences are

about equal to or less than the uncertainty associated with typical ex-

perimental measurements of these parameters.
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The comparison between the LHA and CSMP solutions can be seen more
clearly in Figs. 4.2 and 4.3. Figure 4.2 shows a plot of indicated power
output vs power piston velocity amplitude in a logarithmic format similar
to Fig. 3.2. Figure 4.3 shows frequency, displacer amplitude, and dis-
placer phase angle as a function of power piston amplitude. When the LHA
predictions from Tables 4.5—4.7 are plotted in the figures, they form
unique curves with almost no scatter because the nonlinear dashpot loads
are represented in the LHA method by equivalent linear dashpots. The
linearity of the load does not affect the LHA results. The scatter of
the CSMP data points in the figures indicates that the nonlinear CSMP
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Fig. 4.2. Logarithmic plot of CSMP and LHA predictions for
indicated power output vs power piston velocity amplitude.
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predictions are affected by the linearity of the load, though the effects
are fairly small. The general conclusion is that the LHA solution method
should have sufficient mathematical accuracy for most practical applica-
tions, even when the load has nonlinearities as strong as a dashpot with
an exponent of n = 2.5.

The comparison between the LHA and nonlinear CSMP solutions also
demonstrates the advantages that the LHA method has over numerical inte-
grations. Execution times for the CSMP time-stepping integration were
about 100 times longer than for the LHA solution. The iong CSMP execu-—
tion times were caused by two factors; short time steps were needed to
ensure numerical accuracy and 10 to 20 cycles were required to reach
steady state periodic solutions. When the LHA method is used, 100 dif-
ferent cases can be run in the same amount of time that it takes for a
single case using the nonlinear CSMP method. This computational effi-
ciency makes the LHA method ideal for optimization programs.

The LHA method also avoids problems with numerical instabilities
that can occur in time-stepping integrations. The CSMP solution was
found to be rather sensitive to the initial conditions that were selected
to start the integration; some sets of initial conditions caused the CSMP
integration to explode before a steady state periodic solution was found.
The stability of the CSMP numerical method was also dependent on the
linearity of the load. When CSMP solutions were attempted for linear
dashpot loads (n = 1), more than 50 cycles were needed for convergence to

steady state periodic solutiomns.

4.3 Adiabatic Cylinder Effects

Closed-form solutions to FPSE dynamic problems have been published
previously by Urieli and Berchowitz,8 Goldberg,® and others. These
analyses were based on the assumption that the expansion and compression
spaces in the engine behave isothermally, and gas springs were assumed to
be adiabatic. We find that a significant error can occur if an iso-
thermal calculation is used to represent a nearly adiabatic engine such
as the RE-1000 FPSE. The compression space pressure produces all of the
restoring (spring) force on the power piston in the RE-1000 engine, as is
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shown in the power piston force balance in Fig. 4.1. It was shown previ-
ously in ORNL/CON-155 (Ref. 1) that an isothermal analysis predicts a
smaller compression space pressure amplitude than an adiabatic analysis.
An isothermal analysis of the nearly adiabatic RE-1000 FPSE will there-
fore result in frequency predictions that are too low because the
compression space pressure amplitude prediction and associated power
piston spring force will be too small.

The errors associated with an isothermal analysis of an adiabatic
FPSE were demonstrated by using the LHA method to perform a sensitivity
study around the RE-1000 base case. LHA constrained piston amplitude
mode results are listed in Table 4.8 for cases where the expansion and

compression spaces are either isothermal (h + «) or adiabatic (h = 0) and

Table 4.8. LHA constrained piston
amplitude mode predictions for
RE-1000 base case with iso-
thermal or adiabatic
cylinders

Isothermal Adiabatic

Parameter cylinders cylinders
Specified values

Xpa’ m 0.01300 0.01300

hg, W/ (m?2:K) 0 0

hg, W/(m2ek) 1 x 108 0

h,, W/ (m2+K) 1 x 108 0
Computed values

f, Hz 26458 29.43

X4a> M 0.01127 0.01270

Bq»> deg 51.44 46 .88

|p.|, Pa 921,400 1,123,500

BPC’ deg —18044 —17-51

Wi W 814 1045

% 40.98 36.15
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the displacer gas spring is adiabatic. The frequency in the isothermal -
case is indeed —9.7% less than in the adiabatic case. Other predictions
for the isothermal case differ from the adiabatic predictions by —11.3%
for displacer amplitude, +4.56° for displacer phase angle, and —22.1% for
indicated power output. The low power output prediction is a combined-
effect of the low displacer amplitude and the low frequency.

The linearity of the load has a significant effect on the errors
created by an isothermal analysis of an adiabatic FPSE. Table 4.9 lists
LHA free—dynamié mode results for two nonlinear dashpot loads with dash-
pot load exponents of n = 1.5 and 2.5. The dashpot load coefficients
were selected so that the power absorbed by the dashpots matched the

Table 4.9. LHA free—dynamic mode predictions
for RE~1000 base case with isothermal
or adiabatic cylinders

n = 1.5; n = 1.5; n = 2.5; n = 2.5;
Parameter Isothermal Adiabatic Isothermal Adiabatic
cylinders cylinders cylinders cylinders

Specified values

— x1e5 .84 X185 . X2.5 _ . X2.5
Fi, N 254.84 X} 254.84 X 122.08 X7 122.08 X7
hg, W/ (m2K) 0 ‘ 0 0 0
hy, W/ (m2ek) 1 x 108 0 1 x 108 0
h., W/ (m2.k) 1 x 108 o 1 x 108 0

Computed values

Xpas @ 0.01312  0.01300 0.01394 0.01300
£, Hz 26.58 29.43 26.58 29.43
Xga> @ 0.01138 = 0.01270 0.01208 0.01270
By, deg 51.44 46.88 51.42 46.88
|p.|, Pa 930,000 1,123,500 988,200 1,123,500
Bpes deg —18.44 ~17.51 —18.42 —17.51
W W 829 1045 935 1045

Ny % 40.97 36.15 40.96 36.15
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power output of the adiabatic engine at a power piston amplitude of
0.013 me For n = 1.5, the isothermal prediction for power piston ampli-
tude is +0.9% larger than the adiabatic result; the error increases to
+7.2% for n = 2.5. This increased error in the power piston amplitude
reduces the indicated power output error from —20.7% for n = 1.5 to
—10.5% for n = 2.5.

The effects of adiabatic cylinders are seen to be a rather compli-
cated problem in free-piston Stirling engines. Adiabatic cylinders af-
fect both the thermal and dynamic performance of an engine, and the mag-
nitudes of these effects depend on the exact configuration of the FPSE
and the linearity of the load. An important advantage of the LHA almost
closed-form solution is its ability to account for adiabatic cylinders.
The LHA method can also account for all finite cylinder heat transfer

conditions between the isothermal and adiabatic extremes.

4.4 Sensitivity to Pressure Drop
and Seal Leakage Losses

One of the major losses in a Stirling engine is the pressure drop
loss in the regenerator and heat exchangers. Seal leakage losses can
also be rather large in free—piston designs that contain clearance seals
and gas centering ports. The LHA method can account for both pressure
drop and seal leakage losses; and like cylinder heat transfer, these
losses are included as a simultaneous part of the dynamic calculations.
The losses are not computed separately and then added to the thermo-
dynamic and dynamic calculations as they are in "second-order” analyses.
These losses are included in a "third-order”" manner, where all of the
interactions between the losses and the thermal and dynamic behavior are
accounted for. Some sample LHA calculations are presented in this sec-
tion to show how pressure drop and seal leakage losses affect FPSE
dynamic behavior.

The displacer force balance in Fig. 4.1 indicates that most of the
damping force on the displacer is produced by the pressure difference
between the compression and expansion spaces. 1If this pressure drop is

reduced, then the displacer damping force is reduced and the displacer
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amplitude should increase. The effect of reducing pressure drop is shown
in Table 4.10, where the middle column is the RE-1000 base case predic-
tions from Table 4.4, and the left and right columns are for higher and
lower pressure drops, respectively. Both displacer amplitude and phase
angle increase as the pressure drop is reduced. Indicated power and

efficiency also increase as expected.

Table 4.10. LHA constrained piston amplitude
mode predictions for the RE-1000 base
case that show the effect of
reducing pressure drop

More Less
Base
Parameters pressure case pressure
drop drop

Specified values

Xpas 0.01300 - 0.01300 0.01300
kpes (Pass)/kg 2.0 x 106 1.5 x 106 1.0 x 105
kpes (Pass)/kg 2.0 x 106 1.5 x 10® 1.0 x 108

Computed values

£, Hz 29.77 29 .44 28.60
Xgq, W ©0.01091  0.01260  0.01569
Bq» deg 43.47 46.68 49.33
|p.|, Pa 1,120,300 1,121,500 1,125,700
Bpes deg —11.80 —17.11  —26.03
wout, W 716 1020 1483

Nier % 31.43 35.76 39.51

These pressure drop trends have éome important implications abbut
the validation of FPSE computer codes. Many codes are "calibrated" to
experimental data by adjusting Ehelpressurg drop correlations so that the
indicated power and efficiency pf;dicpions agree with the expefimental
§alues. This procéss is fairly straightforward for'kinematic'Stirling

engines. However, the calibration process is more complicated for an
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FPSE dynamic code because the displacer amplitude and phase angle predic-
tions must also agree with the experimental data.

