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EXECUTIVE SUMMARY

An almost closed-form solution method called the linear harmonic
analysis (LHA) has been developed for the coupled thermodynamic/dynamic
problem that is associated with a free-piston Stirling engine (FPSE).
The governing equations are differential because most of the parameters
describing an FPSE (pressure, temperature, piston position, etc.) are
time-dependent. The LHA method is based on three primary assumptions:
(1) linearization of the ideal gas law, (2) representation of all time-
dependent variables with harmonic functions, and (3) replacement of terms
in the governing equations that contain products of harmonic functions
with truncated Fourier series. The assumptions reduce the nonlinear
differential equations to a system of almost linear algebraic equations
that are solved using standard matrix algebra, with iterations as re-
quired. The motivation for developing this simplified analytical method
was not that it saves computer time (although it does do that), but that
it reveals causes and effects much more effectively than a column of
numerical output.

In the LHA solution, the load is initially represented by a linear
function of power piston position and velocity so that the nonlinear

differential equations can be solved in almost closed form. This pro-
cedure allows the engine analysis to be performed independently from the
load analysis. The FPSE calculations are completed first; the character-
istics of a particular load, including nonlinearities, are accounted for
later in the LHA solution during an FPSE/load matching analysis.

A computer program called LHA Version 1 (LHA1) was written for the
Sunpower RE-1000 FPSE configuration. A listing of the program is in-
cluded in Appendix D. The RE-1000 engine contains a single power piston
and a displacer sprung to the engine housing. The working space of the
engine is divided into only three control volumes, and motion of the
engine housing is neglected. However, the LHA method is not limited to
such a simple representation, and more control volumes or dynamic equa-
tions could be added if they were desired. Cylinder heat transfer, pres-
sure drop, and seal leakage losses are all included in the present version
of the LHA program. These losses are not calculated separately and then
added to the analysis. They are included as a simultaneous part of the
thermodynamic/dynamic calculations so that all of the interactions be-
tween the losses, thermal performance, and dynamic behavior are accounted
for.

The time required for execution of the LHA1 program is about 100
times less than the execution time required for an equivalent numerical
integration method. Even with its speed, the LHA method has sufficient
mathematical accuracy for most practical Stirling engine applications.
The mathematical accuracy of the LHA assumptions was verified by inde-
pendently solving the same nonlinear differential equations using a nu-
merical integration method and comparing the results with those from the
LHA1 program. The differences between the LHA and numerical predictions
were <5% for all important parameters, which is about equal to or less
than the uncertainty associated with typical Stirling engine experimental
measurements. This combination of computational speed and mathematical
accuracy makes the LHA method ideal for FPSE optimization programs.
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In addition to speed, the LHA method has other advantages over
numerical integration methods. Numerical techniques usually require some
artistic guesswork to select step sizes and initial conditions so that
the solution is numerically stable, mathematically accurate, and con-
verges quickly to a periodic steady state. The closed-form analytical
approach of the LHA method avoids these problems. The LHA method does
require iterations, but the assumption of isothermal cylinders provides a
good starting point for the calculations, and LHA convergence usually
occurs in <20 iterations.

The LHA method also has advantages over other linear closed-form
solution methods that have been developed for FPSE dynamic problems. All
previously published closed-form solutions treat the thermodynamic losses
separately. In the LHA method, the thermodynamic losses, as well as their
interactions, are included intrinsically in the FPSE dynamic solution.
Sample calculations using the LHA1 program have shown that substantial
errors in predicting dynamic behavior can occur if an isothermal calcula-
tion is used to represent an adiabatic FPSE. LHA predictions have also
indicated that unrealistic assumptions about the pressure drop losses can
lead to additional errors.



LINEAR HARMONIC ANALYSIS OF FREE-PISTON
STIRLING ENGINES

N. C. J. Chen F. P. Griffin

ABSTRACT

The equations that govern the behavior of free-piston
Stirling engines are nonlinear differential equations. Tradi-
tional solution methods have been time-stepping integrations
that can be plagued by numerical instabilities and can use
large amounts of computer time. Closed-form analytical solu-
tions are possible if the working gas behaves isothermally or
if the nonlinear terms in the governing equations are replaced
with accurate approximations. An almost closed-form solution
method, called the linear harmonic analysis (LHA), has been de-
veloped for free-piston Stirling engine applications by repre-
senting all of the periodic variables with harmonic functions.
The solution method accounts for the important thermodynamic
losses that are coupled together in free-piston engines, yet it
is efficient enough for optimization studies. The LHA method
was compared with a standard numerical integration method to
verify its mathematical accuracy. The LHA and numerical pre-
dictions for a sample free-piston Stirling engine configuration
differed by <5% for all important parameters. Sensitivity
studies using the LHA method have also shown that the thermo-
dynamic loss assumptions used in an analysis can have a sig-
nificant impact on the predicted dynamic behavior of a free-
piston Stirling engine.

1. INTRODUCTION

As a prerequisite to dealing with interactions between thermo-

dynamics and dynamics that occur in a free-piston Stirling engine (FPSE),

a simplified thermodynamic analysis with applications in kinematic en-

gines has been performed. 1'2 The analysis is based on an almost closed-

form solution called the linear harmonic analysis (LHA). In the analy-

sis, variables are represented in terms of harmonic oscillations, and

nonharmonic terms in the conservation equations are replaced with trun-

cated Fourier series so that the equations can be solved in almost closed

form, leading to a better understanding of Stirling engine behavior. The

theory further includes a Second Law analysis, where the efficiency and

power losses resulting from effects of adiabatic cylinders, cylinder heat
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transfer, pressure drop, and seal leakage can be allocated unambiguously,

and the degree of coupling between different losses can be assessed.

Because of inherently strong thermodynamic and dynamic interactions,

a simultaneous coupled solution is required to predict free-piston

Stirling engine performance. For kinematic machine performance predic-

tions, a decoupled solution is sufficient because the thermodynamics can

be solved separately once volume variations are specified. However, for

free-piston engines, the volume variations are no longer specified; in

fact, there exists a significant coupling between thermodynamics and dy-

namics. The pressure waves (thermodynamics) in the respective spaces

determine the power piston and displacer motions (dynamics); the piston

motions, in turn, produce the pressure waves that act on the pistons.

This complicated problem is further compounded by load interactions. The

load must be represented properly and considered as an integrated part of

the system analysis before complete FPSE performance predictions can be

made. Generally, the energy absorbed by the load depends on the piston

motions (displacement and velocity) on the one hand; the load modifies

the motions on the other hand.

The objectives of this report are twofold: to extend the existing

LHA methodology from kinematic to free-piston Stirling engine applica-

tions and to discuss the advantages of the LHA solution method. The

basic methodology that applies to kinematic engines remains valid, but

additions are needed because of coupled thermodynamics and dynamics. The

FPSE additions include the piston and displacer dynamic formulation with

proper load representation and the displacer gas spring thermodynamic

formulation. LHA advantages include fast execution times with good

mathematical accuracy and realistic representation of the thermodynamic

losses and their interactions with each other and with the dynamic be-

havior.

The formulation in this report focuses on the Sunpower RE-1000 FPSE,

although the analysis can be extended to other configurations if desired.

Sample calculations are presented for an RE-1000 base case as well as for

sensitivity studies around the base case. Correlations for heat trans-

fer, pressure drop, and seal leakage have not been added to the analysis

yet, so the loss coefficients must be specified in the input data. The
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loss coefficients for the RE-1000 base case were selected so that the LHA

predictions were in general agreement with experimentally measured per-

formance.

The formulation in the main text is based on the assumption of per-

fect heat transfer in the heater, cooler, and regenerator. However, a

simplified thermal analysis that accounts for imperfect heat exchangers

is described in Appendix A. In the formulation, heat transfer is assumed

to occur during two steady flow processes: the hot and cold blows. When

incorporated into the engine analysis, the simplified heat transfer

analysis shows that the effects of imperfect heat exchangers are signifi-

cant with regard to thermodynamic performance, but are less significant

in dynamic performance.

A brief literature survey of existing free-piston Stirling engine

analyses revealed that the analyses may be conveniently categorized into

two approaches: isothermal and nonisothermal cylinders. Many previous

approaches to the analysis of coupled FPSE dynamics/thermodynamics begin

with the assumption that the gas in the cylinders is isothermal with

respect to time; representative works include those of Cooke-Yarborough, 3

Marusak and Chiu, 4 Berchowitz and Wyatt-Mair, 5 Goldberg, 6 West, 7 and

Chap. 3 in Urieli and Berchowitz. 8 When the analysis is extended to

nonisothermal cylinders, as it must be for a physically realistic formu-

lation, most work has depended entirely on numerical solutions to the

equations, such as analyses by Vincent et al., 9 Gedeon, 1 0 Giansante, 1 1

Tew,1 2 General Electric Co.,1 3 and Martini.1 4 The works of Rauch 1 5- 1 7

are among the few that attempt to treat by nonnumerical methods the

coupled dynamics and thermodynamics of free-piston machines with noniso-

thermal cylinders; however, few details have been released because of

proprietary restrictions. Rauch's approach uses a linearized approxi-

mation in which the variables are represented by harmonic functions.

This literature review leads to the belief that there is a need for

further development of linearized analyses because closed-form analytical

solutions provide a much clearer understanding of the physical processes

occurring in Stirling machines than do numerical treatments. However, a

closed-form, or almost closed-form solution should not oversimplify the

physics of the problem; major losses and their interactions must be
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included to provide a realistic representation of free-piston engine

behavior. Therefore, a form of the LHA method that takes into account

interactions between major losses has been chosen for studying free-

piston Stirling engine performance.
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2. THEORETICAL FORMULATION

The coupled thermodynamic and dynamic analysis described in this

report is derived for an engine configuration similar to the RE-1000 FPSE

manufactured by Sunpower, Inc. The engine, shown schematically in Fig.

2.1, contains a displacer sprung to the engine housing and a power piston

connected to a dashpot load that is controlled by a variable orifice.

ORNL-DWG 85-5341 ETD

DAHPOT ORIFICE

LOAD

BUFFER

SPACE

--- ,--- \> / POWER PISTON///

COMPRESSION SPACE

COOLER

REGENERATOR DEAD
SPACE

.. \ //// GAS SPRING y \

DISPLACER

HEATER

EXPANSION SPACE

Fig. 2.1. Simplified schematic of RE-1000 free-piston Stirling
engine.
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The thermodynamic formulations for the engine working space (consisting

of the expansion space, heater, regenerator, cooler, and compression

space) and displacer gas spring are identical to those described in

ORNL/CON-155 (Ref. 1). Dynamic equations are added to the analysis to

relate the gas pressure and load forces to the power piston and displacer

motions.

2.1 Governing Equations

The working gas in the engine is represented by five control vol-

umes: expansion, dead (sum of heater, regenerator, and cooler), com-

pression, gas spring, and buffer spaces. The primary assumptions for the

analysis are (1) pressure and temperature of gas in the buffer space are

constant and equal to, respectively, the average working space pressure

Pw and the cooler temperature TK; (2) finite heat transfer between the

gas and walls in the expansion, compression, and gas spring spaces;

(3) isothermal gas behavior in the dead space; (4) pressure drop between

the expansion and dead spaces and the dead and compression spaces;

(5) power piston seal leakage between the compression and buffer spaces;

(6) displacer gas spring seal leakage between the gas spring and buffer

spaces; and (7) ideal working gas with constant properties. Constant

buffer space pressure is assumed because the power piston volume stroke

in the RE-1000 engine is very small relative to the total volume in the

buffer space. Also, the gas spring seal leakage assumption is based on

the fact that the primary leakage path in the RE-1000 engine is from the

gas spring through the displacer rod clearance seal to the centering port

in the displacer rod, which communicates with the gas in the buffer space.

Most of the variables describing an FPSE are time-dependent, and the

governing equations are therefore differential. The masses and tempera-

tures of the gas in the control volumes and the positions of the pistons

were selected as the independent variables in the current FPSE analysis.

Nine independent variables are needed to describe the engine shown in

Fig. 2.1: the masses and temperatures of the gas in the expansion, com-

pression, and gas spring spaces; the mass of gas in the dead space; and

the positions of the power piston and displacer. Variable volumes and
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pressures are treated as dependent variables. Volumes are a geometric

function of the power piston and displacer positions. Gas pressure in a

control volume is related by the ideal gas law to the mass, temperature,

and volume of the gas.

The conservation equations that govern the behavior of the free-

piston Stirling engine shown in Fig. 2.1 are derived as follows. The

mass conservation laws for the expansion space, expansion and dead spaces

combined, and working space can be stated, respectively, as

dm 1

dt k (-Pd e) (2.1)
pe

dm dmd 1
--- + - = - ( - P )(2.2)
dt dt k (Pc- d) (2 2 )

pc

dm dmd dm
+ +-- = k (P -P) , (2.3)

dt dt dt mc w c

where all variables are defined in the list of nomenclature in Appendix C.

By the First Law of Thermodynamics, the instantaneous energy balances

in the expansion and compression spaces are, respectively,

dm dV d(m Te)
T +h X ( -T = c , (2.4)

p dt e flux e se we Te) Pe dt + v dt2

d c _ dVcdm _ dV d(mcTc)c c ( ccc -dm T +h A (T - T) = P d-- + C - (2.5)
p dt c flux sc - c c Cdt v (2.5)

where the enthalpy flux temperatures are defined by

dm

TH, ifdt >0

Te flux (2.6)

dm
T , if -- < 0
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for the expansion space and

dm

TK' if dt > 0

Tc flux =(2.7)

dm
T, if - < 0
c' dt

for the compression space.

Equations (2.1)-(2.7) are identical to those derived in ORNL/CON-155

(Ref. 1). Thus, there is no need to define variables and explain physical

meanings for each term again. Readers who require more detailed infor-

mation should refer to the previous report.

The dynamic equations are derived from Newton's Second Law of Motion,

which states that the sum of the external forces acting on a mass are

equal to the rate of change of momentum of the mass. Engine housing

motion is neglected because the housing of the RE-1000 FPSE is much more

massive than the power piston or displacer. The dynamic system therefore

contains only two degrees of freedom: displacer motion and power piston

motion.

There are three pressure forces acting on the displacer of the

RE-1000 FPSE shown in Fig. 2.1. The gas spring force PsAr and the com-

pression space force Pc(Ad - Ar) act in a downward (positive) direction,

where all variables are defined in the list of nomenclature in Appendix

C. The expansion space force PeAd acts in an upward (negative) direc-

tion. The dynamic equation for the displacer is, therefore,

d2X

A + P (Ad - - P A = d (2.8)
s r c d r e d dp dt2

Referring again to Fig. 2.1, two pressure forces and the load force

act on the power piston. The buffer space force P A acts in a positive

direction, and the compression space force PcAp acts in a negative direc-

tion. The force the load produces on the power piston depends on the type

of load; dashpots, linear alternators, compressors, and hydraulic pumps

will all have different characteristics. For now, the load force will be
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represented arbitrarily by F1, and the power piston dynamic equation is

written as

d2Xp
PA-PA+F=m . (2.9)w Ap c p 1 pp dt2

To complete the formulation, mass and energy conservation equations

for the gas spring are needed. The rate of change of mass inside the gas

spring is assumed to be linearly proportional to the pressure difference

between the buffer and gas spring spaces. A gas spring leakage coeffi-

cient kms lumps the combined effects of leakage caused by the displacer

rod clearance seal and the centering port. The gas spring mass conserva-

tion equation is

dm
= km (Pw - P) . (2.10)

dt ms w s

The instantaneous energy equation for the gas spring, similar in form

to the ones for the expansion and compression spaces, is

dm dV d(m T )

cp dt Ts flux s ss ws s s dt v dt ' (2.11)

where the enthalpy flux temperature is

dm
d in

K'2 dt

s flux (2.12)
dm

TK, if -- < 0
s' dt

Equations (2.10)-(2.12) were derived in ORNL/CON-155 (Ref. 1) and,

thus, a detailed description will not be repeated here. The enthalpy flux

associated with the gas spring arises from the mass leakage between the

gas spring and buffer spaces, whereas the enthalpy fluxes in the expansion

and compression spaces arise from the motion of the displacer, which
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shuttles gas between the hot and cold ends of the machine. The gas spring

enthalpy flux temperature is based on the assumption that the buffer space

gas temperature is constant and equal to the cooler temperature.

This completes the formulation of the coupled thermodynamic and

dynamic equations for the RE-1000 free-piston Stirling engine configura-

tion. There are nine differential equations to solve for nine independent

variables (me, md, mc, ms, Te, Tc, Ts, Xp, Xd). The ideal gas law is used

to express the pressure variables (Pe, Pd' Pc, Ps) in terms of the

independent variables. The volume variables are geometric functions of

the piston positions (see Fig. 2.1)

Ve = Ve- AdXd , (2.13)

Vc = V + (Ad - Ar) Xd - ApX , (2.14)

V = V + ArXd (2.15)

2.2 Engine Performance Parameters

When the thermodynamic analysis for kinematic Stirling engines

described in ORNL/CON-155 (Ref. 1) was extended to include free-piston

dynamics, thermodynamic calculations were added for the displacer gas

spring. The presence of the gas spring changes the overall energy bal-

ance in the FPSE analysis. Leakage and heat transfer losses in the gas

spring reduce the indicated power output from the engine, and the resul-

tant thermal energy either increases the heat rejection or reduces the

heat input. The assumption in this analysis is that all thermal energy

from the gas spring losses ends up in the engine cooler. The physical

implications of this assumption are that heat transferred to the gas

spring walls and heat lost to the buffer space by leakage must be con-

ducted or convected to the cooler.

