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LINEAR HARMONIC ANALYSIS OF STIRLING ENGINE
THERMODYNAMICS

N. C. J. Chen F. P. Griffin
C. D. West

ABSTRACT

With the objective of gaining a better understanding of
Stirling machine processes and especially of free-piston en-
gines, a linearized harmonic analysis method has been devel-
oped. The analysis involves linearization of the pressure
waveform and represents each term in the conservation equa-
tions by a truncated Fourier series, including enthalpy flux
discontinuity.

Second-Law analysis is presented of four important loss
mechanisms that result from adiabatic cylinders, transient
heat transfer in semiadiabatic cylinders, pressure drop
through the heat exchangers, and gas leakage from the compres-
sion space. The four loss mechanisms, all leading to effi-
ciency reduction below the Carnot level, are characterized
by irreversible thermodynamic processes that occur when heat
is transferred across a finite temperature difference; when
gases at two different temperatures are mixed; or when there
is a mass flow through a pressure difference.

The allocation of each individual loss mechanism is de-
rived precisely in terms of entropy production but evaluated
by use of pressure, temperature, and mass oscillations calcu-
lated from the linear harmonic approximation. When the theory
is applied to an engine of Sunpower's RE-1000 dimensions, it
reveals clearly that the "adiabatic loss" (due to temperature
fluctuations in the cylinders) consists of two components:
gas mixing and heat transfer across a temperature difference.
The theory further shows that the adiabatic effect is more
important than the transient heat transfer loss if the gas-
to-cylinder heat transfer rate is small (i.e., nearly adia-
batic conditions); the reverse is true for intermediate
heat transfer rates; and both losses vanish at very high
heat transfer rates. In addition, entropy analyses of pres-
sure drop and mass leakage for isothermal cylinders shed
some light on coupling between the different individual loss
mechanisms.
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1. INTRODUCTION

Analyses of free-piston Stirling engines require a thorough treat-

ment of both the thermodynamics and the dynamics because these two inter-

act in a highly complex manner. As a prerequisite to dealing with this

complicated problem, a thermodynamic analysis has been developed that

considers the effects of four important loss mechanisms on engine thermo-

dynamic performance through a newly developed method, linear harmonic

analysis (LHA), which provides a semi-closed-form solution in contrast

to a numerical approach. By the nature of its closed-form solution, the

analysis offers additional insights into the underlying physical pro-

cesses. The method also permits an analysis of the engine dynamics, and

such an analysis will be considered in a later publication.

The objectives of this report are twofold: to gain a better under-

standing of the four loss mechanisms and to provide the basis for future

free-piston analysis. The four loss mechanisms that affect engine per-

formance significantly are adiabatic cylinder effects, transient heat

transfer in semiadiabatic cylinders, pressure drop through the heat ex-

changers, and gas leakage from the compression space. All other aspects

of the engine are considered ideal at this stage of the analysis. These

four loss mechanisms are studied in a coupled mode by the LHA method; that

is, their interactions are fully taken into account so that the method is

"third order." The basic theoretical formulation, solution method, and

variable definitions are provided in great detail for future reference;

thus, the report will serve as a solid basis for further development of

free-piston engine theory.

As stated, this report will concentrate on the engine thermodynamics.

All relevant discussions will be based on a well-tested and well-documented

reference engine. This reference engine, a Sunpower RE-1000 free-piston

Stirling engine, is analyzed in a kinematic mode. Analyzing an engine

in a kinematic mode means that the volume variations are specified. The

report also includes three important analyses: allocation of losses ac-

cording to the Second Law of Thermodynamics, behavior of nonideal gas

spring, and nonlinear thermodynamic analyses. The Second-Law analysis

provides a rational method to allocate individual loss mechanisms when
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two or more of the mechanisms are coupled together. Three irreversible

thermodynamic processes that are caused by the four loss mechanisms are

identified. Irreversibilities occur wherever there is heat transfer

across a finite temperature difference, wherever gases at two different

temperatures mix together, and whenever mass flows through a pressure

drop. These processes that occur in a typical real machine are quanti-

fied in terms of entropy production, thereby making the allocation of ef-

ficiency and power losses possible.

A gas spring plays a vital role in free-piston engine performance;

therefore, it is included as an integrated part of the thermodynamic analy-

sis. Because a gas spring is simpler in configuration than an engine,

an elegant closed-form solution can be obtained that illustrates the

transient heat transfer loss much better than numerical methods. This

leads to a clear understanding of the transient heat transfer loss as-

sociated with the working space in an engine, where mass shuttles con-

tinuously between expansion (hot) and compression (cold) spaces.