Pressure drop in the heater does not have the same effect on FPSE
dynamic behavior as pressure drop in the cooler. Even though the present
LHA model is rather simple with only three control volumes and two pres-—
sure drop coefficients in the working space, the effect of shifting pres-
sure drop from the heater to the cooler was simulated by lowering one
pressure drop coefficient (kpe) while raising the other (kpc)- The
results are listed in Table 4.11, where the middle column is again the
RE-1000 base case predictions. Displacer amplitude remains fairly con-

stant, but displacer phase angle and indicated power drop from left to

right.
Table 4.11. LHA constrained piston amplitude mode
predictions for the RE-1000 base case that
show the effect of shifting pressure
drop from the heater to the cooler
Pressure drop Base Pressure drop
Parameters shifted towards shifted towards
case
heater cooler
Specified values
Xpa’ m 0.01300 0.01300 0.01300
kpe» (Pass)/kg 2.0 x 108 1.5 x 108 1.0 x 108
kpes (Paes)/kg 1.0 x 108 1.5 x 10 2.0 x 108
Computed values

f, Hz 29.98 29.44 28.92
Xga> @ 0.01246 0.01260 0.01281
Bq» deg 50.54 46.68 43.31
IPCI, Pa 1,166,400 1,121,500 1,080,900
Bpcs deg —~17.57 —17.11 —16.81
Woutr W 1109 1020 950
n 7% 35.98 35.76 35.68
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The results from the left and right columns of Table 4.11 are shown
more clearly in Fig. 4.4, where the displacer force balances are plotted
in vector diagrams. The magnitude of the pressure drop force remains
fairly constant, but the phase of the force with respect to displacer
motion changes as pressure drop shifts from the heater to the cooler.
Figure 4.4 indicates that the pressure drop force on the displacer has
both damping and inertial components. Some second-order dynamic analy-
ses, such as one published by Martini,!"% assume that pressure drop pro-
duces a pure damping force on the displacer. This assumption differs
significantly from the behavior revealed by the LHA predictions, and it
does not account for changes in the phase angle of the pressure drop
force as pressure drop shifts from the heater to the cooler. Once again,
this demonstrates how errors can occur when the thermodynamic losses are
not included as a simultaneous part of the dynamic calculations.

The final LHA example is for power piston seal leakage. The com-
pression space in the RE-1000 FPSE is separated from the bounce space by
a clearance seal on the power piston. The effect of reducing helium
leakage past the power piston seal is shown in Table 4.12. Displacer
phase angle experiences a moderate reduction, while compression space
pressure phase angle and indicated power and efficiency increase sig-
nificantly. Because power piston seal leakage appears to have only a
minor effect on the dynamic predictions, adjustment of the leakage cor-
relation might provide a good way to calibrate FPSE computer codes so
that indicated power and efficiency predictions agree with experimental

values.
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LHA constrained piston amplitude

mode predictions for the RE-1000 base case
that show the effect of reducing

power piston seal leakage

More Base Less
Parameters seal ase seal
leakage ¢ leakage
Specified values
Xpa, n 0.01300 0.01300 0.01300
k., kg/(Paes) 10.8 x 1079 6.8 x 1079 2.8 x 1079
Computed values
f, Hz 29.89 29.44 28 .82
Xgas ™ 0.01267 0.01260 0.01250
Bqs deg 49.74 46.68 43.93
|p.|, Pa 1,132,700 1,121,500 1,106,400
Bpes deg —12.65 —17.11 —21.73
Wour» ¥ 779 1020 1240
Nips % 26 .80 35.76 44,68
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5. SUMMARY AND CONCLUSIONS

An almost closed-form solution method, the linear harmonic analysis,
has been developed for the combined thermodynamic/dynamic problem that is
associated with free-piston Stirling engines. The governing equations
are differential because most of the parameters describing an FPSE (pres-
sure, temperature, piston position, etc.) are time-dependent. The LHA
method is based on three primary assumptions: (1) linearization of the
ideal gas law, (2) representation of all time-dependent variables with
harmonic functions, and (3) replacement of terms in the governing equa-
tions that contain products of harmonic functions with truncated Fourier
series. The assumptions reduce the problem to a system of almost linear
algebraic equations that are solved using standard matrix algebra, with
iterations as required. The motivation for developing this simplified
analytical method was not that it saves computer time (although it does
do that), but that it reveals causes and effects much more effectively
than a column of numerical output.

The present version of the LHA method was developed for the RE-1000
FPSE configuration. The RE-1000 engine contains a single power piston
and a displacer sprung to the engine housing. The working space of the
engine is divided into only three control volumes, and motion of the
engine housing is neglected. However, the LHA method is not limited to
such a simple representation, and more control volumes or dynamic equa-
tions could be added if they were desired. Cylinder heat transfer, pres-
sure drop, and seal leakage losses are all included in the present ver-
sion of the LHA. These losses are not calculated separately and then
added to the analysis. They are included as a simultaneous part of the
thefmodynamic/dynamic calculations so that all of the interactions be-
tween the losses, thermal performance, and dynamic behavior are accounted
for.

The time required for execution of the free—-piston dynamic version
of the LHA method is about 100 times less than the execution time re-
quired for an equivalent numerical integration method. Even with its
speed, the LHA method has sufficlent mathematical accuracy for most prac-

tical Stirling engine applications. The mathematical accuracy of the LHA
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assumptions was verified by independently solving the same nonlinear
equations using a numerical integration method and comparing the results
with the LHA solution. The differences between the LHA and numerical
predictions were <5% for all important parameters, which is about equal
to or less than the uncertainty associated with typical Stirling engine
experimental measurements. This combination of computational speed and
mathematical accuracy makes the LHA method ideal for FPSE optimization
programs.

In addition to speed, the LHA method has other advantages over time-
stepping integration methods. Numerical techniques usually require some
artistic guesswork to select step sizes and initial conditions so that
the solution is numerically stable, mathematically accurate, and con-
verges quickly to a periodic steady state. The closed-form analytical
approach of the LHA method avoids these problems. The LHA method does
require iterations, but the assumption of isothermal cylinders provides a
good starting point for the calculations, and LHA convergence usually
occurs in <20 iterations.

The LHA method also has advantages over other linear closed-form
solution methods that have been developed for FPSE dynamic problems. All
previously published closed-form solutions are second-order analyses
where the losses are treated separately. The LHA method is a third-order
analysis where the losses, as well as their interactions, are included
intrinsically in the FPSE dynamic solution. Sample LHA calculations have
shown that substantial errors in predicting dynamic behavior can occur if
an isothermal calculation is used to represent an adiabatic FPSE. LHA
predictions have also indicated that unrealistic assumptions about the

pressure drop losses can lead to additional errors.
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Appendix A

IMPERFECT HEAT EXCHANGER ANALYSIS

An analysis of imperfect heat exchangers published by Urieli and
Berchowitz! has been adapted for use with the LHA method. The analysis
is based on a simplified approach, where heat transfer in the regenerator
and heat exchangers 1s assumed to occur during two steady flow processes:
(1) the hot blow from the expansion to the compression space and (2) the
cold blow from the compression back to the expansion space. An effec-
tiveness—number of transfer units (NTU) method is used to perform the
heat transfer calculations. The LHA version of the imperfect heat
exchanger analysis is described in this appendix. Some sample calcula-

tions are also presented.

A.1 Heat Transfer Equations

The nomenclature for the heat transfer analysis is shown in
Fig. A.l1. The expansion space, heater, cooler, and compression space
wall temperatures are all assumed to be uniform and constant with respect
to time. The regenerator wall temperature has a linear distribution, but
the local temperature is constant with respect to time. The steady state
hot blow starts at temperature Ty and ends at Ty The cold blow starts
at TKI and ends at Ty The heater, regenerator, and cooler effective-
nesses are assumed to be identical during the hot and cold blows, and
they are defined as

Tu2 = Tur Tw— Tus

ey = = , (A.1)

wi ~ Tm Tum — Tys

o2 m e T T Te (8.2)
= = » .
RO Ty = Teo T = Tko

T
K3 K K1 K2
£ = = . (Ao3)

K3 TwK K1 TwK
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Fig. A.l. Gas and wall temperature nomenclature for imperfect heat
exchanger analysis.

In the present version of the LHA, the three effectivenesses must be
specified as part of the input data because heat transfer correlations
have not yet been added to the analysis. If correlations are added, heat
transfer effectiveness can be calculated from the simple NTU equations
published by Urieli and Berchowitz.!

The imperfect heat exchanger analysis affects the LHA predictions in
two ways. First, the gas temperatures leaving the heat exchangers are no
longer equal to the heater and cooler wall temperatures, which reduces the
effective temperature ratio of the engine such that (TH/TK) < (E;H/T;K)'
Second, there is a regenerator reheat loss that is caused by gas entering

the regenerator at a temperature different from that when it leaves.
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This regenerator reheat loss from the heater to the cooler ﬁR does not
change the indicated power of the engine. However, it does increase the
heat input and heat output so that the overall energy balance becomes

Qin = We + Hp ,

éout = “dc —'ﬁs + Hg , (A.4)

out=We+Wc+WS.

The gas temperature at the beginning of hot blow Ty; is determined
by calculating the average temperature of the gas that flows from the
éxpansion space into the heater. The cyclic average expansion space

enthalpy flux was derived in ORNL/CON-155 (Ref. 2) as

— E Y dm* dm*
* = & = T:_——edt*+j T’ﬁ—idt* , (A.5)
€ @ Tw 2n dm* < 0 de* dm* > 0 dt*

and after evaluation of the integrals,
He = Z1(1)(Ty — Te) + 21(2) , (A.6)

where Z1(1) and Z1(2) were defined in ORNL/CON-155 (Ref. 2) [Egqs. (3.83)
and (3.84)]. Tyy 1s calculated by replacing T: with (THI/E;) in

Eq. (A.5), setting Eq. (A.5) equal to Eq. (A.6), and solving for Tyy »
After evaluation of the integrals and simplification, the result is

Z1(1(Ty — T,) = Z1()(T, = T)) + 21(2) , (A.7)
or
_= _Z1(2)
Tm = T — z1(Dy ° (A.8)
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A similar procedure for the compression space yields

L= Z1(4)
TKl = TC —m—)- ’ . (A.9)

where Z1(3) and Z1(4) were defined in ORNL/CON-155 (Ref. 2) [Egqs. (3.85)
and (3.86)].