After an engine has reached a periodic steady state, the heat input,

heat output, and indicated power are calculated as

Qin = e ' (2.16)Qin = e'
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Qout -wc -Ws (2.17)

Wout = W + W + W , (2.18)out e c s

where

W = f f Pe dVe ' (2.19)

Wc = f f Pc dVc ' (2.20)

W = f Ps d (2.21)

are the cyclic integrals of pressure and volume in the expansion, com-

pression, and gas spring spaces. In general, the value of We will be

positive, and Wc and Ws will be negative. Note that the heat input is

indeed equal to the sum of heat output and indicated power. Indicated

thermal efficiency is calculated from Eqs. (2.16) and (2.18) as

out

nit · x 100% . (2.22)
Qin
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3. LHA SOLUTION METHOD

All of the LHA solution procedures for kinematic engines described

in ORNL/CON-155 (Ref. 1) apply equally well to free-piston machines.

However, some additions are needed for FPSE applications because the

operating frequency is not known at the beginning of the solution, and

power piston amplitude cannot be solved for directly. The LHA method-

ology as it applies to FPSE dynamic problems is described in this chapter.

To conserve space, some equations that are identical to ones already pre-

sented in ORNL/CON-155 (Ref. 1) will be referenced rather than repeated.

3.1 Equivalent Load Representation

Free-piston Stirling engines have driven a number of different

loads, including dashpots, linear alternators, compressors, and hydraulic

pumps. None of these loads display purely linear behavior; that is, the

force they produce on the power piston is not a linear function of piston

position and velocity. The linearity of a load has a significant impact

on the stability of an FPSE, where stability is defined as the tendency

of an engine to maintain constant piston strokes with no beating oscilla-

tions. Nonlinear loads are actually desirable in FPSE applications be-

cause they improve engine stability. For example, a load that produces a

force proportional to velocity squared will result in greater stability

than a load with a force directly proportional to velocity.

An FPSE analysis cannot completely ignore load nonlinearities be-

cause of their impact on engine stability. In the LHA solution, the load

is initially assumed to be linear so that the differential equations can

be solved in almost closed form. Later in the LHA solution, load non-

linearities are included during an FPSE/load matching analysis. All

loads are initially represented by an equivalent linear spring and dash-

pot. The load force in Eq. (2.9) is assumed to have the form

dX
F1 = -c X cd dt (3.1)
1 ls Xp I- Cd dt
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where cls and cld are the equivalent spring and damping coefficients.

The equivalent load spring accounts for the reactive forces that the load

produces on the power piston. Negative values of cls can be used if the

load acts like additional inertia in the system. The equivalent load

dashpot accounts for the power absorbed by the load.

3.2 Nondimensional Equations

To simplify subsequent analysis, it is convenient to deal with the

governing equations in dimensionless form. Many of the dimensionless

variables and parameters were defined in ORNL/CON-155 (Ref. 1) [Eqs.

(3.10)-(3.18)]. Additional dimensionless parameters are defined below.

Rate constants:

hs Ass kms Pw
s s- ms -m ms

i m c k m
s v s

Independent variables:

m T
m* =- , T* - . (3.3)

s -- s -
ms Ts

Dependent variables:

P V
p =- , Vs =-. (3.4)

Pw Vs

Temperature constants:

T* = - (3.5)
Ws -

s
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Enthalpy flux temperature variables:

s flux

T
S

s flux - * (3.6)

Volume constants:

AX
r pm

a4 = - (3.7)

Vs

Average performance parameters:

H _ Q _ (y - 1)
S W WS SH* - s_ -. _-W* - (3.8)

cmTs cmTs PwVo
vss vSS WS

Area constants:

Ad A r Ad - A

all A ' a1 2 = A- a13 = A (3.9)
p p P

Dynamic mass constants:

m w m 2 X
= pp pm m dp W2 (pmm* = mPP pm (3.10)

PP P
Pw Ap Pw Ap

Load coefficients:

cl XP cld (60 i) Xp
C* = C* - (3.11)ls ld -. (3.11)

Pw A P APw p w p
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Using the dimensionless parameters defined previously and the lin-

earized ideal gas laws

* * * *
P =m + T -Ve e e e

* *

P = md

(3.12)
* * * *
P =m + T -V ,

C C c C

* * * *
P =m + T -V ,

s s s S

the governing equations [Eqs. (2.1)-(2.12)] transform into a system of

dimensionless differential equations

*dm

- k = - m - T + V , (3.13)- pe * d e e e
m dt

w

_ * _ *
me * dm md dmd * * * *
- k - +- k - m + T -V - m , (3.14)

pc * pc * c c c d '

me dm md dmd dm
+ + _ * = kc (1 - mc - Tc + Vc) , (3.15)

m dt m dt m dt
w w w

** ** *

^-^^-^^---^e * e

dt* + (- 1)(m e + dt YTe flux dtdt dt dt

* *
+ h (T Te) (3.16)e we e

* *
d(m:T) * * * dV* *

dt* c c c * c flux *
dt dt dt

+ h* (T - T) , (3.17)
C wC c
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d2x*
d2X * * * * * *

dp *2 = 13 (m + T + a12 (m - V)

* * *

- all (me + Te - V) (3.18)

* *
d2X * , dX ,* d2 p * * * * * dXp

m P=(1 - m - T + V c) X -- , (3.19)
pp dt,2 c c i-Cs p ld 60r dt

dm s * * * *
= km (1 - m s - T + V) , (3.20)

dt

s +( - l)(m + Ts

dt s s s dt s flux dt*

* -* *

+ h (T - T) , (3.21)

where the dimensionless enthalpy flux temperatures are

* *
*TH , dm > 0

T flux (3.22)e flux

* *

T e, dm < 0
e e

fTK , dm > 0

T (3.23)c flux

T , dm < 0
c c

TK/Ts, dms > 0

s flux , ,(3.24)
Ts dm < 0

s s
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3.3 Harmonic Oscillations

The nine governing equations [Eqs. (3.13)-(3.24)J will contain only

constants and the nine independent variables, after the volume variables

are replaced with dimensionless forms of Eqs. (2.13)-(2.15)

* *
V = 1- al Xd

Vc = 1 +- a2 X , (3.25)

* *
V = 1 + a Xd .s 4 d

Because steady state solutions are the only ones of interest, the nine

independent variables are assumed to undergo simple harmonic oscilla-

tions. This assumption is very reasonable because the piston motions in

most free-piston engines have waveforms that can be closely approximated

by harmonic functions. The harmonic assumptions are as follows:

* * *
me = 1 + yl sin t + Y2 cos t ;

* * *
md = 1 + Y3 sin t + y cos t ;

* * *
m = 1 + Y5 sin t + y cos t ;

* * *
T = 1 + y7 sin t + y cos t;

T = 1 + yg sin t + y^ cos t (3.26)

* * *

Xd = yll sin t + Y12 cos t

* * *

s 1 + Y15 sin t + Y16 cos t ;

=* *sin t

s =1 + Y1 7 sin t + Y1 8 Cos t
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where y1 through y1 8 are all unknowns to be solved for simultaneously by

the method of undetermined coefficients.

The dimensionless power piston position is arbitrarily defined to

have only a sin t* component, with an unknown amplitude represented by

Y14' All other variables contain both sin t* and cos t* components, with

relative amplitudes that depend on the phase angle between the variables

and power piston position. The equivalent load damping coefficient is

treated as one of the unknowns, Y13' This mathematical procedure is

necessary because of the linearized representation of the load and is

very important to the success of the LHA solution. The physical explana-

tion is that the magnitude of the equivalent load damping force is calcu-

lated so that it balances the power piston dynamic equation. Nonlinear

load behavior is accounted for later in the LHA solution during an

FPSE/load matching analysis.

When the assumed harmonic solutions [Eq. (3.26)] are substituted

into the governing equations [Eqs. (3.13)-(3.24)], the resulting instan-

taneous equations will be in harmonic form except for the instantaneous

power, internal energy, and enthalpy flux terms in the energy equations,

which will contain products of sin t* and cos t*. These nonharmonic

terms are replaced by truncated Fourier series. The procedure for trun-

cated Fourier series expansion of each nonharmonic term was described in

detail in ORNL/CON-155 (Ref. 1) and will not be repeated here.

3.4 Integrated Energy Equations

After the nonharmonic terms are replaced by truncated Fourier

series, the instantaneous energy equations [Eqs. (3.16), (3.17), (3.21)]

are separated into two systems - integrated and fluctuating equations.

The system of integrated energy equations comes from the constant terms

(zero-order coefficients) in the Fourier expansions, and each equation

represents the steady state average energy balance for a control volume.
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The integrated energy equations in nondimensional form are

H* + Q* =* ,
e we e

H* + Q* = W* (3.27)
c wc c

* + Q* = W* ,
s ws s

where the average energy flow rates in the expansion and compression

spaces were defined in ORNL/CON-155 (Ref. 1) [Eqs. (3.44), (3.56),

(3.59), and (3.78)-(3.80)]. The average energy flow rates in the gas

spring are

s = (c m T s ) H = Zl(5) (TK - T) + Zl(6)

Qs = (c m sT ) Q* = h A (Tw -T )ws v s s ws s ss ws s

(3.28)

s = () W = PV a4 [Yl (Y 16 + Y1 8)

- Y1 2 (Y15 + Y1 7 )]

where

Zl(5) = - - 12 2
Z1(5) = cp m5 Y 15 Y16'pr sp5 17

ZY(6) (3.29)
Zl(6) -4( y 1) Pw Vs (Yl5 Y18 - Y16 Y17) · (3.29)

* ~ ~ ~ ~ ~ ~ ~ ~ ~ - w 5Y81
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After the unknowns (yl to Y18) have been determined, the integrated

energy equations are rearranged to calculate the mean gas temperatures

Z1(1)T + Z1(2) + h A T -- H e se we e
e

Zl(1) + he Ase

Z1(3)T + Z1(4) + h A T -W
T K c sc wc c (3.30)

Z1(3) + he As

Z1(5)TK + Z1(6) + h A T -W
-Y~ K ~S SS WS S

Z1(5) + hs A
s Ss

where Zl(1) to Zl(4) were defined in ORNL/CON-155 (Ref. 1) [Eqs. (3.83)-

(3.86)]. The solution for the unknowns is discussed in Sect. 3.5.

3.5 Homogeneous Algebraic Equations

Taking the difference between the instantaneous and integrated equa-

tions results in the system of fluctuating equations. The general form

of each fluctuating equation is

E sin (wt) terms + E cos (wt) terms = 0 . (3.31)

Because sine and cosine are orthogonal functions, a solution exists at

all times only if

Z sin (tt) terms = 0 ,

E cos (wt) terms = 0 . (3.32)

This leads to a set of homogeneous algebraic equations with y1 to y1 8 as

unknowns, which may be represented by an 18 x 18 matrix:
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e

~e~ m_kk* l °0 - 0 1 0 0 a 0 0 0 0 0 0 y

- pe 1 a Y

0 _ 1- k* - _0 k* -0 0 0 ) 0 0 0 0y
m m

0 k* I k* -0 0 0-- 1 a 0 Y

- pc pc 2 3 3
w w

me dm
k* k 1 0 0 0 0 --1 0 a2k* 0 Y

w w

mw mw m w

me Ind
- 0 0 0 0 0 0 k* 0 2 c 0 0 0 0 0 0 yme md mc

mw MW mw

D(7,1) D(7,2) 0 0 0 0 h* -1 0 0 0 ( - l)a 0 0 0 0 0 0 0, (3.33)e 17
D(8,1) D(8,2) 0 0 0 0 1 h* 0 0 -y-1)a 0 0 0 0 0 0 Y
0 0 0 0 D(9,5) D(9,6) 0 0 h* -1 0 - l-)a 0 0 0 0 0 0 y

0 0 0 0 D(10,5) D(10,6) 0 0 1 h* (y - )a 0 0 - l)a 0 0 0 0

a 1 0 0 0 13 0 a 0 3 013 D(11,11) 0 0 a 0 12 0 Y11

0 a 1 0 0 0 a 3 a 0 13 0 D(12,12) 0 0 0 12 Y12

0 0 0 0 1 0 0 0 1 -a 0 0 D(13,14) 0 0 0 Y13

2 60
O O O O O 1 0 0 0 1 0 * 2 60r ° °* ° ° ° Yll

0 0 0 0 0 0 0 00 2 0 0 0 0k* -1 k* 0 y
4 ms ms ms y1 5

0 0 0 0 0 0 0 00 0 0 k* 0 1 k4 ms ms Ms Y1 6

0 0 0 0 0 0 00 0 0 0 l0 -(Y-)a 0 0 D(17,15) D(17,16) h* -1 Y

0 0 0 00 0 0 0 )a0 0 D(18,15) D(18,16) 1 h y 8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~6-~ s 18
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where

D(7,1) = FF(1),

D(7,2) = -1 + y T + FF(2),
e

D(8,1) = 1 - y T + FF(3),

D(8,2) = -FF(1),

D(9,5) = FF(4),

D(9,6) = -1 + Y Tc + FF(5),

D(10,5) = 1 - y T + FF(6),
c

D(10,6) = -FF(4), (3.34)

D(11,11) =-mdp + aa 1 3 + a4a 2 +aa 11

D(12,12) = D(11,11),

* *

D(13,14) = -m + a3 +
pp 3 is

D(17,15) = FF(7),

D(17,16) = -1 + Y T + FF(8),
s

D(18,15) = 1 - y T + FF(9),
S

D(18,16) = -FF(7),

and the Fourier correction factors FF(1) to FF(6) were defined in

ORNL/CON-155 (Ref. 1) [Eqs. (3.51), (3.52), (3.54), and (3.71)-(3.73)].

The three remaining Fourier correction factors for the gas spring are

FF(7) = - (Y18 cos3 8 - Y sin 3 0 )
3wf 18 s 17 s

FF(8) = 2y [Y7 cos s (sin 2 s + 2) - sin 3
s]3ir 17 Cos S s Ys18

FF(9) = - [Y17 cos3 0 - Y sin O (cos 2 8 + 2)] (3.35)
3 17 s 18 s s

Y15
sin 8 =

25
+ y+VY15 + Y16

Y16
cos e8 =

V15 + YuY15 + 16
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The algebraic equations are written as a linear system even though

some nonlinearities exist. Most of the elements of the coefficient

matrix are zeros or constants. However, careful observation reveals that

some of the coefficients in the matrix depend on the unknowns (y to

Y1 8); examples are elements that include the Fourier correction factors

[FF(1) to FF(9)] or the mean gas temperatures (Te, Tc, Ts). Note that

Eq. (3.33) does not contain the mean gas temperatures explicitly, but

parameters such as the average masses of gas in the control volumes are

calculated from the mean gas temperatures. The problem of algebraic

nonlinearities is resolved by an iterative process where Eq. (3.33) is

treated as a linear system during each iteration. The iterative calcu-

lations are described in Sect. 3.7.

The homogeneous system in Eq. (3.33) has a nontrivial solution only

if the determinant of the coefficient matrix is zero. This condition is

used to calculate engine angular frequency i. Frequency appears explic-

itly in one element of the coefficient matrix and implicitly in elements

that contain dimensionless parameters with * superscripts. The determi-

nant, in theory, could be evaluated using a pencil and large quantities

of paper, resulting in a complicated algebraic equation that could be

solved for the characteristic frequency (or frequencies). However, stan-

dard matrix algebra subroutines are used to calculate determinants, and a

numerical root-finding routine is used to find the characteristic fre-

quencies where the determinant is zero.

A secant-bisection root-finding method is used in the LHA solu-

tion. The bisection logic ensures stable convergence while the secant

method minimizes convergence time. The root-finding routine is initial-

ized by specifying two frequencies ( 1owWhigh) that bound a point where

the determinant is zero. Then the secant method is used to find the

characteristic frequency where the determinant is zero. If the secant

method becomes numerically unstable, the routine automatically shifts to

the bisection method, but only until the secant method becomes stable

again. If multiple characteristic frequencies exist, then the root-

finding routine must be executed once for each zero crossing.
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3.6 Nonhomogeneous Algebraic Equations

When the determinant of the coefficient matrix in Eq. (3.33) is

zero, the number of independent equations is one less than the number of

unknowns. Therefore, one of the 18 rows can be eliminated without loss

of generality, after a characteristic frequency has been determined

(using the procedure described in Sect. 3.5) and substituted into Eq.

(3.33). It makes no difference from the theoretical viewpoint which row

is eliminated, though there may be some practical limitations because of

round off errors in the matrix algebra computations. In the LHA solu-

tion, row 14 is added to row 13 (which is allowable because the equations

are linear), and then row 14 is deleted. This reduces the algebraic

system from an (18 x 18) to a (17 x 18) matrix.

A unique solution for the 18 unknowns is not possible because there

are only 17 independent equations; any solution for y1 to y18 that satis-

fies the linear equations will also be a solution if all the unknowns are

halved, doubled, or multiplied by any factor. The number of unknowns in

the LHA solution is reduced to 17 by specifying a value for the power

piston amplitude Xpa or in dimensionless form

X
pa

Y14
= X (3.36)

pm

Column 14 in the matrix in Eq. (3.33) can then be multiplied by y1 4 and

moved to the right-hand side. The result, after adding row 14 to row 13,

deleting row 14, and moving column 14 is a (17 x 17) nonhomogeneous

algebraic system:
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Standard matrix algebra subroutines are used to solve Eq. (3.37) for the

other unknowns, y1 to y13 and Y15 to y18' Displacer amplitude and phase

angle (relative to the power piston motion) can then be calculated from

equations that are easily derived from the original harmonic assumptions

in Eq. (3.26),

Xa = X y2 + 2
da pm 11 12

(3.38)

Y11
ad COS

All dynamic parameters have now been determined except for power piston

amplitude. A unique solution for the power piston amplitude cannot be

found until the engine analysis is matched to a specific load. This will

be discussed in Sect. 3.8.