Even assuming that the amplitudes of all thermodynamic state vari-

ables are small relative to their respective mean values, a systematic

error could perhaps be introduced by the LHA method. To assess the LHA

solution accuracy, a nonlinear analysis that uses the identical set of

governing equations, but does not linearize, has been studied indepen-

dently. The nonlinear analysis applies a well-established numerical soft-

ware package, the Continuous System Modeling Program 1 (CSMP), to avoid

unnecessary programming effort and to concentrate on the problem formula-

tions. The comparison between LHA and CSMP thus establishes the LHA nu-

merical credibility.

A brief literature survey of Stirling engine analyses seems to be

appropriate. For kinematic engine analyses, Schmidt's isothermal analy-

sis for sinusoidal volume variations provides a closed-form solution and

establishes a standard for Stirling engine theoretical studies. 2 How-

ever, it is far from representing real engines because the gas inside the

cylinders behaves more adiabatically than isothermally. Unfortunately,

if any departures from the isothermal assumption are made, then the equa-

tions describing the gas behavior become a nonlinear set of differential

equations. Finkelstein 3 was the first to study the effects of adiabatic
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cylinders. Subsequently, Qvale, 4 Rios, 5 and Urieli and Berchowitz2 have

all contributed to the understanding of engine performance under various

loss mechanisms. These and other numerical analyses, such as Martini's

important new work reported in the second edition of his well known "Stir-

ling Engine Design Manual," 6 have been reviewed by Chen and Griffin.7

The book by Urieli and Berchowitz 2 was reviewed in draft form prior to

publication. A few works have used approximate methods (e.g., Fokker and

Van Eekelen 8 and Rauch 9) or simplified cycles (e.g., Rallis and Urieli 10

and West 1 1) to arrive at analytical or closed-form solutions for the per-

formance of engines with nonisothermal cylinders.

When considering free-piston machines, we may conveniently define

two categories of analytical approach: isothermal and nonisothermal cyl-

inders. Most previous approaches to the analysis of coupled engine

dynamics/thermodynamics begin with the isothermal assumption; representa-

tive works include these of Cooke-Yarborough, 1 2 Rauch, 1 3 Marusak and

Chiu, 14 Berchowitz and Wyatt-Mair, 1 5 Goldberg,16 Vincent et al., 1 7

West, 18 and Urieli and Berchowitz 2 (Chap. 3). When the analysis is ex-

tended to nonisothermal cylinders, as it must be if a physical realistic

formulation is to be made, most of the work has depended entirely on nu-

merical solutions to the equations (e.g., Gedeon, 19 Giansante, 20 GE2 1).

The work of Rauch2 2 is among the few that attempt to treat by nonnu-

merical methods the coupled dynamics and thermodynamics of free-piston

machines with nonisothermal cylinders, but few details have been released

because of proprietary restrictions. Rauch's approach, like Fokker and

Van Eekelens' 8 successful treatment of the kinematic engines and Cooke-

Yarborough's 12 equally successful analysis of the isothermal free-piston

engines, uses a linearized approximation in which the variables are rep-

resented by harmonic functions.

Our literature survey has convinced us that there is a need for fur-

ther development of the linearized analyses because closed-form analyti-

cal solutions provide a much clearer physical understanding of processes

occurring in Stirling machines. However, a closed-form, or nearly closed-

form, solution should not oversimplify the physics of the problem; major

losses and their interactions should be included to provide a realistic

representation of Stirling engine behavior. Therefore, an LHA that takes
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into account interactions of major losses has been chosen for studying

Stirling engine performance.

This report is rather detailed and mathematical: it should be re-

garded as a textbook, or at least a primer, on the theory and use of LHA

for Stirling engine thermodynamics. We plan to prepare, if this work

continues, other reports and papers describing the verification and ap-

plication of the method in simpler and more descriptive terms; this re-

port will be the main source document. We also plan to publish the ex-

tension of the analysis, which is fairly straightforward, to include the

dynamics of free-piston engines in certain simplified circumstances.
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2. THEORETICAL FORMULATION

Based on a control volume approach, a system of nonlinear differen-

tial equations governing the thermodynamic performance of a Stirling en-

gine has been formulated. To simplify the formulation but preserve the

physics, the formulation retains an essential minimum of three control

volumes (expansion space, compression space, and dead volume). This re-

port encompasses four of the loss mechanisms (adiabatic effects, transi-

ent heat transfer, pressure drop, and mass leakage) that are expected to

have significant effects on the engine dynamics. All other aspects of

the machine are considered to be ideal, although other factors (including

appendix gap losses and imperfect heat exchanger elements) that will

affect the thermodynamics and, perhaps to a lesser extent, the dynamics

will be considered in future work. With proper assumptions, the formu-

lation will lead to a semi-closed-form solution that can greatly enhance

theoretical understanding of Stirling-cycle machines.