After the temperatures at the beginning of the hot and cold blows
are known, the other heat exchanger gas temperatures are calculated from
the effectiveness definitions in Eqs. (A.1)—(A.3), recalling that the

three effectivenesses are treated as specified constants,

Ty = €Ty + (1 — eH)THl R (A.10)
Ty = exTux * (1 = €T » | (A.ll)
TH3 = sRTHZ + (1 —-eR)TK2 , (A.12)
Tes = €Ty * (1 — sk)THz , (A.13)
Ty = Ty * (1 — €)Tyg » (A.14)
Ty = eKTwK + (1 =€ )Tq « (A.15)

Two final equations result from the expansion and compression space
average energy balances that were presented in Eq. (3.27). The energy
balances are used to calculate the expansion and compression space aver-

age gas temperatures,

. Z1(1)T, + 21(2) +h A T -V

Te _ H f-se we e , (A.16)
Z1(1) + h A__

_ ZI(®T, + z1(4) +h AT —Ww

Tc - K C sC wC c . (A.17)

Z1(3) + hcASc
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Equations (A.8)-(A.17) are a system of ten algebraic equations with
ten unknown gas temperatures that are solved iteratively. The first
eight equations are solved at the beginning of an iteration. Then the
matrix calculations are performed to determine Yy» ¥, etce Equations
(A.16) and (A.17) are solved at the end of an iteration, as they were
when perfect heat exchangers were assumed. The first iteration is initi-

ated by assuming

Ton K

T =T =

+T
2 hd . (A018)

Other assumptions made during the first iteration, but after Ty and Ty

are calculated the first time, are

Te = TH »
TC = TS = TK . (Anlg)

The gas temperatures in the heater, regenerator, and cooler depend
on the heat transfer effectiveness of these components. The effective-

ness—NTU equation for the heater will have the form
eg=1—e R (A.20)
or

NTUy = —In(l — eg) . (A.21)

The local heater gas temperature during the hot blow THhot is a function
of axial position in the heater as shown in Fig. A.l. This is expressed
analytically as

T - T -(X_./L.)NTU
H "H H
M:E){H=l_e , (A-ZZ)
T ~—T
wH Hl

where the local heater effectiveness eyy depends on the cumulative heater



64

surface area, which is proportional to (Xy/Lg). When Eq. (A.21) is sub-
stituted into a simplified version of Eq. (A.22), the result is

_ (X, /L) In(1— )

Tahot = Twn — Twn — Ty’ © . (A.23)

The average heater gas temperature during the hot blow is found by

calculating an average over the length of the heater,

1 X
— H
THhot - /; THhot d (fﬁ) ¢ (A.24)

The result is

€

= = = H

Tahot = Twn * (T — THI) Tn(l = _'eH) . (A.25)
The result for the cold blow is similar,

—_ — — EH

Tyeotd = Twn * (Tum —'THB) In(l —¢) ° (A.26)

H

The cyclic average heater gas temperature is defined as the average of

the hot and cold blows, and the result is

T + T \ €
— — + (— H1 H3 H (A.27)

Tan — 2/ In(l —¢)) )

A similar procedure for the cooler yields the cyclic average cooler gas

temperature

T,, + T €
= = = KL * k3 K
g = Tx * <Tw1< -T2 > (1l —ep) ' (4.28)
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The regenerator matrix wall temperature is the mean of the hot and

cold blow gas temperatures in the regenerator

A Ta2 * T3
wRH ’
(A.29)
. Teo + Ty
wRK 2 ’

as shown in Fig. A.l. The cyclic average regenerator gas temperature is
defined in terms of these matrix wall temperatures. A mass weighted
average that accounts for different gas densities at the hot and cold
ends of the regenerator results in a logarithmic mean,

= Torn ~ Turk

T =
R ln(TwRH/TwRK

y - (A.30)

The average gas temperatures in the heater, regenerator, and cooler

are needed to calculate the average mass of gas in the dead volume,

PW

Hl|m<:l

=2}
PC’HI |W<I

. (A.Bl)

B

il

=
=] | o ]

K

The average mass of gas in the dead volume is used in the matrix calcu-
lations to determine Yy Yoo etc.

The regenerator reheat loss calculation is based on the mass flow
rate at the middle of the regenerator. To determine this flow rate, an
expression is needed for the mass of gas in the hot end of the working
space, My, which includes the expansion space, heater, and hot half of
the regenerator. m,y is defined in terms of the mass of gas in the

expansion space and the hot end of the dead volume

B
i
=
+
B
]

m m* n *
wH e — a = BeWe T Paymy o (A.32)
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where
P [V, V
- wf H R
g =Rl = + — (A.33)
T 2T
H RH
is the average mass of gas in the hot end of the dead volume,
T - T
= wRH wRM
T = . . (Ao34)
RH ln(TwRH/TwRM) s .

is the average gas temperature .in the hot half of the regenerator, and

T~ 5 (A.35)

is the matrix wall temperature at the middle of the regeﬁerator.‘ When
Eq. (3.26) for mg and mg are substituted into Eq. (A.32), the result
after simplification is

- —- — - *
m oy = (me + de) + (mey1 + dey3)sin t

. — *
+ (meyz + mygy,)cost . (A.36)

The regenéfator reheat loss per cycle is equal to the total enthélpy
of the gas passing through the middle of the regenerator during the hot
blow minus the totéllenthélpy of the gas passing through the middle of
the regenérator during the cold blow. Therefore, the regenerétor reheat

loss rate is
fig = £ 2|mgy|cp(Tyy — Ty3) » 7 (A37)

where 2|me| is the mass of gas flowing through the middle of the regen-

_erator during each half cycle, and

_ _ 2 _ 211/2
|my | = -[(meyl *mgpys) + (my, + mgyy,) ] (A.38)
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is the amplitude of the mass of gas in the hot end of the working space.
The regenerator enthalpy flux rate is calculated after the matrix calcu-

lations are performed to determine Yo Yy etc.

A.2 Sample Results

Some sample LHA imperfect heat exchanger predictions are listed in

Table A.l. The first column is the RE-1000 base case predictions from

Table A.1. LHA constrained piston amplitude
mode predictions for RE-1000 base case

with imperfect heat exchangers

Imperfect Imperfect
Base Imperfect
Parameters heater, regenerator,
case regenerator
cooler heater, cooler
Specified values
Xpgs ™ 0.01300 0.01300 0.01300 0.01300
T K 853.0 853.0 853.0 853.0
Tx» K 326.0 326.0 326.0 326.0
e % 100 100 75 75
eps 100 97 100 97
egs % 100 100 75 75
Computed values

f, Hz 29 .44 29 .45 29.49 29.56
X4q> 0.01260 0.01261 0.01257 0.01253
By, deg 46 .68 46 .67 46 .84 47 .14
Ty, K 853.0 853.0 848.9 844.9
Tgs K 326.0 326.0 327.7 331.7
ﬁR, W 0 599 0 573
Qs W 2852 3456 2851 3421
Qoyes M 1832 2434 1846 2443
Woier W 1020 1022 1005 978

Nips % 35.76 29.56 35.24 28.59
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Table 4.4. The second column is for an imperfect regenerator. The third
column is for an imperfect heater and cooler. The last column is for the
combined effects of an imperfect regenerator, heater, and cooler. The
imperfect heat exchangers have almost no effect on the dynamic behavior
of the engine. The 75% heater and cooler effectivenesses also appear to
have only a minor effect on the thermodynamic behavior of the engine, as
is seen in the last-two columns where the effective tempefaturévratio of
tﬁe enginé'(TH/TK)'is only slighﬁly lesé than the actual temperature
ratio (TQH/EQK)' o

The regenerator heat transfer effectiveness has a significant impact
on the thermodynamic performance of the engine. A comparison between the
first two coluﬁns of fabie A.l shows that a.3.0 percentage point drop in
regenerator effectiveness results in a 6.2 percentagelpoint drop in indi-
cated thermal efficiency. The selection of a regenerator for a Stirling
engine involves a trade—off between the reheat losses and the pressure
drop losses. Optimized regenerator designs usually result in large pres-
sure drops to avoid the substantial thermal losses associated with imper-

fect heat transfer in the regenerator.
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Appendix B

NONLINEAR DASHPOT EQUATIONS

A relationship is derived in this appendix for the power absorbed by
a generalized nonlinear dashpot load that is driven sinusoidally. The
nonlinear dashpot load force acting on the power piston F; is expressed

analytically as a function of power piston velocity ip in a form
F) = kX (abs %)™, (B.1)

where kj is the load coefficient, n is the load exponent, and the abso-
lute value is needed to ensure that negative values of velocity will not
be raised to fractional powers. The derivation is for sinusoidal power
piston motion

X
p

Xpa sin(wt) ,
(B.2)

X
P

pra cos{wt) .

The instantaneous power absorbed by the load WI is equal to the

negative of force times velocity,

The average power absorbed by the load Wl is calculated by averaging over

a cycle

- 1 3n/2 .

w = —— —’F d t 3 .
1 o _"/2 ( IXP) (‘1) ) (B 4)

When Eq. (B.l) for a generalized nonlinear dashpot load is substituted

into Eq. (B.4), the average load power becomes

3n/2
Ky

a . [ —1
Wy = = X2 (abs X )™ d(wt) . B.5
1 = 57 p (abs X)) (wt) (B.5)

—n/2
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The integral must be split in half so that the absolute value can be

eliminated from the equation,

= ky "/2 1
0 - . .2 (] n-—
W, = or] Ln/z Xp (abs Xp‘) d(mj:)
3n/2 . n-1
+f 2 (abs )" aque)| . (5.6)
,"./2 p /p

ip is positive between —m/2 and w/2. The absolute value can therefore be
deleted from the left-hand integral. ip is negative between /2 and 3n/2,
but i; and abs ip in the 7/2 to 3w/2 region are positive and equal to -

ig and ip in the —n/2 to n/2 region.  The right-hand integral is there-
fore identical to the left-hand integral. After these simplifications,
Eq. (B.6) becomes

W = —lj i;“ d(wt) . (B.7)

" J/2
Substitution of Eq. (B.2) into (B.7) yields

— k. (wX )n+1 n/2 | ;
W, = ——Pa [ cos™ L (ut) d(ut) . (B.8)

" —n/2

The integral in Eq. (B.8) can be evaluated directly in terms of the

gamma function T, and the result is

_ 1‘(5 + 1)
o=k (0 X )n+l 2n
pa /ar (5 + 1.5)

=k . | (B.9)

The constant term in Eq. (B.9) has been evaluated for some selected
values of the dashpot load exponent, and the results are listed in Table

B.l.
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Table B.l. Numerical values for
the constant term in Eq. (B.9)
for some selected values of
the dashpot load exponent

n

r(§+ 1)

n
YarT (32‘-+ 1.5)

1.0 0.50000
1.5 0.45765
2.0 0.42441
2.5 0.39744

3.0 0.37500
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Appendix C

NOMENCLATURE

Displacer cross-sectional area (m2)

Power piston cross-sectional area (m?2)

Displacer rod cross-sectional area (m?2)

Wall heat transfer surface area in compression space (m?2)
Wall heat transfer surface area in expansion space (m?)