3.7 Successive Approximations

The (18 x 18) algebraic system in Eq. (3.33) is not completely

linear because some elements in the coefficient matrix depend on the mean

gas temperatures defined in Eq. (3.30) and the Fourier correction factors

defined in Eq. (3.35) and in ORNL/CON-155 (Ref. 1) [Eqs. (3.51), (3.52),

(3.54), and (3.71)-(3.73)]. An iterative solution process is needed for

any case other than the isothermal one. A computer program was written

in FORTRAN to perform the iterative calculations more efficiently and to

check automatically for convergence. Two subroutines, called DECOMP and

SOLVE, were called from a standard FORTRAN library to perform the matrix

algebra, which simplified the programming effort. A listing of the com-

puter program is given in Appendix D.

The procedure for the iterative calculations is shown in Fig. 3.1.

The solution is initiated by assuming that the expansion, compression,

and gas spring spaces are isothermal. The initial isothermal values for

Te , Tc, T, and FF(1) to FF(9) are shown in Fig. 3.1. Frequency must

also be assigned an initial value to provide a starting point for the

root-finding routine.
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ORNL-DWG 85-5342 ETD

SPECIFY CONSTANT PARAMETERS, INCLUDING

POWER PISTON AMPLITUDE (Xpa)

ASSUME INITIAL VALUES:

o= (Wlow + high)/2,

Te =T - TH =TK Ts = TK,
FF(n) = 0,n = 1,2 . .. 9

USE SECANT-BISECTION METHOD CALCULATE ELEMENTS

TO CALCULATE NEW wA OF (18 X 18) MATRIX

WHERE DETERMINANT IS ZERO AND ITS DETERMINANT

ITERATE UNTIL cJCONVERGES

l SETy 14 = X /X pm

SOLVE (17 X 17) NONHOMOGENEOUS

EQUATIONS FOR yl TO Y13, Y15 TO y18

CALCULATE INTEGRALS IN

INTEGRATED ENERGY EQUATIONS

IF AVERAGE ENERGY BALANCES

HAVE NOT CONVERGED, CALCULATE

NEW Te , Tc , T, FF(n) AND ITERATE

Fig. 3.1. Flow chart for successive approximations.

The computer program contains one large loop plus a smaller loop for

frequency root finding. At the beginning of the large loop, the current

values of Te, Tc, Ts, and FF(1) to FF(9) are used to calculate the matrix

elements. Then the algebraic equations are solved to determine y1 to Y13

and y15 to Y18- At the end of the large loop, the integrals in the inte-

grated energy equations are evaluated. If the average energy flow rates

balance in the expansion and compression spaces, then the solution is
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terminated. If the average energy balances have not converged, then new

approximations for T , Tc, Ts, and FF(1) to FF(9) are calculated from the

new values of yl to Y 1 8 and the calculations return to the top of the

large loop for another iteration.

3.8. FPSE/Load Matching

Up to this point in the LHA solution, the force that the load pro-

duces on the power piston of the FPSE has been assumed to have the linear

form shown in Eq. (3.1). This assumption was made temporarily so that

the differential equations could be solved in almost closed form. To

complete the solution, load nonlinearities must now be included in the

analysis so that a unique value for power piston amplitude can be deter-

mined. The general procedure for calculating power piston amplitude is

described in this section.

An FPSE will operate at a point where the power produced by the en-

gine just matches the power absorbed by its load, as illustrated in Fig.

3.2. Power piston velocity amplitude wX is used as the abscissa in
pa

Fig. 3.2 because power is generally a function of both frequency and

piston amplitude. In fact, the power absorbed by the generalized non-

linear dashpot load discussed in Appendix B is proportional to Xpa
pa

raised to a power, which will appear as a straight line when plotted in

logarithmic coordinates. Many other loads and engines will also form

nearly straight lines on logarithmic plots similar to those in Fig. 3.2.

The match point shown in Fig. 3.2 is stable because the FPSE has a

natural tendency to operate at a constant power piston velocity ampli-

tude. If the velocity amplitude is less than the match point, then the

engine produces more power than the load absorbs, which tends to drive

the velocity amplitude back toward the match point. If the velocity am-

plitude is greater than the match point, then the engine produces less

power than the load absorbs, and this also drives the FPSE back toward

the match point. If the engine line is steeper than the load line, then

the FPSE will be unstable and will tend to either stall or overstroke.

A unique value for power piston amplitude is determined by matching

the power produced by the FPSE to the power absorbed by the load. First,
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Fig. 3.2. Logarithmic plot showing FPSE/load matching example.

the power output of the engine is calculated for several different power

piston amplitudes and is plotted vs power piston velocity amplitude.

Then the power absorbed by the load (assuming it is driven sinusoidally)

is determined either from actual measurements or from a nonlinear analy-

sis, and it is also plotted vs power piston velocity amplitude. The

point where the engine and load curves cross defines the solution for
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power piston amplitude. Some specific FPSE/load matching examples are

presented in Chap. 4.

The load must also be Fourier analyzed to determine the equivalent

load spring coefficient cls defined in Eq. (3.1). A specific value for

the equivalent spring coefficient is needed at the beginning of the LHA

calculations. The Fourier analysis can be performed, in some instances,

before specific values for frequency and power piston amplitude are

known. In general, though, the load cannot be Fourier analyzed until

frequency and power piston amplitude are determined at the end of the LHA

calculations. The LHA calculations in these circumstances may have to be

repeated a few times to ensure that proper values of the equivalent

spring coefficient are used in the computations.

3.9 Summary of LHA Procedures

The LHA procedures can be summarized in 15 steps.

1. The working space is divided into control volumes.

2. Conservation equations (mass, momentum, energy) are written for the

control volumes, and dynamic equations are written for the moving

masses.

3. The force that the load produces on the power piston is represented

by an equivalent linear spring and dashpot.

4. P, m, T, and V of gas in each control volume are assumed to have

small amplitudes relative to their mean values. A linear form of

the ideal gas law is used to express P as a sum of m, T, and V.

V is expressed in terms of piston positions X.

5. The LHA method is restricted to steady state solutions. Solutions

for the independent variables (m, T, and X) are assumed to have

harmonic forms:

m = m + y1 sin (wt) + Y2 cos (at) ,

T = T + y3 sin (wt) + y4 cos (wt) , etc.

The equivalent load damping coefficient is treated as one of the

unknowns (Y , Y2, etc.).
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6. The harmonic solutions are substituted into the governing equations,

and terms containing products of harmonic functions are replaced by

truncated Fourier expansions.

7. The general form of each governing equation becomes

Z constant terms + Z sin(wt) terms + Z cos(wt) terms = 0.

A solution exists at all times only if

Z constant terms = 0,

Z sin(wt) terms = 0,

Z cos(wt) terms = 0.

8. The E sin (wt) terms = 0 and Z cos (mt) terms = 0 equations form a

homogeneous system of almost linear algebraic equations in terms of

the unknowns (Y1, Y2, etc.). Products of the unknowns are treated

in a quasi-linear manner through iteration.

9. The homogeneous algebraic system has a nontrivial solution only if

the determinant of the coefficient matrix is zero. Frequency is

calculated by finding the value or values that makes the determinant

zero.

10. When the determinant is zero, the number of independent equations is

one less than the number of unknowns. The homogeneous system is

converted to a nonhomogeneous system by assuming a value for power

piston amplitude (one of the unknowns). The other unknowns (Y1 ,y2,

etc.) are calculated with respect to power piston amplitude.

11. After yl, y2, etc. are obtained, the Z constant terms equal 0 equa-

tions from the governing equations are solved to compute the values

of other unknown parameters such as Te T, T5, T etc.

12. A few iterations back to step 8 may be needed to include updated

values for the quasi-linear approximations T , Tc, and Ts .

13. The power produced by the engine is determined by evaluating the

appropriate pressure-volume (PV) integral. Engine power is

calculated for several different power piston velocity amplitudes.
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14. The power absorbed by the load as a function of power piston veloc-

ity amplitude is determined either from actual measurements or from

nonlinear analysis. The equivalent load spring coefficient is also

determined by Fourier analysis.

15. Power piston amplitude is determined by finding the value where en-

gine power just balances the power absorbed by the load. Iterations

back to step 8 may be needed to account for coupling between fre-

quency, power piston amplitude, and the equivalent spring coeffi-

cient.
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4. LHA RESULTS AND DISCUSSION

Sample calculations and results of parametric sensitivity studies

are presented to demonstrate the advantages of the LHA method for pre-

dicting FPSE dynamic behavior. References are made to other solution

methods as part of a general discussion of analytical theory. However,

a detailed comparison between the LHA method and other Stirling analysis

methods is not intended. The presentation of results emphasizes the im-

portant dynamic parameters: frequency, power piston amplitude, displacer

amplitude, and displacer phase angle. Thermodynamic performance (power,

efficiency, etc.) is discussed to a lesser extent because those results

were discussed previously in ORNL/CON-155 (Ref. 1).

Two types of LHA dynamic predictions are presented; to help avoid

confusion they are labeled either (1) constrained piston amplitude mode

or (2) free-dynamic mode. Constrained piston amplitude mode refers to

the engine analysis before it is matched to a specific load. In the

constrained piston amplitude mode, power piston amplitude is specified,

and the other dynamic parameters are calculated with respect to this

specified amplitude. This corresponds to step 12 in the LHA summary in

Sect. 3.9. Free-dynamic mode refers to the complete analysis after the

characteristics of a particular load have been matched to the behavior of

the engine. In the free-dynamic mode, the load force as a function of

piston position and velocity is specified rather than piston amplitude.

4.1 Base Case Predictions

All sample calculations in this report are based on the dimensions

and typical operating conditions of the RE-1000 FPSE manufactured by

Sunpower, Inc. and tested by NASA Lewis Research Center. 1 8 First sample

calculations were performed for a base case and then sensitivity studies

were performed around the base case. The engine dimensions and operating

conditions selected for the base case are listed in Tables 4.1 and 4.2.

The engine dimensions were estimated from a report published by

Schreiber. 1 9 The operating conditions were selected to match a particu-

lar data point that has been measured by NASA Lewis but, unfortunately,
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Table 4.1. RE-1000 engine dimensions and
physical parameters

Maximum stroke, m

Power piston 0.0420
Displacer 0.0404

Diameter, m

Power piston 0.05723
Displacer 0.05723
Displacer rod 0.01666

Average volume, m3

Expansion space 63.6 x 10-6
Heater 39.6 x 10-6
Regenerator 59.4 x 10-6
Cooler 28.5 x 10-6
Compression space 103.6 x 10-6
Displacer gas spring 31.8 x 10- 6

Average heat transfer surface area, m2

Expansion space 0.01392
Compression space 0.02292
Displacer gas spring 0.00979

Mass, kg

Power piston 6.2
Displacer 0.426

Table 4.2. RE-1000 base case
operating conditions

Working gas Helium

Average pressure, Pa 7,085,000

Average wall temperture, K

Heater 853
Expansion cylinder 853
Cooler 326
Compression cylinder 326
Displacer gas spring cylinder 326

Equivalent load spring coefficient, N/m 0
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will not be published in their final report. The wall temperatures were

adjusted to yield proper gas temperatures in the expansion and compres-

sion spaces.

Correlations for heat transfer, pressure drop, and seal leakage have

not been included in the analysis as yet because the initial work was

directed towards verifying the LHA mathematical assumptions rather than

validating a computer code. The loss coefficients must be specified as

part of the input data; the values used for the base case are listed in

Table 4.3. The pressure drop and seal leakage coefficients were selected

so that the analysis yields reasonable predictions for displacer ampli-

tude, indicated power output, etc. The heat transfer coefficients were

estimated from equations that were derived by Lee 2 0 as part of an analyti-

cal study of cylinder heat transfer. Lee's analysis showed that the heat

transfer coefficient amplitude in nearly adiabatic cylinders is equal to

the square root of two times the gas conductivity divided by the thermal

boundary layer thickness for pure conduction. Heat transfer coefficients

calculated from this pure conduction model for the RE-1000 base case oper-

ating conditions are ~1280 W/(m2-K) at the cold end and ~1050 W/(m 2.K) at

the hot end. Thus, the heat transfer coefficient values of 1000 W/(m 2.K)

shown in Table 4.3 appear to be the right order of magnitude.

Some of the RE-1000 base case results predicted by the LHA con-

strained piston amplitude mode are listed in Table 4.4. A comparison of

Table 4.3. RE-1000 base case loss coefficients

Cylinder heat transfer coefficient, W/(m 2-K)

Expansion space, he 1 x 103

Compression space, hc 1 x 103

Displacer gas spring, hs 1 x 103

Pressure drop coefficient, (Paos)/kg

Between expansion and dead spaces, kpe 1.5 x 106
Between compression and dead spaces, kpc 1.5 x 106

Seal leakage coefficient, kg/(Pa-s)

Between compression and buffer spaces, kmc 6.8 x 10- 9

Between gas spring and buffer spaces, kms 2.0 x 10- 9
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Table 4.4. LHA constrained piston amplitude
mode predictions for RE-1000 base case

Parameter Base case

Specified value

Power piston amplitude, Xpa, m 0.01300

Computed values

Frequency, f, Hz 29.44

Displacer amplitude, Xda, m 0.01260

Displacer phase angle, d', deg 46.68

Compression space pressure 1,121,500
amplitude, IPcI, Pa

Compression space pressure phase -17.11
angle, Bpc, deg

Expansion space average gas 824.8
temperature, Te, K

Compression space average gas 336.6
temperature, Tc, K

Total heat input rate, Qin, W 2852

Total heat output rate, Qout' W 1832

Indicated power output, Wout, W 1020

Indicated thermal efficiency, nit, % 35.76

these results and the NASA Lewis experimental data presented by Tew 12

shows that the base case dimensions, operating conditions, and loss

coefficients listed in Tables 4.1-4.3 yield realistic LHA predictions for

the RE-1000 FPSE. The LHA predictions for frequency, displacer ampli-

tude, compression space pressure phase angle, and indicated power output

are all within the range of experimental data presented by Tew. The LHA

prediction for displacer phase angle is below the measured values; it is

interesting to notice that the NASA Lewis predictions also show a similar

trend. The indicated thermal efficiency predicted by LHA is high, but

some of this discrepancy is because parasitic losses such as regenerator
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reheat, appendix gap losses, and cylinder wall conduction are not in-

cluded in the results in Table 4.4. Regenerator reheat losses are dis-

cussed as part of the imperfect heat exchanger analysis in Appendix A.

An easy way to visualize the dynamic behavior of an FPSE is to plot

the dynamic equations in vector diagrams. The force balance for the

displacer in Eq. (2.8) and the power piston in Eqs. (2.9) and (3.1) can

be rearranged into the following forms:

( d2 Xd

(P Ar) + (- A ) +(P P ) (A - A ) + ) =s r e r c e d r dp dt2

gas /working pressure (4

pring + spacee n+ rer + tial =
orce forceforce / force drop force

dX\ / d2X \
(P A )+ (-P A ) + -c - + m - 0
w p c p ( \ls p ld dt2 /

ounce /working (4.2)
I Ie + orkiinertial =0

space spacspe + (load force) + fore
forcorce force

When these equations are plotted vectorially they form closed polygons

because the sum of the forces is zero. Only the time-dependent portion

of the forces are plotted in a vector diagram. Thus, the bounce space

force vector will be zero because the bounce space pressure was assumed

to be constant. Also the load force for the RE-1000 base case will be a

pure damping force because the equivalent load spring coefficient was

assumed to be zero.

The LHA predictions for the RE-1000 base case are presented in vec-

tor form in Fig. 4.1. The pressure vectors are shown relative to the

position vectors in subplot a. The angle between the Ps and -Xd vectors

is caused by the heat transfer and seal leakage losses in the displacer

gas spring. These two vectors would coincide if the gas spring was per-

fect. Another interesting observation is that the magnitude of the pres-

sure drop (Pc - Pe) vector is very small compared with the absolute

magnitude of the pressure vectors.
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Fig. 4.1. Vector presentation of LHA results for RE-1000 base
case; (a) position and pressure variables, (b) displacer force balance,
(c) power piston force balance.
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The displacer force balance is shown in subplot b along with axes

that define the types of forces acting on the displacer. For example, a

force vector that points in the -Xd direction represents a pure spring

force. The magnitude of the pressure drop force [(Pc - Pe) (Ad - Ar)]

vector is about equal to the magnitude of the other displacer force vec-

tors. Even though the pressure drop across the displacer is fairly

small, the pressure drop acts on a much larger area than the other pres-

sures, and the resulting forces are about equal.

The power piston force balance is shown in subplot c along with axes

that define the types of power piston forces. The dominant forces in the

diagram are the spring component of the compression space force and the

inertial force. The power piston behaves like a resonant spring-mass

system, which is why the RE-1000 FPSE operates over a narrow and well-

defined range of frequencies.