2.1 Control Volume Representation

With an initial objective of a better understanding of pertinent

thermodynamics (and later of dynamics), the formulation effort has con-

centrated on the Sunpower RE-1000 free-piston Stirling engine, but the

engine has been analyzed in a kinematic mode. By kinematic mode, it is

meant that the engine is analyzed with specified piston motions.

Shown schematically in Fig. 2.1, the RE-1000 engine manufactured by

Sunpower Inc. is a 1-kW single-cylinder machine containing a piston and a

displacer sprung to a relatively massive engine casing. The displacer

rod is supported by a bracket mounted to the pressure vessel walls. The

bounce space contains a large volume of gas and thus remains at a nearly

constant pressure. A dashpot loading device, controlled by a variable

orifice, has been used to absorb power. Readers seeking detailed infor-

mation on engine characteristics should refer to a report by Schreiber, 2 3

but some basic dimensions are included in Table 3.1 of this report.

The working space is divided into three control volumes as depicted

in Fig. 2.2. Here the working space refers to the ensemble of variable
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and constant volumes. The three control volumes are an expansion space,

a compression space, and a dead volume. The volumes of the expansion

and compression spaces are time varying and nonisothermal. On the other

hand, the dead volume consisting of the heater, regenerator, and cooler

is fixed and assumed to be isothermal. In addition, mass leakage is per-

mitted between the compression space and buffer space.

2.2 Derivation of Governing Equations

In the formulation, five basic variables are chosen to define the

thermodynamic state of the engine at any instant - the time-dependent

masses and temperatures in the control volumes; there are only five vari-

ables because the temperature in the dead space is not time dependent.

These five unknowns require five governing equations, which are provided

by the conservation of mass and energy. The pressure in each space is

treated as a parameter and determined by the ideal gas law from the mass,

temperature, and volume. The derivations of the governing equations

will be described, first on the mass distribution and then on the energy

equations.

Of three mass equations, the first two account for pressure drop and

the last one includes mass leakage. Starting from mass variation in the

expansion space, by continuity, the change of mass inventory in any con-

trol volume must equal the net mass flux across that control volume

boundary. The mass flux is assumed to be linearly proportional to the

pressure difference between adjacent spaces. In Fig. 2.2, there is

no outgoing mass flow, and thus the rate of mass increase in the expan-

sion space is equal to the incoming mass flux:

dme 1
e= - (Pd -P ) . (2.1)

d t kpe

An excess pressure in the dead volume over the expansion space leads to

an increase in the mass of gas in the expansion space. The proportion-

ality constant kpe, a measure of flow resistance, must be obtained from

experimental data. A higher value of kpe indicates a higher pressure

drop for the same flow rate.
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Likewise, considering the combined spaces of the expansion and dead

volume with respect to an incoming mass flux, the mass variation is given

by

dm dmd 1

dt dt k (c -d) (2.2)
PCpc

The final equation establishes the mass leakage relationship between

the working space and buffer space through a rate constant kmc. The

buffer space of the RE-1000, characterized by a large volume (about 200

times that of the working space), is assumed to have a constant tempera-

ture (approximately equal to the cooler temperature TK) and pressure

P . Coupled with these facts, the rate of the change of mass inventory

in the working space shows that

dm dm dm
d- + d- - + c--- = k (P -P ) . (2.3)

For a perfect seal (km = 0), there is no leakage. Consequently, the

total mass in the working space would remain constant, as expected.

Next, consider the derivation of the two energy equations, first in

the expansion and then the compression space. Stirling-cycle machines

are characterized by an enthalpy flux discontinuity, which not only pre-

sents a conceptual difficulty but also complicates the analysis. An ap-

propriate representation of this discontinuity is vital to the success of

any analysis. Our choice is a truncated Fourier series representation;

the reasons for this and other related topics will be presented in detail

in Chap. 3.