Wall heat transfer surface area in displacer gas spring

(m2)

Dimensionless volume constants defined in Eq. (3.7) and
in ORNL/CON-155 (Ref. 1) [Eq. (3.17)]

Dimensionless area constants defined in Eq. (3.9)
Equivalent load damping coefficient [(Nes)/m]
Equivalent load spring coefficient (N/m)

Specific heat at constant pressure [J/(kg+K)]
Specific heat at constant volume [J/(kgeK)]

i,j =1, 2, ««. 18, Matrix elements defined in Egs.
(3.33) and (3.34)

n=1, 2, ««. 9, Fourier correction factors

Force on the power piston produced by the load (N)
Frequency (Hz)

Enthalpy flux rate into the compression space (W)

Enthalpy flux rate into the expansion space (W)

Regenerator reheat loss from heater to cooler (W)
Enthalpy flux rate into the displacer gas spring (W)

Cylinder wall to gas heat transfer coefficient in com-
pression space [W/(m2+K)]

Cylinder wall to gas heat transfer coefficient in expan-—
sion space [W/(m2+K)]

Cylinder wall to gas heat transfer coefficient in dis-
placer gas spring [W/(m2+K)]

Nonlinear dashpot load coefficient

Mass leakage coefficient between compression and buffer
spaces [kg/(Paes)]

Mass leakage coefficient between displacer gas spring and
buffer spaces [kg/(Pass)]
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Pressure drop coefficient between compression and dead
spaces [(Pa+s)/kg]

Pressure drop coefficient between expansion and dead
spaces [(Pa+s)/kg]

Length of heater tubes (m)

Mass of
Mass of

Average

- Mass of

Mass of
Mass of
Mass of
éyeragg

m_=m
w e

Mass of

gas in compression space (kg)

gas in dead space (kg)

mass of gas in hot end of dead space (kg)
displacer piston (kg).

gas in expansion space (kg)

power piston (kg)

gas in displacer gas spring (kg)

total mass of gas in working space,

+ Eh + E; (kg)

gas in hot end of working space (kg)

Number of transfer units for entire heater

Nonlinear dashpot load exponent

Pressure in compression space (Pa)

Pressure in dead space (Pa)

Pressure in expansion space (Pa)

Pressure in displacer gas spring (Pa)

Average

Average

Average

pressure in working space_(Pa)

total heat input rate (W)

total heat output rate (W)

Heat transfer rate from cylinder wall to gas in compres-
sion space (W)

Heat transfer rate from cylindér wall to gas in expansion
space (W) :

Heat transfer rate from cylinder wall to gas in displacer
gas spring (W) C

Gas constant [J/(kg+K)]

Gas temperature in compression Space (X)

Enthalpy flux temperature between compression and dead
spaces (K)

Average

gas temperature in dead space,

Tg = Vg/[Vy/Ty + VR In(Ty/Tg)/(Tg — Tg) + Vg/Txl (K)

Gas temperature in expansibn space (K)
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Enthalpy flux temperature between expansion and dead

spaces (K)

Average temperature of gas flowing from heater to expan-

sion space (K)

Average gas temperature in

heater (XK)

Local gas temperature 1n heater during cold blow (K)

Local gas temperature in heater during hot blow (X)

Average temperature of gas
to heater (K)

Average temperature of gas
erator (K)

Average temperature of gas
heater (K)

Average temperature of gas
pression space (K)

Average gas temperature in

Average temperature of gas
to cooler (X)

Average temperature of gas
erator (K)

Average temperature of gas
cooler (K)

Average gas temperature in

Average gas temperature in

flowing from

flowing from

flowing from

flowing from

cooler (K)

flowing from

flowing from

flowing from

expansion space

heater to regen-—

regenerator to

cooler to com-

compression space

cooler to regen-

regenerator to

regenerator (K)

hot half of regenerator (K)

Gas temperature in displacer gas spring (K)

Enthalpy flux temperature between displacer gas spring

and buffer spaces (K)
Average wall temperature
Average wall temperature
Average wall temperature

Average wall temperature

in heater (X)

in cooler (K)

in compression space (K)

in expansion space (K)

Matrix temperature at hot end of regenerator (K)

Matrix temperature at cold end of regenerator (K)

Matrix temperature at middle of regenerator (X)

Average wall temperature in displacer gas spring (K)

Time (s)

Compression space volume (m3)
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Average volume in compression space with pistons at mid-
strokes (m3)

Constant. dead space volume, Vh = ?k + Vﬁ + Vﬁ (m?d)
Expansion space volume (m3)

Average volume in expansion space with pistons at mid-
strokes (m3)

Constant heater volume (m3)
Constant cooler volume (m3)
Constant regenerator volume (m3)
Displacer gas spring volume (m3)

Average volume in displacer gas spring with pistons at
midstrokes (m3)

PV power by gas in compression space (W)

PV power by gas in expansion space (W)

Power absorbed by nonlinear dashpot load (W)
Average total power output (W)

PV power by gas in displacer gas spring (W)
Displacer position, zero at midstroke (m)
Displacer amplitude, 1/2 displacer stroke (m)

Maximum displacer amplitude allowable by mechanical con-
straints (m)

Axial position in heater from expansion space end of
tubes (m)

Power piston position, zero at midstroke (m)
Power piston amplitude, 1/2 power piston stroke (m)

Maximum power piston amplitude allowable by mechanical
constraints (m)

n=1, 2, «.. 18,.Amplitude of harmonic components
defined in Eq. (3.26)

n=1, 2, ¢es 6, Defined in Eq. (3.29) and in ORNL/CON-
155 (Ref. 1) [Eqs. (3.83)—(3.86)]



Superscripts

Greek

®high

®
low

77

Average over a cycle
Derivative with respect to time or d/dt
Second derivative with respect to time or d2/dt?2

Dimensionless quantities defined in Egs. (3.2) to (3.11)
and in ORNL/CON-155 (Ref. 1) [Eqs. (3.10)—3.18)]

Amplitude of a variable

Displacer phase angle relative to power piston (deg)

Compression space pressure phase angle relative to power
piston (deg)

Ratio of specific heats of gas, Yy = cp/cv

Heat transfer effectiveness of entire heater

Heat transfer effectiveness of entire cooler

Heat transfer effectiveness of entire regenerator

Heat transfer effectiveness of portion of heater between
expansion space end of tubes and position Xy

Indicated thermal efficiency
(3.35)

Temperature ratio associated with compression space,

Defined in Eq.

T, = (TK + Tc)/2TC

Temperature ratio associated with expansion space,

T, = (Ty + T)/2T,

Temperature ratio associated with displacer gas spring,
Ty = (T + T )/2T

Angular frequency (rad/s)

Upper boundary for frequency root—-finding routine (rad/s)

Lower boundary of frequency root-finding routine (rad/s)

Reference

1. N. C. Je. Chen, F. P. Griffin, and C. D. West, Linear Harmonic Analy-
sie of Stirling Engine Thermodynamice, ORNL/CON-155, Martin Marietta

Energy Systems,

Inc., Oak Ridge Natl. Lab., August 1984.
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Appendix D

COMPUTER PROGRAM: LHA VERSION 1

A computer program, called ﬂHA-Version 1 (LHAl), was written in
FORTRAN to perform the sample LHA calculations for the RE-1000 FPSE con-
figuration. The computer code was developed mainly to prove the prin-
ciple of the LHA solution method. Since the development of user-friendly
software was not one of the LHA project objectives, the FORTRAN code
contains few comment cards. The thermodynamic calculations contained in
the LHA] program were discussed previously in ORNL/CON-155 (Ref. 1), and
the dynamic and imperfect heat exchanger calculations are discussed in
this report. The FORTRAN variable names used in LHAl are similar to the
nomenclature used in the two reports. This appendix contains a short
description of the LHAl program, the program listing, and the input data
and FORTRAN output for the RE-1000 base case.

Two FORTRAN subroutines called DECOMP and SOLVE are used to perform
the matrix calculations. The compiler must supply these subroutines from
a standard FORTRAN library. All real variables in the LHAl program are
declared REAL*8 because the DECOMP and SOLVE subroutines are written in
double precision. LHAl is written entirely in SI units (kg, m, s), which
avoids the need for unit conversions in the program.

The LHAl program is set up for batch execution. All FORTRAN vari-
ables that must be specified in the input data are contained in a single
NAMELIST called INPUT, so that a NAMELIST convention for READ statements
can be used. Comment cards at the beginning of the program define all of
the variables in INPUT. There are two READ statements in the LHAl pro-
gram. The first READ is executed only once, and it is used to initialize
all of the variables in INPUT. A value should be assigned to the integer
variable ILOOP when the first READ is executed because ILOOP defines the
number of times that a large loop (DO 5) is executed. The loop DO 5
contains the second READ and the entire program including output state-
ments, and it enables multiple cases to be executed from a single job.