4.2 Comparison with Nonlinear Solution

The LHA method depends on a number of mathematical assumptions used

to achieve an almost closed-form solution. The assumptions include

linearization of the ideal gas law, representation of all variables with

harmonic functions, and replacement of terms in the governing equations

that contain products of harmonic functions with truncated Fourier expan-

sions. To quantify the errors that are introduced by the LHA assump-

tions, an independent nonlinear solution of the same governing equations

was obtained* and compared with the LHA solution. The results of this

comparison for the complete thermodynamic/dynamic problem are presented

below. The mathematical accuracy of the simpler thermodynamic version of

the LHA solution was discussed in ORNL/CON-155 (Ref. 1).

The nonlinear solution of the governing equations [Eqs. (2.1)-(2.12)]

was based on a Runge-Kutta numerical integration method. The Runge-Kutta

method, like other explicit numerical methods, is a time-stepping integra-

tion where the variables at a new time are computed from previous values.

The work on the nonlinear solution was performed by S. C. Byrd
between June and August of 1984 as part of the Oak Ridge Associated
Universities Summer Student Program at Oak Ridge National Laboratory.
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Calculations proceed forward in small time steps over many cycles of the

power piston until a steady state periodic solution is found. Existing

IBM software, the Continuous System Modeling Program (CSMP), 21 was used

to avoid unnecessary programming efforts in numerical integration. The

CSMP software contains the Runge-Kutta integration logic as well as

flexible subroutines for data input and data output in both tabular and

graphical forms.

The comparison between the nonlinear CSMP and LHA solutions was done

for a generalized nonlinear dashpot load. The load force in Eq. (2.9)

was assumed to have the form

F1 = -k 1 p (abs p)n1 (4.3)

Equation (4.3) reduces to the simple linear dashpot formula when the

dashpot load exponent n is equal to one. For n > 1, the load force is a

power function of power piston velocity. The absolute value is needed in

the force equation to ensure that negative values of velocity will not be

raised to fractional powers. The free-dynamic mode of the LHA solution

is needed for the comparison with the nonlinear CSMP solution because a

specific load is involved. In the LHA free-dynamic mode, the power

absorbed by the load as a function of power piston velocity amplitude is

used in the FPSE/load matching analysis. A relationship for the power

absorbed by the nonlinear dashpot load in Eq. (4.3) can be derived in

closed form; this derivation is given in Appendix B.

The results of the comparison between the nonlinear CSMP and LHA

predictions for the RE-1000 base case are presented in Tables 4.5-4.7 for

three different dashpot load exponents: n = 1.5, 2.0, and 2.5. To make

a valid comparison, the CSMP numerical predictions were Fourier analyzed

to calculate cyclic averages, amplitudes, and phase angles. The calcula-

tion of the Fourier and PV integrals from the CSMP data was complicated

by the fact that the operating frequency and, therefore, the number of

time steps per engine cycle were not known at the beginning of CSMP com-

putations. Problems also occurred because there was no logic in the CSMP

solution to keep the power piston and displacer centered as helium leaked
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Table 4.5. Comparison between nonlinear CSMP predictions and LHA

free-dynamic mode predictions for F1 = --k X1.5 loads
p

Parameter Example A Example B Example C

Specified values

F1, N -252.26 X1.5 -239.65 1 -.5 -226.4 X1 .5
p p p

Ve, m3 65.6 x 10-6 65.5 x 10-6 64.9 x 10-6

VC, m3 105.2 x 10-6 105.6 x 10-6 106.2 x 10-6

Vs, m3 31.6 x 10-6 31.6 x 10-6 31.7 x 10- 6

Computed values

CSMP LHA CSMP LHA CSMP LHA

Xpa, m 0.01264 0.01263 0.01356 0.01355 0.01463 0.01466

f, Hz 29.39 29.36 29.41 29.38 29.43 29.38

Xda, m 0.01220 0.01218 0.01305 0.01304 0.01404 0.01406

d', deg 46.95 46.89 47.09 47.06 47.31 47.21

IPCI, Pa 1,083,200 1,084,000 1,162,200 1,163,000 1,254,100 1,256,600

Bpc, deg -17.54 -17.12 -17.25 -16.87 -16.91 -16.58

Te, K 824.8 826.0 822.2 823.5 819.1 820.5

Tc, K 335.4 336.1 336.3 337.1 337.4 338.3

Qin' W 2710 2664 3110 3058 3605 3561

Qout. W 1746 1708 2015 1973 2352 2313

Wout W 964 956 1095 1085 1253 1248
out'

nit, % 35.57 35.89 35.20 35.50 34.75 35.05

past the gas seals. The CSMP numerical integration required 10 to 20

cycles to achieve a steady state periodic solution. During this time,

enough preferential gas leakage occurred to cause the average volumes in

the expansion, compression, and displacer gas spring spaces to change

away from the RE-1000 base case values listed in Table 4.1. Preferential

leakage is accounted for in the comparison by calculating the actual

average volumes from the nonlinear CSMP predictions and using these CSMP
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Table 4.6. Comparison between nonlinear CSMP predictions and
LHA free-dynamic mode predictions for F1 = -kl X2. 0 loads

Parameter Example D Example E Example F

Specified values

F1, N -217.0 X2 . 0 -173.605 X2. 0 -147.0 X2 ' 0

p P P
Ve, m3 65.9 x 10-6 65.0 x 10-6 64.1 x 10- 6

Vc, m3 104.6 x 10- 6 105.8 x 10-6 106.9 x 10-6

V. m3 31.6 x 10- 6 31.7 x 10-6 31.8 x 10-6

Computed values

CSMP LHA CSMP LHA CSMP LHA

Xpa, m 0.01080 0.01071 0.01299 0.01292 0.01483 0.01479

f, Hz 29.31 29.32 29.35 29.35 29.39 29.37

Xda' m 0.01049 0.01039 0.01254 0.01246 0.01425 0.01418

,d' deg 46.75 46.58 47.16 46.94 47.53 47.26

IPCI, Pa 926,000 920,000 1,117,200 1,107,700 1,275,500 1,266,300

Bpc, deg -18.21 -17.66 -17.04 -17.07 -16.53 -16.57

Te, K 830.1 831.1 823.9 825.2 818.5 820.2

Tc, K 333.0 334.1 335.1 336.5 336.9 338.5

Qin W 1980 1930 2831 2782 3662 3617

Qo, W 1246 1222 1811 1786 2375 2350
Qout'

Wut, W 734 708 1020 996 1287 1267

nit, % 37.06 36.70 36.02 35.80 35.15 35.03

values in the corresponding LHA calculations. The average volumes used

in the LHA calculations are listed in Tables 4.5-4.7.

The mathematical accuracy of the LHA solution method should be

highest for FPSE configurations where the load force is most nearly har-

monic. The errors associated with the LHA assumptions should increase

for load forces that are far from harmonic. This trend is clearly evi-

dent in Tables 4.5-4.7. The nonlinear CSMP and LHA predictions are

nearly identical when the dashpot load exponent is n = 1.5. The differ-

ences between the two solutions increase, but still remain rather small,
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Table 4.7. Comparison between nonlinear CSMP predictions and
LHA free-dynamic mode predictions for F1

= -k1 Xj25 loads

Parameter Example G Example H Example I

Specified values

F1, N -133.63 j2.5 -121.48 X2 . 5 -109.33 X2 .5
p p P

Ve, m3 65.4 x 10-6 65.1 x 10-6 64.8 x 10-6

Vc, m3 105.2 x 10-6 105.6 x 10 - 6 106.0 x 10-6

Vs, m3 31.6 x 10- 6 31.7 x 10- 6 31.7 x 10-6

Computed values

CSMP LHA CSMP LHA CSMP LHA

Xpa, m 0.01227 0.01213 0.01297 0.01283 0.01377 0.01364

f, Hz 29.29 29.35 29.31 29.35 29.33 29.37

Xda, m 0.01189 0.01172 0.01253 0.01238 0.01328 0.01312

,d' deg 47.10 46.84 47.25 46.91 47.41 47.06

IPcI, Pa 1,059,900 1,041,400 1,116,300 1,100,700 1,185,500 1,169,500

BPc' deg -16.81 -17.26 -17.10 -17.09 -16.88 -16.87

Te, K 826.1 827.3 824.1 825.5 821.8 823.3

T , K 338.8 335.6 334.5 336.4 335.2 337.2

n' W 2531 2463 2816 2748 3162 3094

Qout, W 1594 1574 1783 1763 2014 1996Qout'

WOut W 937 889 1033 985 1148 1098
out'

nit, % 37.00 36.10 36.69 35.83 36.32 35.49

as the load becomes more nonlinear. Even when n = 2.5, the LHA predic-

tions differ from the CSMP predictions by a maximum of only -1.1% for

power piston amplitude, -1.4% for displacer amplitude, -0.35° for dis-

placer phase angle, -5.1% for indicated power output, and -0.90 percen-

tage points for indicated thermal efficiency. These differences are

about equal to or less than the uncertainty associated with typical ex-

perimental measurements of these parameters.
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The comparison between the LHA and CSMP solutions can be seen more

clearly in Figs. 4.2 and 4.3. Figure 4.2 shows a plot of indicated power

output vs power piston velocity amplitude in a logarithmic format similar

to Fig. 3.2. Figure 4.3 shows frequency, displacer amplitude, and dis-

placer phase angle as a function of power piston amplitude. When the LHA

predictions from Tables 4.5-4.7 are plotted in the figures, they form

unique curves with almost no scatter because the nonlinear dashpot loads

are represented in the LHA method by equivalent linear dashpots. The

linearity of the load does not affect the LHA results. The scatter of

the CSMP data points in the figures indicates that the nonlinear CSMP
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predictions are affected by the linearity of the load, though the effects

are fairly small. The general conclusion is that the LHA solution method

should have sufficient mathematical accuracy for most practical applica-

tions, even when the load has nonlinearities as strong as a dashpot with

an exponent of n = 2.5.

The comparison between the LHA and nonlinear CSMP solutions also

demonstrates the advantages that the LHA method has over numerical inte-

grations. Execution times for the CSMP time-stepping integration were

about 100 times longer than for the LHA solution. The long CSMP execu-

tion times were caused by two factors; short time steps were needed to

ensure numerical accuracy and 10 to 20 cycles were required to reach

steady state periodic solutions. When the LHA method is used, 100 dif-

ferent cases can be run in the same amount of time that it takes for a

single case using the nonlinear CSMP method. This computational effi-

ciency makes the LHA method ideal for optimization programs.

The LHA method also avoids problems with numerical instabilities

that can occur in time-stepping integrations. The CSMP solution was

found to be rather sensitive to the initial conditions that were selected

to start the integration; some sets of initial conditions caused the CSMP

integration to explode before a steady state periodic solution was found.

The stability of the CSMP numerical method was also dependent on the

linearity of the load. When CSMP solutions were attempted for linear

dashpot loads (n = 1), more than 50 cycles were needed for convergence to

steady state periodic solutions.

4.3 Adiabatic Cylinder Effects

Closed-form solutions to FPSE dynamic problems have been published

previously by Urieli and Berchowitz, 8 Goldberg, 6 and others. These

analyses were based on the assumption that the expansion and compression

spaces in the engine behave isothermally, and gas springs were assumed to

be adiabatic. We find that a significant error can occur if an iso-

thermal calculation is used to represent a nearly adiabatic engine such

as the RE-1000 FPSE. The compression space pressure produces all of the

restoring (spring) force on the power piston in the RE-1000 engine, as is
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shown in the power piston force balance in Fig. 4.1. It was shown previ-

ously in ORNL/CON-155 (Ref. 1) that an isothermal analysis predicts a

smaller compression space pressure amplitude than an adiabatic analysis.

An isothermal analysis of the nearly adiabatic RE-1000 FPSE will there-

fore result in frequency predictions that are too low because the

compression space pressure amplitude prediction and associated power

piston spring force will be too small.

The errors associated with an isothermal analysis of an adiabatic

FPSE were demonstrated by using the LHA method to perform a sensitivity

study around the RE-1000 base case. LHA constrained piston amplitude

mode results are listed in Table 4.8 for cases where the expansion and

compression spaces are either isothermal (h + a) or adiabatic (h = 0) and

Table 4.8. LHA constrained piston
amplitude mode predictions for
RE-1000 base case with iso-

thermal or adiabatic
cylinders

Isothermal Adiabatic
Parameter

cylinders cylinders

Specified values

Xpa, m 0.01300 0.01300

hs, W/(m2-K) 0 0

he, W/(m2 oK) 1 x 108 0

hc, W/(m2.K) 1 x 108 0

Computed values

f, Hz 26.58 29.43

Xda, m 0.01127 0.01270

Bds deg 51.44 46.88

IPcI, Pa 921,400 1,123,500

SPc, deg -18.44 -17.51

Wout' W 814 1045

nit, % 40.98 36.15
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the displacer gas spring is adiabatic. The frequency in the isothermal

case is indeed -9.7% less than in the adiabatic case. Other predictions

for the isothermal case differ from the adiabatic predictions by -11.3%

for displacer amplitude, +4.56° for displacer phase angle, and -22.1% for

indicated power output. The low power output prediction is a combined

effect of the low displacer amplitude and the low frequency.

The linearity of the load has a significant effect on the errors

created by an isothermal analysis of an adiabatic FPSE. Table 4.9 lists

LHA free-dynamic mode results for two nonlinear dashpot loads with dash-

pot load exponents of n = 1.5 and 2.5. The dashpot load coefficients

were selected so that the power absorbed by the dashpots matched the

Table 4.9. LHA free-dynamic mode predictions
for RE-1000 base case with isothermal

or adiabatic cylinders

n = 1.5; n = 1.5; n = 2.5; n = 2.5;
Parameter Isothermal Adiabatic Isothermal Adiabatic

cylinders cylinders cylinders cylinders

Specified values

F1 , N -254.84 Xj1 5 -254.84 X 1-5 -122.08 X2'5 -122.08 X2 .5
p p p p

hs, W/(m 2.K) 0 O 0 0

he, W/(m2.K) 1 x 108 0 1 x 108 0

hc, W/(m2.K) 1 x 108 0 1 x 108 0

Computed values

Xpa, m 0.01312 0.01300 0.01394 0.01300

f, Hz 26.58 29.43 26.58 29.43

Xda, m 0.01138 0.01270 0.01208 0.01270

od' deg 51.44 46.88 51.42 46.88

|Pcj, Pa 930,000 1,123,500 988,200 1,123,500

BPc- deg -18.44 -17.51 -18.42 -17.51

Wout W 829 1045 935 1045

nit, % 40.97 36.15 40.96 36.15~it'%
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power output of the adiabatic engine at a power piston amplitude of

0.013 m. For n = 1.5, the isothermal prediction for power piston ampli-

tude is +0.9% larger than the adiabatic result; the error increases to

+7.2% for n = 2.5. This increased error in the power piston amplitude

reduces the indicated power output error from -20.7% for n = 1.5 to

-10.5% for n = 2.5.

The effects of adiabatic cylinders are seen to be a rather compli-

cated problem in free-piston Stirling engines. Adiabatic cylinders af-

fect both the thermal and dynamic performance of an engine, and the mag-

nitudes of these effects depend on the exact configuration of the FPSE

and the linearity of the load. An important advantage of the LHA almost

closed-form solution is its ability to account for adiabatic cylinders.

The LHA method can also account for all finite cylinder heat transfer

conditions between the isothermal and adiabatic extremes.

4.4 Sensitivity to Pressure Drop
and Seal Leakage Losses

One of the major losses in a Stirling engine is the pressure drop

loss in the regenerator and heat exchangers. Seal leakage losses can

also be rather large in free-piston designs that contain clearance seals

and gas centering ports. The LHA method can account for both pressure

drop and seal leakage losses; and like cylinder heat transfer, these

losses are included as a simultaneous part of the dynamic calculations.

The losses are not computed separately and then added to the thermo-

dynamic and dynamic calculations as they are in "second-order" analyses.

These losses are included in a "third-order" manner, where all of the

interactions between the losses and the thermal and dynamic behavior are

accounted for. Some sample LHA calculations are presented in this sec-

tion to show how pressure drop and seal leakage losses affect FPSE

dynamic behavior.

The displacer force balance in Fig. 4.1 indicates that most of the

damping force on the displacer is produced by the pressure difference

between the compression and expansion spaces. If this pressure drop is

reduced, then the displacer damping force is reduced and the displacer
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amplitude should increase. The effect of reducing pressure drop is shown

in Table 4.10, where the middle column is the RE-1000 base case predic-

tions from Table 4.4, and the left and right columns are for higher and

lower pressure drops, respectively. Both displacer amplitude and phase

angle increase as the pressure drop is reduced. Indicated power and

efficiency also increase as expected.

Table 4.10. LHA constrained piston amplitude
mode predictions for the RE-1000 base

case that show the effect of
reducing pressure drop

More Less
Base

Parameters pressure pressurepressure case
drop drop

Specified values

Xpa, m 0.01300 0.01300 0.01300

kpe, (Pa-s)/kg 2.0 x 106 1.5 x 106 1.0 x 106

kpc, (Pa.s)/kg 2.0 x 106 1.5 x 106 1.0 x 106

Computed values

f, Hz 29.77 29.44 28.60

Xda, m 0.01091 0.01260 0.01569

8d' deg 43.47 46.68 49.33

IPcI, Pa 1,120,300 1,121,500 1,125,700

BPc' deg -11.80 -17.11 -26.03

Wout' W 716 1020 1483

nit, % 31.43 35.76 39.51

These pressure drop trends have some important implications about

the validation of FPSE computer codes. Many codes are "calibrated" to

experimental data by adjusting the pressure drop correlations so that the

indicated power and efficiency predictions agree with the experimental

values. This process is fairly straightforward for kinematic Stirling

engines. However, the calibration process is more complicated for an
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FPSE dynamic code because the displacer amplitude and phase angle predic-

tions must also agree with the experimental data.