By the First Law of Thermodynamics, the instantaneous energy balance

in the expansion space states that

dme dV d(m T)
cpT -- +hA (T -T)=P -- ee

p H dt + e sew e e + v dt t d

dm
for > 0 . (2.4)dt
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This is true over that part of the cycle where the working gas emerges

from the heater and enters into the expansion space or when the mass of

gas in the expansion space is increasing. The first term on the left-

hand side of Eq. (2.4) signifies the incoming enthalpy flux at the heater

temperature (assuming that the heater acts perfectly), and the second

term accounts for heat transfer between the cylinder wall and the gas.

The first and second terms on the right-hand side of Eq. (2.4) indicate

work done by the gas and the rate of change of internal energy,

respectively.

For that part of the cycle where the gas leaves the expansion space

and enters into the heater (i.e., for decreasing expansion-space mass), a

similar equation will describe the process except that the temperature of

the gas leaving the space is not the heater temperature TH but the in-

stantaneous expansion-space gas temperature Te.

dme _ dVe d(m eTe)
cT + h A (T -T) P - + c
p e dt e se we e e dt v dt

dm
for d < 0 . (2.5)

dt

The counterpart of the instantaneous energy equations in the com-

pression space may be derived in a similar fashion:

dmc dVc d(mcTc)
c T - + h A (T -T) = P + c --

p K c dt c dt

dm
for > 0 ; (2.6)

dt

dm, dVc d(mcTc)
cT +h A (T - T)= P + c
p c dt c sc we c c dt v dt

dm
for c < 0 . (2.7)

dt
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For further simplification, the heat transfer areas in the wall-gas

heat transfer terms in both spaces are assumed to be constant so that

A = A , (2.8)se se

A = A . (2.9)
sc sc

2.3 Integrated Energy Equations

A complete transient treatment of the system of the governing equa-

tions [Eqs. (2.1)--(2.7)] is not pursued; only a steady state solution is

desired. A steady state solution represents a series of processes whereby

the working gas passes through a succession of changes in pressure, vol-

ume, temperature, and mass in such a way that, at the completion of the

operation, the gas returns to its initial state.

For a solution to be steady state, there should be no net change

in the internal energy over a cycle. Satisfying the steady state condi-

tion leads to the integrated energy equations. They are derived by per-

forming a cyclic average over each term in the instantaneous energy equa-

tions [i.e., Eqs. (2.4)-(2.7)]; symbolically,

H + Q = W (2.10)e we e

in the expansion space, and

H + wc = Wc (2.11)

in the compression space.

In these relations H, Qw, and W represent, respectively, the cyclic

enthalpy flux, the wall-to-gas heat transfer, and the work output. Note

that the cyclic internal energy vanishes in the respective spaces and,

thus, there is no net change in the overall internal energy over a full

cycle; this is the requirement set forth by the steady state condition.

Equation (2.10) contains the information on the source of heat neces-

sary for a Stirling machine. The equation states that over a complete
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cycle, the total heat supplied must equal the work performed in the ex-

pansion space. It further reveals that there are two distinct heating

modes: enthalpy flux from the heater H and the wall-to-gas heat trans-
e

port Q . The enthalpy flux represents the amount of heat passed be-

tween the heater and the expansion space, while the wall-to-gas heat

transfer occurs inside the cylinder. For adiabatic cylinders, there is

no wall-to-gas heat transport, and the heat supply comes exclusively

from the heater by convection. On the other hand, for isothermal cylin-

ders, no heater is needed; there is no enthalpy flux, and the heat input

comes solely from wall-to-gas transfer. However, the quantity of heat

provided by wall-to-gas transport remains finite for a perfect isothermal

cylinder, although the heat transfer coefficient approaches infinity;

this is apparent because a finite amount of work will be performed by the

working gas in the expansion space. Finally, for semiadiabatic cylin-

ders, both heating modes are in effect, and the contribution from each

component depends on the wall-to-gas heat transfer rate inside the expan-

sion space. Equation (2.11), containing information on the source of

cooling, can be discussed in exactly the same way.