The LHAl program is designed to handle either kinematic or free-
piston calculations. The appropriate option is selected by changing the

integer variable IMODE in the input data. In kinematic mode (IMODE = 1),
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the piston motions are defined by specifying the variables FH, XPAXPM,
BDD, and XDAXPA. The variables FHLOW, FHHIGH, FHTOL, MPP, MDP, and BLD
should be specified nonzero, but they are not used in kinematic mode. 1In
free-piston mode (IMODE = 3), the power piston amplitude and the load
force phase angle are defined by specifying XPAXPM and BLD, and the fre-
qﬁency root-finding routine is initialized by specifying FH, FHLOW,
FHHIGH, and FHTOL. The variables BDD and XDAXPA should be specified
nonzero, but BDD, XDAXPA, and FH are calculated from the dynamic

equations in free-piston mode.
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D.1 LHAl Program Listing

IMPLICIT REAL*8(A~H,K-Z)
DIMENSION [PVT(18),D(18,18),Y(18),21(18),FF(9)
DEFINITIONS OF VARIABLES IN NAMEL IST/INPUT/

AD
VEAVG
VHAVG
VRAVG
VKAVG
VCAVG
VSAVG
ASEAVG
ASCAVG
ASSAVG
MPP
MDP
FH
FHLOW
FHHIGH
FHTOL
XPAXPM
BDD
XDAXPA
PWAVG
TWHAVG
TWEAVG
TWKAVG
TWCAVG
TWSAVG
KMC
KPE
KPC

HE

HC

KMS
HS

I MODE
I TER
EPSH
EPSR
EPSK

J/ (KG*K)
J/ (KG*K)
M

M

M2
M¥%2
Mx%2
M3
M¥%3

Mx %3
M¥%3
M¥*%3
M¥%3
M2

G

=

RARXXXX3!

KG/ (PA%S)
(PA*S)/KG
(PAXS)/KG
W/ (M*%2%K )
W/ (M¥*%2%K)
KG/ (PA%S)
W/ (M*¥2%K)

GAS CONSTANT

CONSTANT PRESSURE SPECIFIC HEAT OF GAS
MAX|MUM AMPL ITUDE OF POWER PISTON

MAXIMUM AMPL ITUDE OF DISPLACER

CROSS-SECT IONAL AREA OF POWER PISTON
CROSS-SECT [ONAL AREA OF DISPLACER ROD
CROSS-SECT IONAL AREA OF DISPLACER

AVERAGE VOLUME IN EXPANSION SPACE

CONSTANT VOLUME IN HEATER

CONSTANT VOLUME IN REGENERATOR

CONSTANT VOLUME IN OOOLER

AVERAGE VOLUME IN OOMPRESSION SPACE

AVERAGE VOLUME IN GAS SPRING

HEAT TRANS SURFACE AREA IN EXPANSION SPACE
HEAT TRANS SURFACE AREA IN COMPRESSION SPACE
HEAT TRANS SURFACE AREA IN GAS SPRING

MASS OF POWER PISTON

MASS OF DISPLACER

FREQUENCY

FREQUENCY ROOT-FINDING LOWER BOUNDARY
FREQUENCY ROOT-FINDING UPPER BOUNDARY
FREQUENCY ROOT-FINDING TOLERANCE

POWER PISTON AMPL ITUDE DIV IDED BY XPMAX
DISPLACER PHASE RELATIVE TO POWER PISTON
DISPLACER AMPL DIV IDED BY POWER PISTON AMPL
AVERAGE PRESSURE IN WORKING SPACE

AVERAGE WALL TEMPERATURE IN HEATER

AVERAGE WALL TEMPERATURE IN EXPANSION SPACE
AVERAGE WALL TEMPERATURE IN COOLER

AVERAGE WALL TEMPERATURE IN OOMPRESSION SPACE
AVERAGE WALL TEMPERATURE IN GAS SPRING
MASS LEAK COEF BETWEEN COMP AND BUFFER SPACES
PRES DROP COEF BETWEEN EXP AND DEAD SPACES
PRES DROP COEF BETWEEN COMP AND DEAD SPACES
HEAT TRANS COEFICIENT IN EXPANSION SPACE
HEAT TRANS COEFICIENT IN COMPRESSION SPACE
MASS LEAK COEF BETWEEN GS AND BUFFER SPACES
HEAT TRANS COEFICIENT [N GAS SPRING

CONTROL INTEGER: KINEMATIC=1, FREE-PISTON=3
MAXIMUM NUMEER OF ITERATIONS PER CASE

HEAT TRANS EFFECTIVENESS OF ENTIRE HEATER
HEAT TRANS EFFECTIVENESS OF ENTIRE REGEN
HEAT TRANS EFFECTIVENESS OF ENTIRE COOLER
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BLD DEG LOAD FORCE PHASE RELATIVE TO POWER PISTON:
PURE DISSIPATION =-90.

ILOOP - NUMBER OF CASES PER JOB

NAMELIST/INPUT/R CP, XPMAX, XDMAX, AP, AR, AD, VEAVG, VHAVG, VRAVG
C, VKAVG, VCAVG, VSAVG, ASEAVG, ASCAVG ASSAVG MPP MDP, FH, FHL OW
C, FHHIGH, FHTOL XPAXPM, BDD, XDAXPA FWAVG TWHAVG TWEAVG TWKAVG
C, TWCAVG, TWSAVG KMC, KPE KPC HE, HC KMS, HS, IMODE, | ITER, EPSH, EPSR
C, EPSK, BLD, ILOOP

SPECIFIED PARAMETERS

IDIM=18

ILOOP=1

READ(5, INPUT)
DO 5 IL=1,ILOOP
READ(5, INPUT)

CALCULATED PARAMETERS

Cv=CP-R

G=CP/CV

GM1=G-1.

VWAV G= VEAV G+ VHAV G+ VRAV G+ VKAV G+ VCAV G
A1=AD*XPMAX/VEAVG
A2=(AD-AR)*XPMAX/VCAVG
A3=AP¥XPMAX/VCAVG

M=AR*¥XPMAX/VSAVG

A11=AD/AP

A12=AR/AP

A13=(AD-AR)/AP

P1=3.141592654

FR=FH¥*2.%P|

FRLOW=FHLOW*2.¥P|
FRHIGH=FHHIGH¥*2.*P|

FRTOL=FHTOL *2.*P |

BLR=BLD/180.%P|

Z2H=0.

IF(EPSH.LT.0.000001) Z2H=-1, -
IF(EPSH. GE.0.000001 . AND. EPSH. LE. 0.999999)

C Z2H=EPSH/DLOG(1.-EPSH)

Z2K=0.
IF(EPSK.LT.0.000001) Z2K=-1.
IF(EPSK. GE.0.000001.AND. EPSK. LE.0.999999)

C Z2K=EPSK/DLOG(1.-EPSK)
ITERATIVE LOOP FOR CALCULATION OF FOURIER CORRECTION FACTORS,

C TEAVG, TCAVG, AND TSAVG

12

C

DO 12 I=1,9

FF(1)=0.

CONT INUE
TH1=(TWHAVG+TWKAVG)/ 2.
TK1=(TWHAVG+TWKAVG) /2.
CLSS=0. :

DO 99 ITER=1, IITER

IMPERFECT HEAT EXCHANGER ANALYSIS

IFC(ITER.EQ.1) GO TO 35
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TH1=TEAVG-Z1(2)/Z1(1)
TK1=TCAVG-Z1(4)/Z1(3)

CONT INUE
TH2=EPSH*TWHAV G+ (1 .-EPSH) ¥TH1
TKZ2=EPSK*TWKAVG+ (1.-EPSK) ¥TK1
TH3=EPSR*TH2+(1,-EPSR)*TK2
TK3=EPSR*TK2+(1.-EPSR)*TH2
THEAT=EPSH¥*TWHAVGH (1 .-EPSH) *TH3
TCOOL=EPSK¥TWKAVG+ (1 .-EPSK)*TK3

C HEAT EXCHANGER AVERAGE GAS TEMPERATURES

THAV G=TWHAV G+ (TWHAV G- (TH1+TH3) /2.) ¥Z2H
TWRH=(TH2+TH3) /2.

TWRK=(TK2+TK3)/2.

TWRM= (TWRH+ TWRK) /2.

TRAVG= (TWRH+TWRK) /2.
IF(DABS(TWRH/TWRK-1.) .GE.0.000001)

C TRAVG=(TWRH-TWRK)/DLOG(TWRH/TWRK)
TRHAVG= (TWRH+TWRM) /2.
IF(DABS(TWRH/TWRM-1.) ,GE. 0.000001)

C TRHAVG= (TWRH-TWRM) /DL OG (TWRH/TWRM)
TKAVG=TWKAVGH (TWKAVG-(TK1+TK3)/2.)*Z2K

C TEMPERATURE DEPENDENT PARAMETERS

40

OO0 0O0

230

240

FREE-P1STON MODE

IF(ITER.GE.2) GO TO 40
TEAVG=THEAT
TCAVG=TCOOL
TSAVG=TCOOL

CONT INUE

MDAV G=PW AVG/ R¥* ( VHAV G/ THAV G+ VRAV G/ TRAV G+ VKAV G/ TKAV G)

MDHAV G=PW AV G/ R¥ ( VHAV G/ THAV G+ VRAVG/ 2./ TRHAVG)

MEAVG=PWAVG*VEAVG/R/TEAVG

MCAV G=PW AV G*VCAVG/R/TCAVG

MW AV G= ME AV G+ MDAV G+ MCAV G

MSAV G=PW AV G*V SAVG/R/TSAVG
IF(IMODE.EQ.1.0R. IMODE.EQ.2) GO TO 200

: SECANT-BISECTION METHOD FOR CALCULATING

FREQUENCY. FR1 AND FR5 ARE THE LOWER AND UPPER BOUNDARIES FOR

ANGULAR FREQUENCY DEFINED BY THE BISECTION METHOD.

FRZ AND FR4

ARE THE LOWER AND UPPER ANGULAR FREQUENCIES USEDC TO CALCULATE
SLOPE FOR THE SECANT METHOD. FR3 IS THE CURRENT ESTIMATE FOR

ANGULAR FREQUENCY.
FR3=FR
FR=FRL OW
IMODE=3
GO TO 200
CONT INUE
FR1=FR
DET1=DET
FR=FRHIGH
IMODE=4
GO TO 200
CONT INUE
FR5=FR
DET5=DET
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IFC((DETT1.LT.0.0.AND.DET5.67.0.0).0OR. (DET1.GT.0.0.AND.
C DET5.LT.0.0)).AND.FR1.LT.FR5) GO TO 215
WRITE(6,298) FR1,DET1,FR5,DET5
298  FORMAT(' ','FREQUENCY SEARCH INTERVAL SPECIFIED IMPROPERLY!