Pressure drop in the heater does not have the same effect on FPSE

dynamic behavior as pressure drop in the cooler. Even though the present

LHA model is rather simple with only three control volumes and two pres-

sure drop coefficients in the working space, the effect of shifting pres-

sure drop from the heater to the cooler was simulated by lowering one

pressure drop coefficient (kpe) while raising the other (kpc). The

results are listed in Table 4.11, where the middle column is again the

RE-1000 base case predictions. Displacer amplitude remains fairly con-

stant, but displacer phase angle and indicated power drop from left to

right.

Table 4.11. LHA constrained piston amplitude mode
predictions for the RE-1000 base case that

show the effect of shifting pressure
drop from the heater to the cooler

Pressure drop Pressure drop
Parameters shifted towards ase shifted towards

caseheater cooler

Specified values

Xpa, m 0.01300 0.01300 0.01300

kpe (Pa-s)/kg 2.0 x 106 1.5 x 106 1.0 x 106

kpc (Pa.s)/kg 1.0 x 106 1.5 x 106 2.0 x 106

Computed values

f, Hz 29.98 29.44 28.92

Xda, m 0.01246 0.01260 0.01281

Bd, deg 50.54 46.68 43.31

IPcl, Pa 1,166,400 1,121,500 1,080,900

8pc, deg -17.57 -17.11 -16.81

out W 1109 1020 950

nit, % 35.98 35.76 35.68
«~~~~~~t
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The results from the left and right columns of Table 4.11 are shown

more clearly in Fig. 4.4, where the displacer force balances are plotted

in vector diagrams. The magnitude of the pressure drop force remains

fairly constant, but the phase of the force with respect to displacer

motion changes as pressure drop shifts from the heater to the cooler.

Figure 4.4 indicates that the pressure drop force on the displacer has

both damping and inertial components. Some second-order dynamic analy-

ses, such as one published by Martini, 14 assume that pressure drop pro-

duces a pure damping force on the displacer. This assumption differs

significantly from the behavior revealed by the LHA predictions, and it

does not account for changes in the phase angle of the pressure drop

force as pressure drop shifts from the heater to the cooler. Once again,

this demonstrates how errors can occur when the thermodynamic losses are

not included as a simultaneous part of the dynamic calculations.

The final LHA example is for power piston seal leakage. The com-

pression space in the RE-1000 FPSE is separated from the bounce space by

a clearance seal on the power piston. The effect of reducing helium

leakage past the power piston seal is shown in Table 4.12. Displacer

phase angle experiences a moderate reduction, while compression space

pressure phase angle and indicated power and efficiency increase sig-

nificantly. Because power piston seal leakage appears to have only a

minor effect on the dynamic predictions, adjustment of the leakage cor-

relation might provide a good way to calibrate FPSE computer codes so

that indicated power and efficiency predictions agree with experimental

values.
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Table 4.12. LHA constrained piston amplitude
mode predictions for the RE-1000 base case

that show the effect of reducing
power piston seal leakage

More Less
Parameters seal seal

case
leakage case leakage

Specified values

Xpa, m 0.01300 0.01300 0.01300

kmc, kg/(Paos) 10.8 x 10- 9 6.8 x 10-9 2.8 x 10- 9

Computed values

f, Hz 29.89 29.44 28.82

Xda, m 0.01267 0.01260 0.01250

Ed, deg 49.74 46.68 43.93

IPCI, Pa 1,132,700 1,121,500 1,106,400

BPc' deg -12.65 -17.11 -21.73

Wut, W 779 1020 1240

nit, % 26.80 35.76 44.68
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5. SUMMARY AND CONCLUSIONS

An almost closed-form solution method, the linear harmonic analysis,

has been developed for the combined thermodynamic/dynamic problem that is

associated with free-piston Stirling engines. The governing equations

are differential because most of the parameters describing an FPSE (pres-

sure, temperature, piston position, etc.) are time-dependent. The LHA

method is based on three primary assumptions: (1) linearization of the

ideal gas law, (2) representation of all time-dependent variables with

harmonic functions, and (3) replacement of terms in the governing equa-

tions that contain products of harmonic functions with truncated Fourier

series. The assumptions reduce the problem to a system of almost linear

algebraic equations that are solved using standard matrix algebra, with

iterations as required. The motivation for developing this simplified

analytical method was not that it saves computer time (although it does

do that), but that it reveals causes and effects much more effectively

than a column of numerical output.

The present version of the LHA method was developed for the RE-1000

FPSE configuration. The RE-1000 engine contains a single power piston

and a displacer sprung to the engine housing. The working space of the

engine is divided into only three control volumes, and motion of the

engine housing is neglected. However, the LHA method is not limited to

such a simple representation, and more control volumes or dynamic equa-

tions could be added if they were desired. Cylinder heat transfer, pres-

sure drop, and seal leakage losses are all included in the present ver-

sion of the LHA. These losses are not calculated separately and then

added to the analysis. They are included as a simultaneous part of the

thermodynamic/dynamic calculations so that all of the interactions be-

tween the losses, thermal performance, and dynamic behavior are accounted

for.

The time required for execution of the free-piston dynamic version

of the LHA method is about 100 times less than the execution time re-

quired for an equivalent numerical integration method. Even with its

speed, the LHA method has sufficient mathematical accuracy for most prac-

tical Stirling engine applications. The mathematical accuracy of the LHA
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assumptions was verified by independently solving the same nonlinear

equations using a numerical integration method and comparing the results

with the LHA solution. The differences between the LHA and numerical

predictions were <5% for all important parameters, which is about equal

to or less than the uncertainty associated with typical Stirling engine

experimental measurements. This combination of computational speed and

mathematical accuracy makes the LHA method ideal for FPSE optimization

programs.

In addition to speed, the LHA method has other advantages over time-

stepping integration methods. Numerical techniques usually require some

artistic guesswork to select step sizes and initial conditions so that

the solution is numerically stable, mathematically accurate, and con-

verges quickly to a periodic steady state. The closed-form analytical

approach of the LHA method avoids these problems. The LHA method does

require iterations, but the assumption of isothermal cylinders provides a

good starting point for the calculations, and LHA convergence usually

occurs in <20 iterations.

The LHA method also has advantages over other linear closed-form

solution methods that have been developed for FPSE dynamic problems. All

previously published closed-form solutions are second-order analyses

where the losses are treated separately. The LHA method is a third-order

analysis where the losses, as well as their interactions, are included

intrinsically in the FPSE dynamic solution. Sample LHA calculations have

shown that substantial errors in predicting dynamic behavior can occur if

an isothermal calculation is used to represent an adiabatic FPSE. LHA

predictions have also indicated that unrealistic assumptions about the

pressure drop losses can lead to additional errors.
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Appendix A

IMPERFECT HEAT EXCHANGER ANALYSIS

An analysis of imperfect heat exchangers published by Urieli and

Berchowitz 1 has been adapted for use with the LHA method. The analysis

is based on a simplified approach, where heat transfer in the regenerator

and heat exchangers is assumed to occur during two steady flow processes:

(1) the hot blow from the expansion to the compression space and (2) the

cold blow from the compression back to the expansion space. An effec-

tiveness-number of transfer units (NTU) method is used to perform the

heat transfer calculations. The LHA version of the imperfect heat

exchanger analysis is described in this appendix. Some sample calcula-

tions are also presented.

A.1 Heat Transfer Equations

The nomenclature for the heat transfer analysis is shown in

Fig. A.1. The expansion space, heater, cooler, and compression space

wall temperatures are all assumed to be uniform and constant with respect

to time. The regenerator wall temperature has a linear distribution, but

the local temperature is constant with respect to time. The steady state

hot blow starts at temperature TiH and ends at TK. The cold blow starts

at TK1 and ends at TH. The heater, regenerator, and cooler effective-

nesses are assumed to be identical during the hot and cold blows, and

they are defined as

T - T T - T
TH2 H1 TH H3

-H - ,(A.1)
TwH -T T T - TH3

TH2 K3 TH3 TK2
E - T T T (A.2)

R H2 -K2 H2 K2

T3 - K TK - T
E = K = -*- (A.3)

TK3 - TK1 TwKK3 wK Ki TwK
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Fig. A.1. Gas and wall temperature nomenclature for imperfect heat
exchanger analysis.

In the present version of the LHA, the three effectivenesses must be

specified as part of the input data because heat transfer correlations

have not yet been added to the analysis. If correlations are added, heat

transfer effectiveness can be calculated from the simple NTU equations

published by Urieli and Berchowitz. 1

The imperfect heat exchanger analysis affects the LHA predictions in

two ways. First, the gas temperatures leaving the heat exchangers are no

longer equal to the heater and cooler wall temperatures, which reduces the

effective temperature ratio of the engine such that (TH/TK) < (TwH/TwK).

Second, there is a regenerator reheat loss that is caused by gas entering

the regenerator at a temperature different from that when it leaves.
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This regenerator reheat loss from the heater to the cooler HR does not

change the indicated power of the engine. However, it does increase the

heat input and heat output so that the overall energy balance becomes

Qin = We + HR ,

Qout = -Wc - Ws + HR , (A.4)

Wout = We + Wc + Ws·

The gas temperature at the beginning of hot blow TH1 is determined

by calculating the average temperature of the gas that flows from the

expansion space into the heater. The cyclic average expansion space

enthalpy flux was derived in ORNL/CON-155 (Ref. 2) as

_ H y / ddm* d dm*
H* e = - T* - e dt* + T e dt (A.5)

e e
c m T 2 m* < 0 dt* dm* > 0 dt*

v ee e e

and after evaluation of the integrals,

He = ZI(1)(TH - Te) + Z1(2) , (A.6)

where Zl(l) and Zl(2) were defined in ORNL/CON-155 (Ref. 2) [Eqs. (3.83)

and (3.84)]. TH1 is calculated by replacing Te with (TH1/Te) in

Eq. (A.5), setting Eq. (A.5) equal to Eq. (A.6), and solving for TH1.

After evaluation of the integrals and simplification, the result is

Zl(1)(T - TH1) = Z1(1)(TH -T e + Zl(2) ,(A.7)

or

-T Z1(2)
TH1 = Te ZI(1) (A.8)
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A similar procedure for the compression space yields

-- _Zl(4)T =T - (A.9)
K1 Tc Z1(3) ' (

where Z1(3) and Z1(4) were defined in ORNL/CON-155 (Ref. 2) [Eqs. (3.85)

and (3.86)].

After the temperatures at the beginning of the hot and cold blows

are known, the other heat exchanger gas temperatures are calculated from

the effectiveness definitions in Eqs. (A.1)-(A.3), recalling that the

three effectivenesses are treated as specified constants,

TH2 = eHTwH + (1 -CH)TH1 , (A.10)

TK2 = EKTwK + (1 - EK)TK1 , (A.11)

TH3 = ERTH2 + (1 - CR)TK2 (A.12)

T3 RTK + (1 - R)TH2 (A.13)

TH = eHTwH + (1 -CH)TH3 ' (A.14)

TK = CKTwK + (1 - K)TK3 (A.15)

Two final equations result from the expansion and compression space

average energy balances that were presented in Eq. (3.27). The energy

balances are used to calculate the expansion and compression space aver-

age gas temperatures,

Zl(1)T H + l(2) + h A T - w
HT =----H --- - e se we e

T, (A.16)
Zl(1) + hAse

Z(3)TK + Z1(4) + hc (AZl(3) C SC WC
(A.17)c

Z1(3) + hcAscC SC
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Equations (A.8)-(A.17) are a system of ten algebraic equations with

ten unknown gas temperatures that are solved iteratively. The first

eight equations are solved at the beginning of an iteration. Then the

matrix calculations are performed to determine y1, y2, etc. Equations

(A.16) and (A.17) are solved at the end of an iteration, as they were

when perfect heat exchangers were assumed. The first iteration is initi-

ated by assuming

TwH + TwK
TH1 = TK1 w (A.18)

Other assumptions made during the first iteration, but after TH and TK

are calculated the first time, are

T =TH

Tc = = TK (A.19)

The gas temperatures in the heater, regenerator, and cooler depend

on the heat transfer effectiveness of these components. The effective-

ness-NTU equation for the heater will have the form

EH = 1 - e-N T U H (A.20)

or

NTUH = -In(l - CH) · (A.21)

The local heater gas temperature during the hot blow THhot is a function

of axial position in the heater as shown in Fig. A.1. This is expressed

analytically as

THhot - TH1 -(XH/LH)NTU HH h-t- = e = 1 -e H H H ,(A.22)
T X- TXH

wH H1

where the local heater effectiveness eXH depends on the cumulative heater
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surface area, which is proportional to (XH/LH). When Eq. (A.21) is sub-

stituted into a simplified version of Eq. (A.22), the result is

(X /LH)ln(-e H)
T =T - (T (- )e H H H (A.23)

THhot = wH HiwH- e (A. 2 3 )

The average heater gas temperature during the hot blow is found by

calculating an average over the length of the heater,

THhot THhot (A.24)

The result is

THhot = TwH + (TwH - TH1) ln(1 - ) (A.25)

The result for the cold blow is similar,

THcold TwH + (wH - TH3) in(1 - e (A.26)
H

The cyclic average heater gas temperature is defined as the average of

the hot and cold blows, and the result is

T(+T + T C

TH 'TwH + 2wH 2 ln(l - e· (A.27)
H)

A similar procedure for the cooler yields the cyclic average cooler gas

temperature

(T T TKw + T -K

TK = TwK+ 2 l n(1 - E) * (A.28)
KI
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The regenerator matrix wall temperature is the mean of the hot and

cold blow gas temperatures in the regenerator

TH2 + TH3
T = H2 H3

wRH 2

(A.29)
TK2 + TK3

T = 2
wRK 2

as shown in Fig. A.1. The cyclic average regenerator gas temperature is

defined in terms of these matrix wall temperatures. A mass weighted

average that accounts for different gas densities at the hot and cold

ends of the regenerator results in a logarithmic mean,

- wRH wRK
T = - . (A.30)TR n(T RK) ( A. 3 0 )

wRH wRK

The average gas temperatures in the heater, regenerator, and cooler

are needed to calculate the average mass of gas in the dead volume,

P /V- V - \
md -R R +_ _) . (A.31)

\H TR K

The average mass of gas in the dead volume is used in the matrix calcu-

lations to determine y , y2, etc.

The regenerator reheat loss calculation is based on the mass flow

rate at the middle of the regenerator. To determine this flow rate, an

expression is needed for the mass of gas in the hot end of the working

space, mwH, which includes the expansion space, heater, and hot half of

the regenerator. mwH is defined in terms of the mass of gas in the

expansion space and the hot end of the dead volume

mdH
(A.32)

wH = me +- md = mem* + mdd (A
md
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where

PW /V V
MdH T- V-H + ) (A.33)

is the average mass of gas in the hot end of the dead volume,

T -T
wRH wRM

T 1n(( T/T) (A.34)
(TwR TwRM)

is the average gas temperature in the hot half of the regenerator, and

T +T
TwRH wRK

TRM 2 (A.35)

is the matrix wall temperature at the middle of the regenerator. When

Eq. (3.26) for m* and mE are substituted into Eq. (A.32), the result

after simplification is

mwH = ( e + mdH) + (meY 1 + mdHY3)sin t

+ (me 2 + mdHY4)COst . (A.36)

The regenerator reheat loss per cycle is equal to the total enthalpy

of the gas passing through the middle of the regenerator during the hot

blow minus the total enthalpy of the gas passing through the middle of

the regenerator during the cold blow. Therefore, the regenerator reheat

loss rate is

HR = f 2mwHlcp(TH2 - TH3) , (A.37)

where 21mWHI is the mass of gas flowing through the middle of the regen-

erator during each half cycle, and

r.- = 2 -_2 - 2+1/2
ImwHI = ImYi + dY3)+ (mY 2 + m Y4 J (A.38)
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is the amplitude of the mass of gas in the hot end of the working space.

The regenerator enthalpy flux rate is calculated after the matrix calcu-

lations are performed to determine yl, y2, etc.