1/' ','FR1 = ' F8.3,8X,'DETI = ',613.6
2/* '",'FR5 = ',F8.3,8X,'DET5 = ',G13.6/)
G0 TO 295 '

215 CONTINUE
FR=FR3-,5*%FRTOL
IMODE=5
GO TO 200
256 CONTINUE
FRZ=FR
DETZ=DET
IF((DET1.LE.O0.0.AND.DET2.GE.0.0).OR. (DET1 .GE.0.0.AND.
c DETZ2.LE.0.0)) GO TO 225
FR1=FR2
DET1=DETZ
225  CONTINUE
FR=FR3+.5*%FRTCL
IMODE=6
GG TO 200
260  CONTINUE
FR4=FR
DET4=DET
IF((DET4.LE.0.0.AND.DET5.6E.0.0) .OR. (DET4 .GE.0.0.AND.
C DET5.LE.0.0)) GO TO 235
FR5=FR4
DET5=DET4
235  CONTINUE
FR3=FR2+FRTOL *DET2/ (DET2-DET4)
IF(FR3.GE.FRZ.AND.FR3.LE.FR4) GO TO 245
IF(FR3,GE.FR1 .AND.FR3.LE.FR5) GO TO 215
FR3=.5%(FR1+FR5)
GO TO 215
Z45  CONTINUE
FR=FR3
IMODE=7
GO 70 200
C % % % % X % % % % %X % ¥ % % %X ¥ X % ¥ % X ¥ ¥ X ¥ ¥ ¥ X ¥ X % ¥ %
C SUBSECTION FOR COMPUTING MATRIX ELEMENTS
200  CONTINUE
C FREQUECY DEPENDENT PARAMETERS
MPPS=MPP*FR**2¥XPMAX/PWAVG/ AP
MDPS= MDP *FR **2*¥XPMAX/PWAV G/ AP
KMCS=KMC*PWAVG/MWAV G/ FR
KPES=KPE*MWAV C*¥FR/PWAV G
KPCS=KPC*MWAV G¥FR/PWAV G
HES=HE*ASEAV G/FR/MEAV G/CV
HCS=HC*ASCAV G/ FR/MCAVG/CV
KMSS=KMS*PWAV G/MSAV G/ FR
HSS=HS*ASSAVG/FR/MSAVG/CV
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C HOMOGENEOUS ALGEBRAIC EQUATIONS
|HOMOG=18
DO 10 I=1, IHOMOG
DO 15 J=1, IHOMOG
D(1, 4)=0.

15  CONTINUE

10 CONTINUE
D(1,1)=1.
D(1,2)=-KPES*MEAVG/MWAVG
D(1,3)=-1.
D(1,7)=1.
D(1,11)=Al
D(2,1)=KPES*MEAVG/MWAVG
D(2,2)=1.
D(2,4)=-1.
D(2,8)=1.
D(2,12)=Al
D(3,2)=-KPCS*MEAV G/MWAV G
D(3,3)=1.
D(3,4)=-KPCS*MDAV G/MWAV G
D(3,5)=-1.
D(3,9)=-1.
D(3,11)=A2
D(3,14)==A3
D (4,1)=KPCS*MEAVG/MWAVG
D(4,3)=KPCS *MDAV G/MWAV G
D(4,4)=1.
D(4,6)=-1.
D(4,10)=-1.
D(4,12)=A2
D(5,2)=-MEAVG/MWAVG
D(5,4)=—MDAVG/MWAV G
D(5,5)=KMCS
D(5,6)=-MCAVG/MWAVG
D(5,9)=KMCS
D(5,11)=~A2%KMCS
D(5,14)=A3*KMCS
D(6,1)=MEAVG/MNAVG
D(6,3)=MDAVG/MWAVG
D(6,5)=MCAVG/MWAVG
D(6,6)=KMCS
D(6,10)=KMCS
D(6,12)=-A2*KMCS
D(7,1)=FF(1)
D(7,2)=-1.+G*(THEAT+TEAVG) /2./TEAVGHFF (2)
D(7,7)=HES
D(7,8)=-1.
D(7,12)=GMI*Al
D(8,1)=1.-G*(THEAT+TEAVG) /2./TEAVG+FF (3)
D(8,2)=-FF (1)
D(8,7)=1.
D(8,8)=HES
D(8,11)==-GM1*Al
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D(9,5)=FF (4) :
D(9,6)==1.+G*¥(TCOOL+TCAVG)/2./TCAVG+FF(5)
D(9,9)=HCS

D(9,10)=-1.

D(9,12)=-GM1*A2
D(10,5)=1.-G*(TCOOL+TCAVG)/2./TCAVGH+FF (6)
D(10,6)=-FF (4)

D(10,9)=1.

D(10,10)=HCS

D(10,11)=CGM1*A2

D(10,14)=-GM1*A3

D(11,1)=A11

D(11,5)==A13

D(11,7)=A11

D(11,9)==-A13
D(11,11)=A1*A11+M*A12+A2*A1 3~MDPS
D(11,14)=-A3*A13

D(11,15)==A12

D(11,17)==-A12

D(12,2)=A11

D(12,6)==-A13

D(12,8)=A11

D(12,10)=-A13
D(12,12)=A1*A11+M*A12+A2%A13~MDPS
D(12,16)=-A12

D(12,18)=-A12

D(13,5)=1.

D(13,9)=1.

D(13,11)==-A2

D(13,14)=A3-MPPS+CL SS

D(14,6)=1.

D(14,10)=1.

D(14,12)=-A2

D(14,13)=FR/60./PI
D(15,11)=-AM*KMSS

D(15,15)=KMSS

D(15,16)=-1.

D(15,17)=KMSS

D(16,12)=~-A4*KMSS

D(16,15)=1.

D(16,16)=KMSS

D(16,18)=KMSS

D(17,12)=-GM1*A4

D(17,15)=FF(7)
D(17,16)=-1.+G*(TCOOL+TSAVG)/2./TSAVGH+FF (8)
D(17,17)=HSS

D(17,18)=-1.

D(18,11)=CM1*A4
D(18,15)=1,-G*(TCOOL+TSAVG)/2./TSAVG+FF(9)
D(18,16)=-FF(7)

D(18,17)=1.

D(18,18)=HSS
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IF(IMODE.EQ.1) GO TO 210
IF(1MODE.EQ.8) GO TO 280
CALL DECOMP(IDIM, IHOMOG,D, COND, IPVT, Z1)
DET= |PVT( HOMOG)
DO 55 I=1, IHOMOG
DET=DET*D (I, I)
55  CONTINUE
IF(IMODE.NE.2) GO TO 220
C SPECIAL FREE-PISTON MODE
WRITE(6,299) FH,DET
299  FORMAT(' ','FH = ',F7.3,8X,'DET = !,613.6/)
GO TO 295
220  CONTINUE
IF(IMODE.EQ.3) GO TO 230
IF(IMODE.EQ.4) GO TO 240
[F(IMODE.EQ.5) GO TO 250
IF(IMODE.EQ.6) GO TO 260
IF(IMODE. EQ.7) GO TO 270
C END OF SUBSECTION FOR COMPUTING MATRIX ELEMENTS
C*********************************
270  CONTINUE
C FREE-PISTON MODE : NONHOMOGENEOUS ALGEBRAIC EQUATIONS
IMODE=8
GO TO 200
280  CONTINUE
Y14=XPAXPM
1S 1ZE= HOMOG-1
DO 305 J=1, IHOMOG
D(13,4)=D(13,J)+D(14,J)
305 CONTINUE
DO 310 I=14,1SIZE
DO 315 J=1, IHOMOG
D(1,d)=D(1+1,d)
315  CONTINUE
310  CONTINUE
DO 320 I=1,I1SIZE
Y(1)==Y14%*D(l,14)
320  CONTINUE
DO 325 J=14,ISIZE
DO 330 I=1,ISIZE
D(I, )=D(1, J+1)
330  CONTINUE
325  OONTINUE
CALL DECOMP(IDIM, ISI1ZE,D, COND, IFVT,Z1)
| F(COND. GE. 1000000.) WRITE(6,102) COND
102 FORMAT(! 1, '*%*%NOT|CE**** CONDITION OF MATRIX = ',G13.6/)
CALL SOLVE(IDIM, ISIZE,D,Y, IPVT)
IE= ( IHOMOG+1) =14~1
DO 335 I=1, IE
Y (CTHOMOG+1) = 1)=Y (( IHOMOG+1) = [~1)
335  CONTINUE
Y(14)=Y14
GO TO 395
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C KINEMATIC MODE

210

355

350

360

370
365

375

395

CONT INUE

BOR=BDD/180.*P|
Y11=XPAXPM¥XDAXPA*DCOS(BDR)
Y12=XPAXPM¥XDAXPA*DS IN(BDR)
Y13=0.

Y14=XPAXPM

ISIZE= IHOMOG-4

DO 350 i1=11,I1SIZE

DO 355 J=1, IHOMOG

D(L,d)=D(1+4,4)

CONT INUE

CONT INUE

DO 360 I=1,ISIZE

YD) ==YT1*D(1,11)=-Y12*D(1,12)-Y13*D(},13)-Y14*D(1,14)
CONTINUE

DO 365 J=11,ISIZE

DO 370 t=1,ISIZE

DCI,d)=D(1, J+4)

CONT INUE

CONT INUE

CALL DECOMP(IDIM, ISIZE,D,COND, IPVT, Z1)
| F(COND. GE.1000000.) WRITE(6,102) COND
CALL SOLVE(IDIM, ISIZE,D,Y,IPVT)
|E=(IHOMOG+1)~-11-4

DO 375 I=1,IE
Y((1HOMOG+1) - 1)=Y((IHOMOG+1)-1-4)
CONT INUE

Y(11)=Y11

Y(12)=Y12

Y(13)=Y13

Y(14)=Y14

CONT INUE

C COMPUTE INTEGRALS IN INTEGRATED ENERGY EQUATIONS

WDEA=PWAVG*VEAVG¥FR/ 2. % ((Y (1)+Y(7))* (A1%Y(12))
CH(Y(2)+Y(8) ) *(-A1*Y(11)))

Z1 (1) =CP*FR*¥MEAVG/P | ¥(Y (1) ¥¥2+Y(2) ¥¥2) ¥% 5
Z1(2)=G*FR*PWAVG*¥VEAVG/4./GM1¥ (Y (1) ¥Y(8)-Y(2)*¥Y(7))
HDEA=Z1 (1) * (THEAT-TEAVG) +Z1(2)

QDWEA=HE*ASEAVG¥* (TWEAVG-TEAVG)
WDCA=PWAVGX*VCAVG*FR/ 2. %((Y(5)+Y(9)) *(~A2*Y(12))
CHY(6)+Y(10))*(A2*Y (11)-A3%Y(14)))
Z1(3)=CP*FR*MCAVG/P | ¥ (Y (5) ¥¥2+Y (6) ¥*2) ¥* 5
Z1(4)=G*FR*PWAVC*VCAVG/4./GM1* (Y (5) %Y (10)-Y(6)*Y(9))
HDCA=2Z1(3)*(TCOOL-TCAVG)+Z1 (4)
QDWCA=HC*ASCAVG*(TWCAVG-TCAVG)

WDSA=PWAVGXV SAVG*FR/ 2. %¥((Y (15)+Y(17)) ¥ (-A4¥Y(12))
C+(Y(16)+Y(18))*(A4*Y(11)))
Z1(5)=CP¥FR¥MSAVG/P | ¥(Y (15) ¥%2+Y(16)¥¥2) **,5
Z1(6)=C*FR*PWAVGX*V SAVG/4./GMI* (Y (15)%Y(18)-Y(16)*Y(17))
HDSA=Z1(5)* (TCOOL-TSAVG)+Z1(6)

QDW SA=HS*ASSAVG* (TW SAVG-TSAVG)
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IF(DABS( ( HDE A+ QDWEA-WDEA) /WDEA) .LT.0.00001 . AND.
C  DABS((HDCA+QDWCA-WDCA)/WDCA).LT.0.00001) GO TO 30
C NEW ESTIMATES FOR ITERATIVE PARAMETERS
TEAVG= (Z1(1)*THEAT+Z1(2)+HE*ASEAVG¥TWEAVG-WDEA)
C/ (Z1(1)+HE*ASEAVG)
Z1(T)=Y (1) /(Y (1) ¥%2+Y (2)%%¥2) ¥* 5
Z1(8)=Y(2) /(Y (1) %X24Y (2) *¥%2) ¥¥ 5
FF(1)==2.%G/3./PI%(Y(8)¥Z1(8)**¥3=-Y (7)¥Z1(7)**3)
FF(2)==2.%G/3./P1*(Y(8)*¥Z1 (7)**¥3-Y (7)*Z1(8)*(Z1(7)**2+2.))
FF(3)==2.%G/3./PI*(Y(7)¥Z1(8)**3-Y (8)*¥Z1(7)*(Z1(8)*%2+2.))
TCAVG= (Z1(3)*TCOOL+Z1(4)+HC*ASCAVG*TWCAVG-WDCA)
C/ (Z1(3)+HC*ASCAVG)
Z1(9)=Y(5) /(Y (5)X¥2+Y(6) ¥*2) ¥% .5
Z1(10)=Y(6)/(Y(5)¥%2+Y (6) ¥%¥2) ¥* 5
FF(4)==2.%G/3,/PI1*(Y(10)%¥Z1(10)*¥3=Y (9)*Z1(9)**3)
FF(5)=-2.%G/3./P1*(Y(10)*¥Z1(9)¥*3-Y(9)*Z1(10)*(Z1(9)*¥%¥2+2.))
FF(6)==2.%G/3./P1*(Y(9)*Z1 (10)*¥¥3-Y (10)*¥Z1(9)*(Z1(10)*¥2+2,))
TSAVG=TWSAVG/ (1. 5% (GMI*A4) X¥X¥2% (Y (11)¥X2+Y(12) ¥¥2))
| F(HSS.LT.0.0001.AND.KMSS.LT.0.0001) GO TO 45
TSAVG= (Z1(5)*TCOOL+Z1 (6)+HS*ASSAVG*TW SAVG-WDSA)
C/ (Z1(5)+HS*¥ASSAVG)
45 CONT INUE
FE(7)=0.
FF(8)=1.-G*(TCOOL+TSAVG)/2./TSAVG
FF(9)=G*(TCOOL+TSAVG)/2./TSAVG-1.
IF(KMSS.LT.0.0001) GO TO 50
Z1COID=Y(15) /(Y (15)¥%24Y (16) ¥%2) ¥% .5
Z1(12)=Y(16) /(Y (15) ¥%2+Y (16) ¥*2) ¥% 5
FF(7)==2.%G/3./P1%(Y(18)*Z1 (12)%¥¥3=-Y (17)*Z1(11)%¥3)
FF(8)==2.%G/3./PI*(Y(18)%¥Z1 (11)*%¥3=Y (17)*Z1(12)*(Z1(11)%%2+2,))
FF(9)==2.%G/3./PI*(Y(17)%Z1(12)%*3=-Y (18)*Z1(11)*(Z1(12)%¥¥2+2,))
50 CONT INUE
CLDS=Y(13)/Y(14)
CLD=CLDS*PWAVG*AP/60./P1/XPMAX
CLS=-FR*CLD*DTAN(BLR+PI/2.)
CL SS=CL S¥XPMAX/PWAVG/ AP
99 CONT INUE
WRITE(6,103)
103  FORMAT(' ', '*xx*xNOT|CE*x**¥x ENERGY BAL DID NOT CONVERGE'/)
C END OF ITERATIVE LOOP FOR CALCULATION OF FOURIER CORRECT [ON
C FACTORS, TEAVG, TCAVG, AND TSAVG
30 CONT INUE
C COMPUTE DYNAMIC PARAMETERS
XPAMP=XPMAX*Y (14)
XDAMP=XPMAX¥ (Y (11)¥¥2+Y (12)¥%2) %% 5
CLDS=Y(13)/Y(14)
CLD=CLDS*PWAVC*AP/60./P | /XPMAX
[F(IMODE.EQ.1) GO TO 60
FH=FR/2./P1
XDAXPA=XDAMP/XPAMP
I F (XDAMP. GE. XDMAX) WRITE(6,104)
104  FORMAT(' ', '*xxx¥NOT|CE*¥*¥% D|SP AMPL ITUDE 1S TOO LARGE'/)
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BDR=DARCOS(Y (11)/(Y(11)%¥%24Y(12)%¥%2) %% 5)
IF(Y(12).LT.0.0) BDR=-BDR
BDD=BDR/P1%180.
60 CONTINUE
C COMPUTE OVERALL ENERGY BALANCE
HDRA=FR/P | ¥CP* (TH2-TH3 ) * ((MEAVG¥Y (1) +MDHAV G¥Y (3) ) ¥*2
C+ (MEAV G*Y (2) +MDHAVGXY (4) ) ¥%2) %%, 5
QD1 A=WDE A+ HDRA
QDOA=~WDCA-WDSA+HDRA
WDO A= WDE A+WDCA+VWDSA
ETAQ=WDOA/QD|A%*100.
WDPA=PWAV G*¥VCAVGXFR/ 2. ¥A3*Y (14) ¥ (A2%Y (12)-Y(6)-Y(10))
WDDA=WDO A-WDPA
C OUTPUT STATEMENTS
WRITE(6,115) KMC, KMCS, KPE, KPES, KPC, KPCS, HE, HES, HC, HCS, KMS , KMSS
C, HS, HSS, CLD, CLDS, CLS, CLSS

115  FORMAT(' ',44X,'COEFFICIENT NOND I M!
1/' ',' WORKING SPACE SEAL LEAKAGE (KG/SEC-PA)',D15.5,F15.6
2/ v, HEATER PRESSURE DROP (PA-SEC/KG)',D15.5,F15.6
3/, COOLER PRESSURE DROP (PA-SEC/KG)',D15.5,F15.6
4/' ',' EXPANSION SPACE HEAT TRANSFER (W/M2-K)',D15.5,F15.6
5/' ',"COMPRESSION SPACE HEAT TRANSFER (W/M2-K)',D15.5,F15.6
6/' ', GAS SPRING SEAL LEAKAGE (KG/SEC-PA)',D15.5,F15.6
/AN GAS SPRING HEAT TRANSFER (W/M2-K)',D15.5,F15.6
8/ !, LOAD DAMPING COEFFICIENT (NT-SEC/M)',D15.5,F15.6
g/ 1,0 LOAD SPRING COEFFICIENT (NT/M)!,D15.5,F15.6/)

WRITE(6,118) VWAVG, PWAVG, MWAVG, TEAVG, TWEAVG, FH, THAVG, TWHAVG
C, XPAMP, TRAV G, XDAXPA, TKAVG, TWKAVG, BDD, TCAVG, TWCAYG, ITER, TSAVG
C, TWSAVG
118  FORMAT(' ',* AVERAGE VOLUME (M3)',D15.6,23X, ' TEMPERATURE (K)'
1/ ',"AVERAGE PRESSURE (PA)',D15.6,22X,'AVG GAS WALL'
2/ ', AVERAGE MASS (KG)',D15.6,10X, ' EXPANSION! ,2F10.3
3/ 1, FREQUENCY (HZ)',F10.4,18X, ' HEATER' ,2F10.3
4/' '," PISTON AMPLITUDE (M)',D15.6,8X,'REGENERATOR' ,F10.3
5/' ','DISP/PISTON AMP RATIO',F11.6,17X,'COOLER',2F10.3
6/' ','DISPLACER PHASE (DEG)',F10.4,13X,'COMPRESSION',2F10.3
7/ ',11X, " ITERATIONS', 16,22X, ' SPRING' ,2F10.3/)
WRITE(6,128) EPSH, EPSR, EPSK, TH1,THZ, TK3, TCOOL
C, THEAT, TH3, TK2, TK1
128  FORMAT(' ',32X,'HEATER REGENERATOR COOLER'
1/' ',11X, "EFFECT IVENESS ',3F10.5
2/' ','EXP TO COMP GAS TEMP (K)',4F10.3
3/' ','"COMP TO EXP GAS TEMP (K)',4F10.3/)
WRITE(6,130) QDIA, HDRA, QDOA, WDOA, WDPA, ETAQ , WDDA
130 FORMAT(' ','  HEAT INPUT TO WORKING GAS (W) ',G13.6
C,' REG FLUX (W)',G13.6