A.2 Sample Results

Some sample LHA imperfect heat exchanger predictions are listed in

Table A.1. The first column is the RE-1000 base case predictions from

Table A.1. LHA constrained piston amplitude
mode predictions for RE-1000 base case

with imperfect heat exchangers

Imperfect Imperfect
_ .Base Imperfect

Parameters heater, regenerator,case regenerator
cooler heater, cooler

Specified values

Xpa, m 0.01300 0.01300 0.01300 0.01300

TwH, K 853.0 853.0 853.0 853.0

TwK K 326.0 326.0 326.0 326.0

eH % 100 100 75 75H'

eR, % 100 97 100 97

eK' % 100 100 75 75

Computed values

f, Hz 29.44 29.45 29.49 29.56

Xda, m 0.01260 0.01261 0.01257 0.01253

,d' deg 46.68 46.67 46.84 47.14

TH, K 853.0 853.0 848.9 844.9

TK, K 326.0 326.0 327.7 331.7

HR, W 0 599 0 573

Qin' W 2852 3456 2851 3421

Qout W 1832 2434 1846 2443out'

Wout, W 1020 1022 1005 978

nit' % 35.76 29.56 35.24 28.59
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Table 4.4. The second column is for an imperfect regenerator. The third

column is for an imperfect heater and cooler. The last column is for the

combined effects of an imperfect regenerator, heater, and cooler. The

imperfect heat exchangers have almost no effect on the dynamic behavior

of the engine. The 75% heater and cooler effectivenesses also appear to

have only a minor effect on the thermodynamic behavior of the engine, as

is seen in the last two columns where the effective temperature ratio of

the engine (TH/TK) is only slightly less than the actual temperature

ratio (TwH/TwK)

The regenerator heat transfer effectiveness has a significant impact

on the thermodynamic performance of the engine. A comparison between the

first two columns of Table A.1 shows that a 3.0 percentage point drop in

regenerator effectiveness results in a 6.2 percentage point drop in indi-

cated thermal efficiency. The selection of a regenerator for a Stirling

engine involves a trade-off between the reheat losses and the pressure

drop losses. Optimized regenerator designs usually result in large pres-

sure drops to avoid the substantial thermal losses associated with imper-

fect heat transfer in the regenerator.
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Appendix B

NONLINEAR DASHPOT EQUATIONS

A relationship is derived in this appendix for the power absorbed by

a generalized nonlinear dashpot load that is driven sinusoidally. The

nonlinear dashpot load force acting on the power piston F1 is expressed

analytically as a function of power piston velocity X in a form

F1 = -kXp(abs Xp)n , (B.)

where k1 is the load coefficient, n is the load exponent, and the abso-

lute value is needed to ensure that negative values of velocity will not

be raised to fractional powers. The derivation is for sinusoidal power

piston motion

X = X sin(wt)
P pa

(B.2)

X = WX cos(wt) .
P pa

The instantaneous power absorbed by the load W1 is equal to the

negative of force times velocity,

W1 = -F 1Xp (B.3)

The average power absorbed by the load W 1 is calculated by averaging over

a cycle

I0 1 31~/2
WI =- | (-l Xp) d(wt) . (B.4)

When Eq. (B.1) for a generalized nonlinear dashpot load is substituted

into Eq. (B.4), the average load power becomes

W1 = 2 X (abs )"1 d(t) .(B.5)
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The integral must be split in half so that the absolute value can be

eliminated from the equation,

/2 n-
W1 = - - / k Xj2 (abs X )n-1 d(t)2 7r J-/2 p p

+ / X2 (abs pn- d(wt) (B.6)
Jfr/2 P P

p is positive between -- /2 and n/2. The absolute value can therefore be

deleted from the left-hand integral. X is negative between i/2 and 3w/2,

but x2 and abs X in the w/2 to 3r/2 region are positive and equal to
P p

X2 and X in the -- /2 to n/2 region. The right-hand integral is there-
p p
fore identical to the left-hand integral. After these simplifications,

Eq. (B.6) becomes

W = 'kl X2 in+l d(wt) . (B.7)
7r -Jr/2 p

Substitution of Eq. (B.2) into (B.7) yields

n+l
k (WX ) /2 n+l

W, = Ip cos (wt) d(wt) . (B.8)
iffJ--/2

The integral in Eq. (B.8) can be evaluated directly in terms of the

gamma function r, and the result is

W(n+l rf +
= k( Xpa ) n+l -+ (B.9)11 pa r + 1.5

The constant term in Eq. (B.9) has been evaluated for some selected

values of the dashpot load exponent, and the results are listed in Table

B.1.
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Table B.1. Numerical values for
the constant term in Eq. (B.9)
for some selected values of
the dashpot load exponent

r(2+ 1)

n ~r (n+ 1.5)

1.0 0.50000

1.5 0.45765

2.0 0.42441

2.5 0.39744

3.0 0.37500
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Appendix C

NOMENCLATURE

Ad Displacer cross-sectional area (m2)

Ap Power piston cross-sectional area (m2)

Ar Displacer rod cross-sectional area (m2)

As Wall heat transfer surface area in compression space (m2)sc

Ase Wall heat transfer surface area in expansion space (m2)

As Wall heat transfer surface area in displacer gas spring
(m2)

al,a2,a3,a 4 Dimensionless volume constants defined in Eq. (3.7) and
in ORNL/CON-155 (Ref. 1) [Eq. (3.17)]

all,a 12,a 13 Dimensionless area constants defined in Eq. (3.9)

Cld Equivalent load damping coefficient [(N*s)/m]

Cis Equivalent load spring coefficient (N/m)

Cp Specific heat at constant pressure [J/(kgK)]

Cv Specific heat at constant volume [J/(kgoK)]

D(i,j) i,j = 1, 2, ... 18, Matrix elements defined in Eqs.

(3.33) and (3.34)

FF(n) n = 1, 2, ... 9, Fourier correction factors

F1 Force on the power piston produced by the load (N)

f Frequency (Hz)

H Enthalpy flux rate into the compression space (W)

H Enthalpy flux rate into the expansion space (W)

HR Regenerator reheat loss from heater to cooler (W)

H Enthalpy flux rate into the displacer gas spring (W)

hc Cylinder wall to gas heat transfer coefficient in com-
pression space [W/(m2.K)]

he Cylinder wall to gas heat transfer coefficient in expan-
sion space [W/(m 2-K)]

hs Cylinder wall to gas heat transfer coefficient in dis-
placer gas spring [W/(m2.K)]

kl Nonlinear dashpot load coefficient

kmc Mass leakage coefficient between compression and buffer
spaces [kg/(Pa-s)]

kms Mass leakage coefficient between displacer gas spring and
buffer spaces [kg/(Pa.s)]
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kpc Pressure drop coefficient between compression and dead
spaces [(Pa.s)/kg]

kpe Pressure drop coefficient between expansion and dead
spaces [(Pa.s)/kg]

LH Length of heater tubes (m)

mc Mass of gas in compression space (kg)

md Mass of gas in dead space (kg)

mdH Average mass of gas in hot end of dead space (kg)

mdp Mass of displacer piston (kg)

me Mass of gas in expansion space (kg)

mpp Mass of power piston (kg)

m s Mass of gas in displacer gas spring (kg)

m Average total mass of gas in working space,
mw = m + md + m (kg)
w eC

mwH Mass of gas in hot end of working space (kg)

NTUH Number of transfer units for entire heater

n Nonlinear dashpot load exponent

PC Pressure in compression space (Pa)

Pd Pressure in dead space (Pa)

Pe Pressure in expansion space (Pa)

PS Pressure in displacer gas spring (Pa)

Pw Average pressure in working space (Pa)

Qin Average total heat input rate (W)

Qout Average total heat output rate (W)

Heat transfer rate from cylinder wall to gas in compres-
sion space (W)

Qwe Heat transfer rate from cylinder wall to gas in expansion
space (W)

wQ Heat transfer rate from cylinder wall to gas in displacer
gas spring (W)

R Gas constant [J/(kg.K)]

Tc Gas temperature in compression space (K)

Tc flux Enthalpy flux temperature between compression and dead
spaces (K)

T, Average gas temperature in dead space,
Td = Vd/[VH/TH + VR ln(TH/TK)/(TH - TK) + VK/TK] (K)

Te Gas temperature in expansion space (K)
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Te flux Enthalpy flux temperature between expansion and dead
spaces (K)

TH Average temperature of gas flowing from heater to expan-
sion space (K)

TH Average gas temperature in heater (K)

THcold Local gas temperature in heater during cold blow (K)

THhot Local gas temperature in heater during hot blow (K)

THI Average temperature of gas flowing from expansion space
to heater (K)

TH2 Average temperature of gas flowing from heater to regen-
erator (K)

TH3 Average temperature of gas flowing from regenerator to
heater (K)

TK Average temperature of gas flowing from cooler to com-
pression space (K)

TK Average gas temperature in cooler (K)

TK1 Average temperature of gas flowing from compression space
to cooler (K)

TK2 Average temperature of gas flowing from cooler to regen-
erator (K)

TK3 Average temperature of gas flowing from regenerator to
cooler (K)

TR Average gas temperature in regenerator (K)
R

TRH Average gas temperature in hot half of regenerator (K)

Ts Gas temperature in displacer gas spring (K)

Ts flux Enthalpy flux temperature between displacer gas spring
and buffer spaces (K)

T Average wall temperature in compression space (K)

Twe Average wall temperature in expansion space (K)

TwH Average wall temperature in heater (K)

TwK Average wall temperature in cooler (K)

TwRH Matrix temperature at hot end of regenerator (K)

TwRK Matrix temperature at cold end of regenerator (K)

TwRM Matrix temperature at middle of regenerator (K)

Ts Average wall temperature in displacer gas spring (K)
ws

t Time (s)

Vc Compression space volume (m
3)
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V Average volume in compression space with pistons at mid-
strokes (m3)

Vd Constant dead space volume, Vd = VK + VH + VR (m3)

Ve Expansion space volume (m
3)

V Average volume in expansion space with pistons at mid-
strokes (m3)

VH Constant heater volume (m3)

VK Constant cooler volume (m
3)

KR
VR Constant regenerator volume (m3)

Vs Displacer gas spring volume (m3)

V Average volume in displacer gas spring with pistons at
midstrokes (m3)

W PV power by gas in compression space (W)

W PV power by gas in expansion space (W)

W1 Power absorbed by nonlinear dashpot load (W)

Wout Average total power output (W)

W PV power by gas in displacer gas spring (W)

Xd Displacer position, zero at midstroke (m)

Xda Displacer amplitude, 1/2 displacer stroke (m)

Xdm Maximum displacer amplitude allowable by mechanical con-
straints (m)

XH Axial position in heater from expansion space end of
tubes (m)

Xp Power piston position, zero at midstroke (m)

Xpa Power piston amplitude, 1/2 power piston stroke (m)

X Maximum power piston amplitude allowable by mechanical
constraints (m)

Yn n = 1, 2, ... 18, Amplitude of harmonic components
defined in Eq. (3.26)

Zl(n) n = 1, 2, ... 6, Defined in Eq. (3.29) and in ORNL/CON-
155 (Ref. 1) [Eqs. (3.83)-(3.86)]
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Superscripts

Average over a cycle

Derivative with respect to time or d/dt

Second derivative with respect to time or d2/dt2

* Dimensionless quantities defined in Eqs. (3.2) to (3.11)
and in ORNL/CON-155 (Ref. 1) [Eqs. (3.10)-(3.18)]

Amplitude of a variable

Greek

ad Displacer phase angle relative to power piston (deg)

8p Compression space pressure phase angle relative to power
piston (deg)

y Ratio of specific heats of gas, y = cp/cv

EH Heat transfer effectiveness of entire heater

nK Heat transfer effectiveness of entire cooler

ER Heat transfer effectiveness of entire regenerator

EXH Heat transfer effectiveness of portion of heater between
expansion space end of tubes and position XH

nit Indicated thermal efficiency

Os Defined in Eq. (3.35)

T Temperature ratio associated with compression space,

Tc = (TK + Tc)/2Tc

T Temperature ratio associated with expansion space,

Te = (TH + Te)/2Te

T Temperature ratio associated with displacer gas spring,
S

Ts = (TK + Ts)/2Ts

w Angular frequency (rad/s)

Whigh Upper boundary for frequency root-finding routine (rad/s)

Wlow Lower boundary of frequency root-finding routine (rad/s)

Reference

1. N. C. J. Chen, F. P. Griffin, and C. D. West, Linear Harmonic Analy-
sis of Stirling Engine Thermodynamics, ORNL/CON-155, Martin Marietta
Energy Systems, Inc., Oak Ridge Natl. Lab., August 1984.
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Appendix D

COMPUTER PROGRAM: LHA VERSION 1

A computer program, called LHA Version 1 (LHA1), was written in

FORTRAN to perform the sample LHA calculations for the RE-1000 FPSE con-

figuration. The computer code was developed mainly to prove the prin-

ciple of the LHA solution method. Since the development of user-friendly

software was not one of the LHA project objectives, the FORTRAN code

contains few comment cards. The thermodynamic calculations contained in

the LHA1 program were discussed previously in ORNL/CON-155 (Ref. 1), and

the dynamic and imperfect heat exchanger calculations are discussed in

this report. The FORTRAN variable names used in LHA1 are similar to the

nomenclature used in the two reports. This appendix contains a short

description of the LHA1 program, the program listing, and the input data

and FORTRAN output for the RE-1000 base case.

Two FORTRAN subroutines called DECOMP and SOLVE are used to perform

the matrix calculations. The compiler must supply these subroutines from

a standard FORTRAN library. All real variables in the LHA1 program are

declared REAL*8 because the DECOMP and SOLVE subroutines are written in

double precision. LHA1 is written entirely in SI units (kg, m, s), which

avoids the need for unit conversions in the program.

The LHA1 program is set up for batch execution. All FORTRAN vari-

ables that must be specified in the input data are contained in a single

NAMELIST called INPUT, so that a NAMELIST convention for READ statements

can be used. Comment cards at the beginning of the program define all of

the variables in INPUT. There are two READ statements in the LHA1 pro-

gram. The first READ is executed only once, and it is used to initialize

all of the variables in INPUT. A value should be assigned to the integer

variable ILOOP when the first READ is executed because ILOOP defines the

number of times that a large loop (DO 5) is executed. The loop DO 5

contains the second READ and the entire program including output state-

ments, and it enables multiple cases to be executed from a single job.

The LHA1 program is designed to handle either kinematic or free-

piston calculations. The appropriate option is selected by changing the

integer variable IMODE in the input data. In kinematic mode (IMODE = 1),
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the piston motions are defined by specifying the variables FH, XPAXPM,

BDD, and XDAXPA. The variables FHLOW, FHHIGH, FHTOL, MPP, MDP, and BLD

should be specified nonzero, but they are not used in kinematic mode. In

free-piston mode (IMODE = 3), the power piston amplitude and the load

force phase angle are defined by specifying XPAXPM and BLD, and the fre-

quency root-finding routine is initialized by specifying FH, FHLOW,

FHHIGH, and FHTOL. The variables BDD and XDAXPA should be specified

nonzero, but BDD, XDAXPA, and FH are calculated from the dynamic

equations in free-piston mode.
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D.1 LHA1 Program Listing

IMPLICIT REAL*8(A-H,K-Z)
DIMENSION IPVT(18),D(18,18),Y(18),Z1(18),FF(9)

C DEFINITIONS OF VARIABLES IN NAIELIST/INPUT/
C ------------------------------------------
C NAME UNITS DEFINITION
C ------------------------------------------
C R J/(KG*K) GAS CONSTANT
C CP J/(KG*K) CONSTANT PRESSURE SPECIFIC HEAT OF GAS
C XPMAX M MAXIMUM AMPLITUDE OF POWER PISTON
C XDMAX M MAXIMUM AMPLITUDE OF DISPLACER
C AP M**2 CROSS-SECTIONAL AREA OF POWER PISTON
C AR M**2 CROSS-SECTIONAL AREA OF DISPLACER ROD
C AD M**2 CROSS-SECTIONAL AREA OF DISPLACER
C VEAVG M**3 AVERAGE VOLUME IN EXPANSION SPACE
C VHAVG M**3 CONSTANT VOLUME IN HEATER
C VRAVG M**3 CONSTANT VOLUME IN REGENERATOR
C VKAVG M**3 CONSTANT VOLUME IN COOLER
C VCAVG M**3 AVERAGE VOLUME IN COMPRESSION SPACE
C VSAVG M**3 AVERAGE VOLUME IN GAS SPRING
C ASEAVG M**2 HEAT TRANS SURFACE AREA IN EXPANSION SPACE
C ASCAVG M**2 HEAT TRANS SURFACE AREA IN COMPRESSION SPACE
C ASSAVG M**2 HEAT TRANS SURFACE AREA IN GAS SPRING
C MPP KG MASS OF POWER PISTON
C MDP KG MASS OF DISPLACER
C FH HZ FREQUENCY
C FHLOW HZ FREQUENCY ROOT-FINDING LOWER BOUNDARY
C FHHIGH HZ FREQUENCY ROOT-FINDING UPPER BOUNDARY
C FHTOL HZ FREQUENCY ROOT-FINDING TOLERANCE
C XPAXPM - POWER PISTON AMPLITUDE DIVIDED BY XPMAX
C BDD DEG DISPLACER PHASE RELATIVE TO POWER PISTON
C XDAXPA - DISPLACER AMPL DIVIDED BY POWER PISTON AMPL
C PWAVG PA AVERAGE PRESSURE IN WORKING SPACE
C TWHAVG K AVERAGE WALL TEMPERATURE IN HEATER
C TWEAVG K AVERAGE WALL TEMPERATURE IN EXPANSION SPACE
C TWKAVG K AVERAGE WALL TEMPERATURE IN COOLER
C TWCAVG K AVERAGE WALL TEMPERATURE IN COMPRESSION SPACE
C TWSAVG K AVERAGE WALL TEMPERATURE IN GAS SPRING
C KMC KG/(PA*S) MASS LEAK COEF BETWEEN COMP AND BUFFER SPACES
C KPE (PA*S)/KG PRES DROP COEF BETWEEN EXP AND DEAD SPACES
C KPC (PA*S)/KG PRES DROP COEF BETWEEN COMP AND DEAD SPACES
C HE W/(M**2*K) HEAT TRANS COEFICIENT IN EXPANSION SPACE
C HC W/(M**2*K) HEAT TRANS COEFICIENT IN COMPRESSION SPACE
C KMS KG/(PA*S) MASS LEAK COEF BETWEEN GS AND BUFFER SPACES
C HS W/(M**2*K) HEAT TRANS COEFICIENT IN GAS SPRING
C IMODE - CONTROL INTEGER: KINEMATIC=1, FREE-PISTON=3
C IITER - MAXIMUM NU4'EER OF ITERATIONS PER CASE
C EPSH - HEAT TRANS EFFECTIVENESS OF ENTIRE HEATER
C EPSR - HEAT TRANS EFFECTIVENESS OF ENTIRE REGEN
C EPSK - HEAT TRANS EFFECTIVENESS OF ENTIRE COOLER
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C BLD DEG LOAD FORCE PHASE RELATIVE TO POWER PISTON:
C PURE DISSIPATION =-90.
C ILOOP - NUMBER OF CASES PER JOB

NAMEL IST/I NPUT/R, CP, XPMAX, XDMAX, AP, AR, AD, VEAVG, VHAVG, VRAVG
C,VKAVG,VCAVG,VSAVG,ASEAVG,ASCAVG,ASSAVG,MPP,MDP,FH, FHLOW
C, FHH I G H, FH TOL, XPAXPM, BDD,XDAXPA, FW AV G, TW HAV G,TW EAV G, TW KAV G
C,TWCAVG,TWSAVG,KMC,KPE,KPC,HE,HC,KMS, HS, IMODE, IITER,EPSH, EPSR
C,EPSK,BLD, ILOOP

C SPECIFIED PARAMETERS
IDIM=18
ILOOP=1
READ(5,INPUT)
DO 5 IL=1,ILOOP
READ(5,INPUT)

C CALCULATED PARAMETERS
CV=CP-R
G=CP/CV
GM1=G-1.
VWAVG= VEAV G VHAVG+VRAVG+ VKAVG+ VCAVG
Al =AD*XPMAX/VEAVG
A2=(AD-AR)*XPMAX/VCAVG
A3=AP*XPMAX/VCAVG
A4=AR*XPMAX/VSAVG
A11=AD/AP
A12=AR/AP
A13=(AD-AR)/AP
P1=3.141592654
FR=FH*2.*PI
FRLOW=FHLOW*2.*PI
FRHIGH=FHHIGH*2.*PI
FRTOL=FHTOL*2.*PI
BLR=BLD/180.*PI
Z2H=0.
IF(EPSH.LT.O.000001) Z2H=-1.
IF(EPSH.GE.O.000001.AND.EPSH.LE.O.999999)

C Z2H=EPSH/DLOG(1.-EPSH)
Z2K=O.
IF(EPSK.LT.O.000001) Z2K=-1.
IF(EPSK.GE.0.000001.AND.EPSK.LE.O.999999)

C Z2K=EPSK/DLOG(1.-EPSK)
C ITERATIVE LOOP FOR CALCULATION OF FOURIER CORRECTION FACTORS,
C TEAVG, TCAVG, AND TSAVG

DO 12 1=1,9
FF(I)=O.