1/, "HEAT QUTPUT FROM WORKING GAS (W) ',G13.6
2/ ', ! INDICATED POWER OQUTPUT (W) ',G13.6
c,!' PISTON (W) ',G13.6

3/, ' THERMODYNAMIC EFFICIENCY (%) ',F7.3

C,13X,'DISP (W) ',613.6/)
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WRITE(6,135) WDEA,QDWEA, HDEA, WDCA, QDWCA, HDCA, WDSA, QDVI SA, HDSA
135 FORMAT(' ',14X,'SUM P*DY (W) ¢ WALL (W) H FLUX (W)
/v EXPANSION' ,3G16.6
2/' '," COMPRESSION',3G16.6
3/, SPRING' ,3G16.6/)
C OUTPUT FOR VOLUME, PRESSURE, MASS, AND TEMPERATURE HARMONIC
C FUNCTIONS. COEFFICIENTS FOR CONSTANT, SIN, AND COS TERMS ARE
C STORED TEMPCRARILY IN D(I,J) ARRAY.
D(1,1)=VEAVG/ VWAVG
D(1,2)==VEAVG/ VWAVG*A1*Y (11)
D(1,3)=-VEAVG/ VWAVG*A1¥Y (12)
D(Z,1)=(VHAVGHVRAVG+VKAVG) / VWAV G
D(2,2)=0.
D(2,3)=0.
D(3,1)=VCAVG/ VWAVG
D(3,2)=VCAVG/ VWAVG* (A2*Y (11)-A3*Y (14))
D(3,3)=VCAVG/ VWAVG*A2¥Y (12)
D(7,1)=VSAVG/VWAVG
D(7,2)=VSAVG/ VWAVG*A4*Y (11)
D(7,3)=VSAVG/ VWAVGXA4*Y (12)
D(1,4)=1,
DC1,5)=Y(1)+Y(7)+A1%¥Y (11)
D(1,6)=Y(2)+Y(8)+A1*¥Y (12)
D(2,4)=1.
D(2,5)=Y(3)
0(2,6)=Y(4)
D(3,4)=1.
D(3,5)=Y(5)+Y(9)~A2¥Y (11)+A3*Y (14)
D(3,6)=Y(6)+Y(10)-A2%Y (12)
D(7,4)=1.
D(7,5)=Y(15)+Y(17)~M*¥Y (11)
D(7,6)=Y(16)+Y(18)~AM*Y (12)
D(4,1)=MEAVC/MWAVGC
D(4,2)=MEAVG/MWAVGXY (1)
D(4,3)=MEAVG/MWAVG¥*Y (2)
D(5,1)=MDAVG/MWAVG
D(5,2)=MDAVG/MW AV G*Y (3)
D(5,3)=MDAVG/MWAVG*Y (4)
D(6,1)=MCAVG/MWAVC
D(6,2)=MCAVG/MWAVG*Y (5)
D(6,3)=MCAVG/MWAVG*Y (6)
D(8,1)=MSAVG/MWAVG
D(8,2)=MSAVG/MWAVG*Y (15)
D(8,3)=MSAVG/MWAVGXY (16)
D(4,4)=TEAVG/TWHAVG
D(4,5)=TEAVG/TWHAVGX*Y (7)
D(4,6)=TEAVG/TWHAVG*Y (8)
D(5,4)=PWAVG* ( VHAV G+ VRAV G+ VKAV G) /MDAV G/ R/ TW HAV G
D(5,5)=0.
D(5,6)=0.
D(6,4)=TCAVG/TWHAVG
D(6,5)=TCAVG/TWHAVG*Y (9)
D(6,6)=TCAVG/TWHAVG*Y (10)
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D(8,4)=TSAVG/TWHAVG
D(8,5)=TSAVG/TWHAVG*Y (17)
D(8,6)=TSAVG/TWHAVG¥Y (18)
WRITE(6,120) (D(1,1),1=1,6),(D(2,1),1=1,6),(D(3,1),1=1,6)
C, (D(7,1),1=1,6)
120 FORMAT(' ',25X,'V/VWAVG',26X, 'P/PWAVG!
/' 1,8X,2(' CONST SIN Ccos")
2/' ',' EXPANSION',6F11.6
3/ ' DEAD' ,6F11.6
4/' ',"COMPRESSION' ,6F11.6
5/' ','" GAS SPRING',6F11.6/)
WRITE(6,125) (D(4,1),1=1,6),(D(5,1),I1=1,6),(D(6,1),1=1,6)
C,(D(8,1),1=1,6)
125  FORMAT(' ',25X,'M/MWAVG',26X, ' T/TWHAVG'
/v 1,8X,2(" CONST SIN Cos")
2/' ',' EXPANSION',6F11.6
3/v 1,0 DEAD' ,6F11.6
4/' 1 ,"COMPRESSION' ,6F11.6
5/t ',' GAS SPRING',6F11.6//////)
295  CONTINUE
5 CONT INUE
RETURN
END



D.2

&INPUT
XDMAX=,0202,
VEAVCG=.0000636,
VCAVG=.0001036,
ASSAVG=.00979,
FHLOW=25.,
BDD=55.5,
TWEAVG=E53.,
KMC=.68D-¢€,
HC=1000.,

I ITER=50,
BLD=-90.,
&INPUT
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LHA1 Input Data for RE-1000 Base Case

R=2080., CP=5200., XPMAX=,0210,
AP=,002572, AR=,000218, AD=.002572,
VHAVG=.0000396, VRAVG=.0000594, VKAVG=.0000285,
VSAVG=.0000318, ASEAVG=.01392, ASCAVG=.02292,
MPP=6.2, MDP= .426, ;FH=30.6,
FHHIGH=35., FHTOL=.01, XPAXPM=.619,
XDAXPA=.958, PWAVG=7085000., TWHAVG=853.,
TWKAVE=326., TWCAVG=326., TWSAVG=326.,
KPE=.15D7, KPC=.15D7, HE=1000.,
KMS=,20D-8, HS=1000., IMODE=3,
EPSH=1., EPSR=1., EPSK=1.,
ILOOP=1, &END

&END
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D.3 LHAl Output for RE-1000 Base Case

COEFFICIENT NOND IM
WORKING SPACE SEAL LEAKAGE (KG/SEC-PA) 0.68000D-08 0.121945
HEATER PRESSURE DROP (PA-SEC/KG) 0.15000D 07 €.083644
COOLER PRESSURE DROP (PA-SEC/KG) 0.15000D 07 C.083644
EXPANSION SPACE HEAT TRANSFER (W/M2-K) 0.10000D 04 0.091840
COMPRESSION SPACE HEAT TRANSFER (W/M2-K) 0.10000D 04 0.037891
GAS SPRING SEAL LEAKAGE (KG/SEC-PA) 0.20000D-08 0.233265
GAS SPRING HEAT TRANSFER (W/M2-K) 0.10000D 04 0.051654
LOAD DAMPING COEFFICIENT (NT-SEC/M) 0.3529eD 03 0.076671
LOAD SPRING COEFFICIENT (NT/M) 0.0 0.0
AVERAGE VOLUME (M3)  0.294700D-03 TEMPERATURE (K)
AVERAGE PRESSURE (PA)  0.708500D 07 AVG GAS WALL
AVERAGE MASS (KG)  0.213613D-02 EXPANSION  824.779 853.000
FREQUENCY (HZ)  29.4359 HEATER  853.000 853.000
PISTON AMPL ITUDE (M)  0.129990D-01 REGENERATOR  547.896
DISP/PISTON AMP RATIO  0.969505 COOLER 326.000 326.000
DISPLACER PHASE (DEG)  46.6818 COMPRESSION  336.640 326.000
ITERATIONS 6 SPRING  329.792 326.000
HEATER REGENERATCR COOLER
EFFECT IVENESS 1.00000 1.00000 1.00000
EXP TO COMP GAS TEMP (K) 789.815 853.000 326.000 326.000
COMP TO EXP GAS TEMP (K) 853.000 853.000 326.000 351.762
HEAT INPUT TO WORKING GAS (W) 2852.16 REG FLUX (W) C.0
HEAT OUTPUT FROM WORKING GAS (W) 1832.10
INDICATED POWER OUTPUT (W) 1020.06 PISTON (W) 1020.06
THERMODYNAMIC EFFICIENCY (%)  35.764 DISP (W) -0.125056D~-11
SUM P*DV (W) Q WALL (W) H FLUX (W)
EXPANS ION 2852.16 392.837 2459 .31
COMPRESS ION ~1740.36 ~-243.867 -1496.49
SPRING =91.7454 ~37.1199 -54.6258
V/ VWAV G P/PWAVG
CONST SIN CoS CONST SIN Cos
EXPANSION 0.215813 -0.075458 -0.080023 1.000000 0.141389 -0.04581¢€
DEAD 0.432643 0.0 0.0 1.000000 0.145554 -0.048543
COMPRESSION  0.351544 -0.044387 0.073241 1.000000 0.151288 -0.046567
GAS SPRING 0.107906 0.006396 0.006783 1.000000 -0.047074 -0.124214
N/MWAVG T/TWHAVG
CONST SIN CoS CONST SIN CoS
EXPANSION  0.122961 -0.032603 -0.049797 0.966916 0.055012 -0.011252
DEAD 0.386309 0.056229 -0.018753 0.616985 0.0 0.0
COMPRESSION  0.490730 =~0.017947 0.086998 0.394654 0.024310 -0.006121
GAS SPRING 0.153757 0.004455 -0.001688 0.386626 -0.006487 -0.019477
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