12 CONTINUE
TH1 =(TWHAVG+-TWKAVG)/2.
TK1=(TWHAVG+TWKAVG)/2.
CLSS=O.
DO 99 ITER=1,IITER

C IMPERFECT HEAT EXCHANGER ANALYSIS
IF(ITER.EQ.1) GO TO 35
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TH1=TEAVG-Z1(2)/Z1(1)
TK1=TCAVG-Z1(4)/Z1(3)

35 CONTINUE
TH2=EPSH*TWHAVG+( 1 .-EPSH)*TH1
TK2=EPSK*TWKAVG+(1 .-EPSK)*TK1
TH3=EPSR*TH2+(1.-EPSR)*TK2
TK3=EPSR*TK2+(1.-EPSR)*TH2
THEAT=EPSH*TWHAVG+( 1 .-EPSH)*TH3
TCOOL=EPSK*TWKAVG+( 1 .-EPSK)*TK3

C HEAT EXCHANGER AVERAGE GAS TEMPERATURES
THAVG=TWHAVG+(TWHAVG-(TH1+TH3)/2. )*Z2H
TWRH=(TH2+TH3)/2.
TWRK=(TK2+TK3)/2.
TWRM= (TWRH+TWRK)/2.
TRAVG= (TWRH+TWRK)/2.
IF(DABS(TWRH/TWRK-1.).GE.O.000001)

C TRAVG=(TWRH-TWRK)/DLOG(TWRH/TWRK)
TRHAVG= (TWRH+TWRM)/2.
IF(DABS(TWRH/TWRM-1 .).GE.O.000001)

C TRHAVG=(TWRH-TWRM)/DLOG(TWRH/TWRM)
TKAVG=TWKAVG+(TWKAVG-(TK1+TK3)/2.)*Z2K

C TEMPERATURE DEPENDENT PARAMETERS
IF(ITER.GE.2) GO TO 40
TEAVG=THEAT
TCAVG=TCOOL
TSAVG=TCOOL

40 CONTINUE
MDAV G= FWAVG/R* (VHAV G/THAV G+ VRAV G/TRAV G+ VKAVG/TKAV G)
MDHAVG=PWAVG/R*(VHAVG/THAVG+VRAVG/2./TRHAVG)
MEAVG= PWAVG*VEAVG/R/TEAVG
MCAVG= FWAVG*VCAVG/R/TCAVG
NW AV G= MEAV G+ MDAV G+ MCAV G
MSAVG= PWAVG*V SAVG/R/TSAVG
IF(IMODE.EQ.1.OR.IMODE.EQ.2) GO TO 200

C FREE-PISTON MODE : SECANT-BISECTION METHOD FOR CALCULATING
C FREQUENCY. FR1 AND FR5 ARE THE LOWER AND UPPER BOUNDARIES FOR
C ANGULAR FREQUENCY DEFINED BY THE BISECTION METHOD. FR2 AND FR4
C ARE THE LOWER AND UPPER ANGULAR FREQUENCIES USED TO CALCULATE
C SLOPE FOR THE SECANT METHOD. FR3 IS THE CURRENT ESTIMATE FOR
C ANGULAR FREQUENCY.

FR3=FR
FR=FRLOW
IMODE=3
GO TO 200

230 CONTINUE
FR1=FR
DET1=DET
FR=FRHIGH
IMODE=4
GO TO 200

240 CONTINUE
FR5=FR
DET5=DET
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IF(((DET1.LT.O.O.AND.DET5.GT.O.O).OR.(DET1.GT.O.O.AND.
C DET5.LT.O.O)).AND.FR1.LT.FR5) GO TO 215
WRITE(6,298) FR1,DET1,FR5,DET5

298 FORMAT(' ','FREQUENCY SEARCH INTERVAL SPECIFIED IMPROPERLY'
1/' ','FR1 = ',F8.3,8X,'DET1 = ',G13.6
2/' ','FR5 = ',F8.3,8X,'DET5 = ',G13.6/)
GO TO 295

215 CONTINUE
FR=FR3-.5*FRTOL
I MODE=5
GO TO 200

250 CONTINUE
FR2=FR
DET2=DET
IF((DET1.LE.O.O.AND.DET2.GE.O.O).OR.(DET1.GE.O.O.AND.

C DET2.LE.O.O)) GO TO 225
FR1=FR2
DET1=DET2

225 CONTINUE
FR=FR3+.5*FRTOL
I ODE=6
GO TO 200

260 CONTINUE
FR4=FR
DET4=DET
IF((DET4.LE.0.O.AND.DET5.GE.0.0).OR.(DET4.GE.O.O.AND.

C DET5.LE.O.O)) GO TO 235
FR5=FR4
DET5=DET4

235 CONTINUE
FR3=FR2+FRTOL*DET2/(DET2-DET4)
IF(FR3.GE.FR2.AND.FR3.LE.FR4) GO TO 245
IF(FR3.GE.FR1.AND.FR3.LE.FR5) GO TO 215
FR3=.5*(FR1+FR5)
GO TO 215

245 CONTINUE
FR=FR3
IMODE=7
GO TO 200

C * * * * * * * * * * * * * * * * * * * * * ** **** * * * * *
C SUBSECTION FOR COMPUTING MATRIX ELEMENTS
200 CONTINUE
C FREQUECY DEPENDENT PARAMETERS

MPPS= MPP*FR**2*XPMAX/PWAVG/AP
MDPS=MDP*FR**2*XPMAX/PWAVG/AP
KMCS=KMC*PWAV G/MWAV G/FR
KPES=KPE*MWAVG*FR/PWAVG
KPCS=KPC*MWAVG*FR/PWAVG
HES= HE*ASEAV G/FR/MEAV G/CV
HCS=HC*ASCAVG/FR/MCAVG/CV
KMSS=KMS*PWAVG/MSAVG/FR
HSS=HS*ASSAVG/FR/MSAVG/CV
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C HOMOGENEOUS ALGEBRAIC EQUATIONS
IHOMOG=18
DO 10 I=1,IHOMOG
DO 15 J=1,IHOMOG
D(1,J)=O.

15 CONTINUE
10 CONTINUE

D(1,1)=1.
D(1,2)=-KPES*MEAVG/MWAVG
D(1,3)=-1.
D(1,7)=1.
D(1,11)=A1
D(2,1 )=KPES*MEAVG/MWAVG
D(2,2)=1.
D(2,4)=-1.
D(2,8)=1.
D(2,12)=A1
D(3,2)=-KPCS*MEAVG/MWAVG
D(3,3)=1.
D(3,4)=-KPCS*MDAVG/MWAVG
D(3,5)=-1.
D(3,9)=-1.
D(3,11)=A2
D(3,14)=-A3
D(4,1)=KPCS*MEAVG/MWAVG
D(4,3)=KPCS*MDAVG/MWAVG
D(4,4)=1.
D(4,6)=-1.
D(4,10)=-1.
D(4,12)=A2
D(5,2)=-MEAVG/MWAVG
D(5,4)=-MDAVG/MWAVG
D(5,5)=KMCS
D(5,6)=-MCAVG/MWAVG
D(5,9)=KMCS
D(5,11 )=-A2*KMCS
D(5,14)=A3*KMCS
D(6,1 )=MEAVG/MWAVG
D(6,3)=MDAVG/MWAVG
D(6,5)=MCAVG/MWAVG
D(6,6)=KMCS
D(6,10)=KMCS
D(6,12)=-A2*KMCS
D(7,1)=FF(1)
D(7,2)=-1 .+G*(THEAT+TEAVG)/2./TEAVG+FF(2)
D(7,7)=HES
D(7,8)=-1.
D(7,12)=GM1*A1
D(8,1 )=1 .-G*(THEAT+TEAVG)/2./TEAVG+FF(3)
D(8,2)=-FF(1)
D(8,7)=1.
D(8,8)=HES
D(8,11)=-GM1*A1
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D(9,5)=FF(4)
D(9,6)=-1 .+G*(TCOOL+TCAVG)/2./TCAVG+FF(5)
D(9,9)=HCS
D(9,10)=-1.
D(9,12)=-GM1*A2
D(10,5)=1.-G*(TCOOL+TCAVG)/2./TCAVGG+FF(6)
D(10,6)=-FF(4)
D(10,9)=1.
D(10,10)=HCS
D(10,11)=GM1*A2
D(10,14)=-GM1*A3
D(11,1 )=All
D(11,5)=-A13
D(11,7)=All
D(11,9)=-A13
D(11,11) =A1*A11+A4*A12+A2*A13-MDPS
D(11,14)=-A3*A13
D(11,15)=-A12
D(11,17)=-A12
D(12,2)=A11
D(12,6)=-A13
D(12,8)=A11
D(12,10)=-A13
D(12,12)=A1*A11+A4*A12+A2*A13-MDPS
D(12,16)=-A12
D(12,18)=-A12
D(13,5)=1.
D(13,9)=1.
D(13,11)=-A2
D(13,14)=A3-MPPS+CLSS
D(14,6)=1.
D(14,10)=1.
D(14,12)=-A2
D(14,13)=FR/60./PI
D(15,11)=-A4*KMSS
D(15,15)=KMSS
D(15,16)=-1.
D(15,17)=KMSS
D(16,12)=-A4*KMSS
D(16,15)=1.
D(16,16)=KMSS
D(16,18)=KMSS
D(17,12)=-GM1*A4
D(17,15)=FF(7)
D(17,16)=- .+G*(TCOOL+TSAVG)/2./TSAVG+FF(8)
D(17,17)=HSS
D(17,18)=-1.
D(18,11)=GM1*A4
D(18,15)=1.-G*(TCOOL+TSAVG)/2./TSAVG+FF(9)
D(18,16)=-FF(7)
D(18,17)=1.
D(18,18)=HSS
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IF(IMODE.EQ.1) GO TO 210
IF(IMODE.EQ.8) GO TO 280
CALL DECOMP(IDIM, IHOMOG,D,COND, IPVT,Z1)
DET= IPVT( IHOMOG)
DO 55 I=I ,IHOMOG
DET=DET*D(I, I)

55 CONTINUE
IF(IMODE.NE.2) GO TO 220

C SPECIAL FREE-PISTON MODE
WRITE(6,299) FH,DET

299 FORMAT(' ','FH = ',F7.3,8X,'DET = ',G13.6/)
GO TO 295

220 CONTINUE
IF(IMODE.EQ.3) GO TO 230
IF(IMODE.EQ.4) GO TO 240
IF(IMODE.EQ.5) GO TO 250
IF(IMODE.EQ.6) GO TO 260
IF(IMODE.EQ.7) GO TO 270

C END OF SUBSECTION FOR COMPUTING MATRIX ELEMENTS
C * ** * * * ** * * * * * * * * * * * * * * * * * * *****

270 CONTINUE
C FREE-PISTON MODE : NONHOMOGENEOUS ALGEBRAIC EQUATIONS

IMODE=8
GO TO 200

280 CONTINUE
Y14=XPAXPM
ISIZE= IHOMOG-1
DO 305 J=1,IHOMOG
D(13,J)=D(13,J)+D(14,J)

305 CONTINUE
DO 310 1=14,ISIZE
DO 315 J=1,IHOMOG
D(I,J)=D(I+1,J)

315 CONTINUE
310 CONTINUE

DO 320 I=1,ISIZE
Y( )=-Y14*D(I,14)

320 CONTINUE
DO 325 J=14,ISIZE
DO 330 I=1,ISIZE
D(I,J)=D(I,J+1)

330 CONTINUE
325 CONTINUE

CALL DECOMP(IDIM, ISIZE,D, COND, IPVT,Z1)
IF(COND.GE.1000000.) WRITE(6,102) COND

102 FORMAT(' ','****NOTICE**** CONDITION OF MATRIX = ',G13.6/)
CALL SOLVE(IDIM, ISIZE,D,Y, IPVT)
IE=(IHOMOG+1)-14-1
DO 335 I=1,IE
Y((IHOMOG+I)-I)=Y((IHOMOG+1)-I-1)

335 CONTINUE
Y(14)=Y14
GO TO 395
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C KINEMATIC MODE
210 CONTINUE

BDR=BDD/180.*PI
Y11=XPAXPM*XDAXPA*DCOS(BDR)
Y12=XPAXPM*XDAXPA*DSIN(BDR)
Y13=0.
Y14=XPAXPM
ISIZE=IHOMOG-4
DO 350 I=11,ISIZE
DO 355 J=1,IHOMOG
D(I,J)=D(1+4,J)

355 CONTINUE
350 CONTINUE

DO 360 I=1,ISIZE
Y(I)=-Y11*D(I,11)-Y12*D(1,12)-Y13*D(1,13)-Y14*D(I,14)

360 CONTINUE
DO 365 J=11,ISIZE
DO 370 I=1,ISIZE
D(I,J)=D(I,J+4)

370 CONTINUE
365 CONTINUE

CALL DECOMP(IDIM, ISIZE,D,COND, IPVT,Z1)
IF(COND.GE.1000000.) WRITE(6,102) COND
CALL SOLVE(IDIM, ISIZE,D,Y, IPVT)
IE=(IHOMOG+1)-11-4
DO 375 I=1,IE
Y((IHOMOG+1)-I)=Y((IHOMOG+1)-I-4)

375 CONTINUE
Y(11)=Y11
Y(12)=Y12
Y(13)=Y13
Y(14)=Y14

395 CONTINUE
C COMPUTE INTEGRALS IN INTEGRATED ENERGY EQUATIONS

WDEA=PWAVG*VEAVG*FR/2.*((Y(1)+Y(7))*(A1*Y(12))
C+(Y(2)+Y(8))*(-A1*Y(11)))
Z1(1)=CP*FR*MEAVG/PI*(Y(1)**2+Y(2)**2)**.5
Z1(2)=G*FR*PWAVG*VEAVG/4./GM1*(Y(1)*Y(8)-Y(2)*Y(7))
HDEA=Z1 ( )*(THEAT-TEAVG)+Z1 (2)
QDWEA=HE*ASEAVG*(TWEAVG-TEAVG)
WDCA=PWAVG*VCAVG*FR/2.*((Y(5)+Y(9))*(-A2*Y(12))

C+(Y(6)+Y(10))*(A2*Y(11)-A3*Y(14)))
Z1(3)=CP*FR*MCAVG/PI*(Y(5)**2+Y(6)**2)**.5
Z1(4)=G*FR*PWAVG*VCAVG/4./GM1*(Y(5)*Y(10)-Y(6)*Y(9))
HDCA=Z1(3)*(TCOOL-TCAVG)+Z1(4)
QDWCA=HC*ASCAVG*(TWCAVG-TCAVG)
WDSA=PWAVG*VSAVG*FR/2.*((Y(15)+Y(17))*(-A4*Y(12))

C+(Y(16)+Y(18))*(A4*Y(11)))
Z1(5)=CP*FR*MSAVG/PI*(Y(15)**2+Y(16)**2)**.5
ZI(6)=G*FR*PWAVG*VSAVG/4./GMI*(Y(15)*Y(18)-Y(16)*Y(17))
HDSA=Z1(5)*(TCOOL-TSAVG)+Zl(6)
QDW SA= HS*ASSAVG*(TW SAVG-TSAVG)
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IF(DABS((HDEA+QDWEA-WDEA)/WDEA).LT..00001 .AND.
C DABS((HDCA+QDWCA-WDCA)/WDCA).LT.O.00001) GO TO 30

C NEW ESTIMATES FOR ITERATIVE PARAMETERS
TEAVG= (Z1 ( )*THEAT+Z1 (2)+HE*ASEAVG*TWEAVG-WDEA)

C/ (Z1(1)+HE*ASEAVG)
Z1(7)=Y(1)/(Y(1)**2+Y(2)**2)**.5
Z1(8)=Y(2)/(Y(1)**2+Y(2)**2)**.5
FF(1)=-2.*G/3./PI*(Y(8)*Z1(8)**3-Y(7)*Z1(7)**3)
FF(2)=-2.*G/3./PI*(Y(8)*Z1(7)**3-Y(7)*Z1(8)*(Z1(7)**2+2.))
FF(3)=-2.*G/3./PI*(Y(7)*Z1(8 Y(**3-Y(8)*Z1(7)*(Z(8)**2+2.))
TCAVG= (Z1 (3)*TCOOL+Z1(4)+HC*ASCAVG*TWCAVG-WDCA)
C/ (Z1(3)+HC*ASCAVG)
Z1(9)=Y(5)/(Y(5)**2+Y(6)**2)**.5
Z1(10)=Y(6)/(Y(5)**2+Y(6)**2)**.5
FF(4)=-2.*G/3./PI*(Y(10)*Z1(10)**3-Y(9)*Z1(9)**3)
FF(5)=-2.*G/3./PI*(Y(10)*Z1(9*(9)**3-Y(9)*Z(1)*(Z(9)**2+2.))
FF(6)=-2.*G/3./PI*(Y(9)*Z1(10)**3-Y(10)*Z1(9)*(Z1(10)**2+2.))
TSAV G=TWSAVG/(1.-.5*(GM1*A4)**2*(Y(11)**2+Y(12)**2))
IF(HSS.LT.O.0001.AND.KMSS.LT.O.0001) GO TO 45
TSAVG= (Z1(5)*TCOOL+Z1(6)+HS*ASSAVG*TWSAVG-WDSA)
C/ (Z1(5)+HS*ASSAVG)

45 CONTINUE
FF(7)=0.
FF(8)=1.-G*(TCOOL+TSAVG)/2./TSAVG
FF(9)=G*(TCOOL+TSAVG)/2./TSAVG-1.
IF(KMSS.LT.O.0001) GO TO 50
Z1(11)=Y(15)/(Y(15)**2+Y(16)**2)**.5
Z1(12)=Y(16)/(Y(15)**2+Y(16)**2)**.5
FF(7)=-2.*G/3./PI*(Y(18)*Zl(12)**3-Y(17)*Zl(11)**3)
FF(8)=-2.*G/3./PI*(Y(18)*Z1(11)**3-Y(17)*Z1(12)*(Z1(11)**2+2.))
FF(9)=-2.*G/3./PI*(Y(17)*Zl(12)**3-Y(18)*Zl(11)*(Zl(12)**2+2.))

50 CONTINUE
CLDS=Y(13)/Y(14)
CLD=CLDS*PWAVG*AP/60./PI/XPMAX
CLS=-FR*CLD*DTAN(BLR+PI/2.)
CLSS=CLS*XPMAX/PWAVG/AP

99 CONTINUE
WRITE(6,103)

103 FORMAT(' ','*****NOTICE***** ENERGY BAL DID NOT CONVERGE'/)
C END OF ITERATIVE LOOP FOR CALCULATION OF FOURIER CORRECTION
C FACTORS, TEAVG, TCAVG, AND TSAVG
30 CONTINUE
C COMPUTE DYNAMIC PARAMETERS

XPAMP=XPMAX*Y(14)
XDAMP=XPMAX*(Y(11)**2+Y(12)**2)**.5
CLDS=Y(13)/Y(14)
CLD=CLDS*PWAVG*AP/60./PI/XPMAX
IF(IMODE.EQ.1) GO TO 60
FH=FR/2./PI
XDAXPA=XDAMP/XPAMP
IF(XDAMP.GE.XDMAX) WRITE(6,104)

104 FORMAT(' ','*****NOTICE***** DISP AMPLITUDE IS TOO LARGE'/)
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BDR=DARCOS(Y(11)/(Y(11)**2+Y(12)**2)**.5)
IF(Y(12).LT.O.O) BDR=-BDR
BDD=BDR/PI*180.

60 CONTINUE
C COMPUTE OVERALL ENERGY BALANCE

HDRA=FR/PI*CP*(TH2-TH3)*((MEAVG*Y(1)+MDHAVG*Y(3))**2
C+(MEAVG*Y(2)+MDHAVG*Y(4))**2)**.5

QDIA=WDEA+HDRA
QDOA=-WDCA-WDSA+HDRA
WDOA=WDEA+WDCA+WDSA
ETAQ=WDOA/QDIA*100.
WDPA=PWAVG*VCAVG*FR/2.*A3*Y(14)*(A2*Y(12)-Y(6)-Y(10))
WDDA=WDOA-WDPA

C OUTPUT STATEMENTS
WRITE(6,115) KMC,KMCS,KPE,KPES,KPC,KPCS,HE,HES,HC,HCS,KMS,KMSS
C, HS, HSS, CLD, CLDS, CLS, CLSS

115 FORMAT(' ',44X,'COEFFICIENT NONDIM'
1/' ',' WORKING SPACE SEAL LEAKAGE (KG/SEC-PA)',D15.5,F15.6
2/' ',' HEATER PRESSURE DROP (PA-SEC/KG)',D15.5,F15.6
3/' I,' COOLER PRESSURE DROP (PA-SEC/KG)',D15.5,F15.6
4/' ',' EXPANSION SPACE HEAT TRANSFER (W/M2-K)',D15.5,F15.6
5/' ','COMPRESSION SPACE HEAT TRANSFER (W/M2-K)',D15.5,F15.6
6/' ',' GAS SPRING SEAL LEAKAGE (KG/SEC-PA)',D15.5,F15.6
7/' ',' GAS SPRING HEAT TRANSFER (W/M2-K)',D15.5,F15.6
8/' ,, LOAD DAMPING COEFFICIENT (NT-SEC/M)',D15.5,F15.6
9/' ',' LOAD SPRING COEFFICIENT (NT/M)',D15.5,F15.6/)
WRITE(6,118) VWAVG,PWAVG,MWAVG,TEAVG,TWEAVG,FH,THAVG,TWHAVG

C,XPAMP,TRAV G,XDAXPA,TKAVG, TWKAV G,BDD,TCAV G,TWCAV G, I TER,TSAV G
C,TWSAVG

118 FORMAT(' ',' AVERAGE VOLUME (M3)',D15.6,23X,'TEMPERATURE (K)'
1/' ','AVERAGE PRESSURE (PA)',D15.6,22X,'AVG GAS WALL'
2/' ',' AVERAGE MASS (KG)',D15.6,10X,'EXPANSION',2F10.3
3/' ',' FREQUENCY (HZ)',F10.4,18X,'HEATER',2F10.3
4/' ',' PISTON AMPLITUDE (M)',D15.6,8X,'REGENERATOR',F10.3
5/' ','DISP/PISTON AMP RATIO',F11.6,17X,'COOLER',2F10.3
6/' ','DISPLACER PHASE (DEG)',F10.4,13X,'COMPRESSION',2F10.3
7/' ',11X,'ITERATIONS',16,22X,'SPRING',2F10.3/)
WRITE(6,128) EPSH,EPSR,EPSK,TH1 ,TH2,TK3,TCOOL

C,THEAT,TH3,TK2,TK1
128 FORMAT(' ',32X,'HEATER REGENERATOR COOLER'

1/' ',11X,'EFFECTIVENESS ',3F10.5
2/' ','EXP TO COMP GAS TEMP (K)',4F10.3
3/' ','COMP TO EXP GAS TEMP (K)',4F10.3/)
WRITE(6,130) QDIA,HDRA,QDOA,WDOA,WDPA,ETAQ,WDDA

130 FORMAT(' ',' HEAT INPUT TO WORKING GAS (W) ',G13.6
C,' REG FLUX (W)',G13.6
1/' ', 'HEAT OUTPUT FROM WORKING GAS (W) ',G13.6
2/' ', ' INDICATED POWER OUTPUT (W) ',G13.6
C,' PISTON (W) ',G13.6
3/' ', ' THERMODYNAMIC EFFICIENCY (%) ',F7.3
C,13X,'DISP (W) ',G13.6/)
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WRITE(6,135) WDEA,QDWEA,HDEA,WDCA,QDWCA,HDCA,WDSA,QDWSA,HDSA
135 FORMAT(' ',14X,'SUM P*DV (W) Q WALL (W) H FLUX (W)'

1/' ',' EXPANSION',3G16.6
2/' ',' COMPRESSION',3G16.6
3/' ',' SPRING',3G16.6/)

C OUTPUT FOR VOLUME, PRESSURE, MASS, AND TEMPERATURE HARMONIC
C FUNCTIONS. COEFFICIENTS FOR CONSTANT, SIN, AND COS TERMS ARE
C STORED TEMPORARILY IN D(I,J) ARRAY.

D(1,1 )=VEAVG/VWAVG
D(1,2)=-VEAVG/VWAVG*A1*Y(11)
D(1,3)=-VEAVG/VWAVG*A1*Y(12)
D(2,1 )=(VHAVG+VRAVG+VKAVG)/VWAVG
D(2,2)=0.
D(2,3)=0.
D(3,1)=VCAVG/VWAVG
D(3,2)=VCAVG/VWAVG*(A2*Y(11)-A3*Y(14))
D(3,3)=VCAVG/VWAVG*A2*Y(12)
D(7,1)=VSAVG/VWAVG
D(7,2)=VSAVG/VWAVG*A4*Y(11)
D(7,3)=VSAVG/VWAVG*A4*Y(12)
D(1,4)=1.
D(1,5)=Y(1)+Y(7)+A1*Y(11)
D(1,6)=Y(2)+Y(8)+A1*Y(12)
D(2,4)=1.
D(2,5)=Y(3)
D(2,6)=Y(4)
D(3,4)=1.
D(3,5)=Y(5)+Y(9)-A2*Y(11)+A3*Y(14)
D(3,6)=Y(6)+Y(10)-A2*Y(12)
D(7,4)=1.
D(7,5)=Y(15)+Y(17)-A4*Y(11)
D(7,6)=Y(16)+Y(18)-A4*Y(12)
D(4,1 )=MEAVG/MWAVG
D(4,2)=MEAVG/MWAVG*Y(1)
D(4,3)=MEAVG/MWAVG*Y(2)
D(5,1)=MDAVG/MWAVG
D(5,2)=MDAV G/MW AV G*Y(3)
D(5,3)=MDAVG/MWAVG*Y(4)
D(6,1)=MCAVG/MWAVG
D(6,2)=MCAVG/MWAVG*Y (5)
D(6,3)=MCAVG/MWAVG*Y(6)
D(8,1 )=MSAVG/MWAVG
D(8,2)=MSAVG/MWAVG*Y(15)
D(8,3)=MSAVG/MWAVG*Y(16)
D(4,4)=TEAVG/TWHAVG
D(4,5)=TEAVG/TWHAVG*Y(7)
D(4,6)=TEAVG/TWHAVG*Y(8)
D (5,4) = PWAV G*( VHAV G+VRAV G+VKAV G)/MDAV G/R/TW HAV G
D(5,5)=0.
D(5,6)=0.
D(6,4 )=TCAVG/TWHAVG
D(6,5)=TCAVG/TWHAVG*Y(9)
D(6,6)=TCAVG/TWHAVG*Y(10)
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D(8,4)=TSAVG/TWHAVG
D(8,5)=TSAVG/TWHAVG*Y(17)
D(8,6)=TSAVG/TWHAVG*Y(18)
WRITE(6,120) (D(1,I),1=1,6),(D(2,I),I=1,6),(D(3,I),1=1,6)

C,(D(7,I),1=1,6)
120 FORMAT(' ',25X,'V/VWAVG',26X,'P/PWAVG'

1/' ',8X,2(' CONST SIN COS')
2/' ',' EXPANSION',6F11.6
3/' ',' DEAD',6F11.6
4/' ','COMPRESSION',6F11.6
5/' ',' GAS SPRING',6F11.6/)
WRITE(6,125) (D(4,I),1=1,6),(D(5,I),1=1,6),(D(6,I),1=1,6)

C,(D(8,I),1=1,6)
125 FORMAT(' ',25X, 'M/MWAVG',26X,'T/TWHAVG'

1/' ',8X,2(' CONST SIN COS')
2/' ',' EXPANSION',6F11.6
3/' ',' DEAD',6F11.6
4/' ','COMPRESSION',6F11.6
5/' ',' GAS SPRING',6F11.6//////)

295 CONTINUE
5 CONTINUE

RETURN
END
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D.2 LHA1 Input Data for RE-1000 Base Case

&INPUT R=2080., CP=5200., XPMAX=.0210,
XDMAX=.0202, AP=.002572, AR=.000218, AD=.002572,
VEAVC- .0000636, VHAVG= .0000396, VRAVG=.0000594, VKAVG .0000285,
VCAVG=. 0001036, VSAVG=.0000318, ASEAVG=.01392, ASCAVG=.02292,
ASSAVG=.00979, MPP-6.2, MDP=.426, FH=30.6,
FHLOW=25., FHHIG =35., FHTOL=.01, XPAXPM=.619,
BDD=55.5, XDAXPA=.958, PWAVG=7085000., TWHAVG=853.,
TWEAVG=853., TWKAVG=3 26., TWCAVG=326., TWSAVG=326.,
KMC= .68D-8, KPE=.15D7, KPC=.15D7, HE=1000.,
HC= 1000., KMS=.20D-8, HS=1000., IMODE=3,
IITER=50, EPSH=1., EPSR=1., EPSK=1.,
BLD=-90., ILOOP=-1, &END
&INPUT &END
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D.3 LHA1 Output for RE-1000 Base Case

COEFFICIENT NONDIM
WORKING SPACE SEAL LEAKAGE (KG/SEC-PA) 0.68000D-08 0.121945

HEATER PRESSURE DROP (PA-SEC/KG) 0.15000D 07 0.083644
COOLER PRESSURE DROP (PA-SEC/KG) 0.15000D 07 0.083644

EXPANSION SPACE HEAT TRANSFER (W/M2-K) 0.10000D 04 0.091640
COMPRESSION SPACE HEAT TRANSFER (W/M2-K) 0.10000D 04 0.037891

GAS SPRING SEAL LEAKAGE (KG/SEC-PA) 0.20000D-08 0.233265
GAS SPRING HEAT TRANSFER (W/M2-K) 0.10000D 04 0.051654

LOAD DAMPING COEFFICIENT (NT-SEC/M) 0.35296D 03 0.076671
LOAD SPRING COEFFICIENT (NT/M) 0.0 0.0

AVERAGE VOLUME (M3) 0.294700D-03 TEMPERATURE (K)
AVERAGE PRESSURE (PA) 0.708500D 07 AVG GAS WALL

AVERAGE MASS (KG) 0.213613D-02 EXPANSION 824.779 853.000
FREQUENCY (HZ) 29.4359 HEATER 853.000 853.000

PISTON AMPLITUDE (M) 0.129990D-01 REGENERATOR 547.896
DISP/PISTON AMP RATIO 0.969505 COOLER 326.000 326.000
DISPLACER PHASE (DEG) 46.6818 COMPRESSION 336.640 326.000

ITERATIONS 6 SPRING 329.792 326.000

HEATER REGENERATOR COOLER
EFFECTIVENESS 1.00000 1.00000 1.00000

EXP TO COMP GAS TEMP (K) 789.815 853.000 326.000 326.000
COMP TO EXP GAS TEMP (K) 853.000 853.000 326.000 351.762

HEAT INPUT TO WORKING GAS (W) 2852.16 REG FLUX (W) 0.0
HEAT OUTPUT FROM WORKING GAS (W) 1832.10

INDICATED POWER OUTPUT (W) 1020.06 PISTON (W) 1020.06
THERMODYNAMIC EFFICIENCY (%) 35.764 DISP (W) -0.125056D-11

SUM P*DV (W) Q WALL (W) H FLUX (W)
EXPANSION 2852.16 392.837 2459.31

COMPRESSION -1740.36 -243.867 -1496.49
SPRING -91.7454 -37.1199 -54.6258

V/VWAVG P/PWAVG
CONST SIN COS CONST SIN COS

EXPANSION 0.215813 -0.075458 -0.080023 1.000000 0.141389 -0.045816
DEAD 0.432643 0.0 0.0 1.000000 0.145554 -0.048543

COMPRESSION 0.351544 -0.044387 0.073241 1.000000 0.151288 -0.046567
GAS SPRING 0.107906 0.006396 0.006783 1.000000 -0.047074 -0.124214

M/MWAVG T/TWHAVG
CONST SIN COS CONST SIN COS

EXPANSION 0.122961 -0.032603 -0.049797 0.966916 0.055012 -0.011252
DEAD 0.386309 0.056229 -0.018753 0.616985 0.0 0.0

COMPRESSION 0.490730 -0.017947 0.086998 0.394654 0.024310 -0.006121
GAS SPRING 0.153757 0.004455 -0.001688 0.386626 -0.006487 -0.019477

al
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