2.4. Engine Performance Parameters

The quantities representing cyclic averages in the integrated energy

balance equations are significant in defining engine performance. The

engine performance is measured by two main parameters: indicated power

output and indicated efficiency. The power output is calculated by evalu-

ating the cyclic work integral from the expansion space plus the cyclic

work integral from the compression space (generally a negative value). In

notations,

W = P dV , (2.12)
e e e

W = P dV , (2.13)
C C C

W = W + W . (2.14)
out e c
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Because the work integral from the expansion space also represents

the total heat input to the engine, the indicated thermal efficiency24 may

be defined as

power output
efficiency =power oput (2.15)heat input

or

W
= 1 +- , (2.16)

W
e

or

q= 1 ,+ out/
+7(gout) '(2.17)

Qin

2.5 Second-Law Analysis

The four important loss mechanisms (adiabatic effect, transient heat

transfer, pressure drop, and mass leakage) that degrade engine performance

result in irreversible thermodynamic processes. These processes occur

when (1) there is heat transfer across a temperature difference, (2) two

streams of gases at different temperatures are mixed, and (3) there is

mass flow through a pressure difference. To allocate properly the losses

to individual mechanisms, a Second Law analysis is necessary. The change

of entropy is a measure of the amount of energy that becomes unavailable

for conversion to useful work; the greater the entropy change because

of an irreversibility, the greater the loss of available energy.

To facilitate the later discussions, a general introduction to the

subject will be provided here. Consider a system (control volume) bounded

by a closed surface (Fig. 2.3). When applied to the reference engine,

the boundary of the control volume will be the outer surface of the cyl-

inder, enclosing the heat exchanger components as well. The Second Law

of Thermodynamics states that the entropy of the system will be conserved
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over a cycle. Thus,

_in -Qout

in out

where the first and last terms represent the entropy change due to, re-

spectively, heat transfer into the system at temperature Tin and heat

transfer out of the system at temperature Tout. The second term indi-

cates the entropy produced by the internal losses such as mixing, tran-

sient heat transfer, and pressure drop.

Substitute Qt from Eq. (2.18) into the efficiency definition

Eq. (2.17), then add and subtract a term involving temperature ratio of

source and sink, resulting in

TK= 1 - T ( out o u t l oss
rl_ = 1 __ -(2.19)

H Tin Qin
in

or

n = nc - ^EHT - Aloss (2.20)
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where

TK
n= - T. (2.21)

H

T T
Tout TK

AnEHT -T (2.22)
in H

T i . (2. 23)

Tout ASloss
Anloss =(2.23)

Qin

Equation (2.20) appears somewhat simple in form but offers far-

reaching implications for the allocation of efficiency losses. Note that

the first term is simply the Carnot efficiency because it involves only

the temperatures of the heater and cooler. The second term represents

the efficiency loss due to energy transfer to and from the external heat

sink TK and heat source TH. Heat enters the system through the heater

or expansion cylinder or both. Tin is the average temperature of the

working fluid that absorbs the heat input. Heat leaves the system through

the cooler or compression cylinder or both. T t is the average tempera-

ture of the working fluid that rejects the heat output. This loss is

derived from the fact that it takes a finite temperature difference to

transfer heat in and out of the system. Finally, the last term may be

considered as the efficiency reduction due to the irreversibilities in

an engine.

Besides efficiency loss, the concept of power loss is both instruc-

tive and useful; in particular, the entropy change is needed to relate

the various losses back to the energy balance. To do this, a referenced

maximum power output (often termed the basic power output in second-order

decoupled analyses), from which various identifiable power losses are

deducted, should be established. This can be accomplished if Eq. (2.19)
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is multiplied by Qin;

out = Qin c - in ) out loss (2.24)

The first term on the right-hand side of Eq. (2.24) represents the

maximum possible power output of a Carnot cycle that has a heat input

Qin. This term Qinnc is the basic power output that will be used as the

reference value. The second term refers to the power loss due to ex-

ternal heat transfer irreversibilities, and the last term represents

power losses due to internal irreversibilities. Note that T is the
out

temperature to be used in determining the conversion of entropy to energy.

For the present formulation with various processes occurring simul-

taneously, 11 elements are responsible for changes in entropy. The first

two elements come from the heat supply,

in + Qwe - -
_ _ - ASQH +ASQwe (2.25)
in in

where ASQH and ASQwe are entropy production due to the heater and average

expansion-cylinder-wall heat transfer, respectively. The next two come

from the heat rejection,

Q, H + _ _ _Qout c Qc ,* v
-- -- = ASQK + ASQw , (2.26)

T T
out out

where ASQK and ASQwc represent the entropy production due to the cooler

and average compression-cylinder-wall heat transfer, respectively.

The last seven elements are included in the ASls term that con-
sists of losses due to mixilossfer, pressure drop,

sists of losses due to mixing, transient heat transfer, pressure drop,



17

and mass leakage.

Aloss mixe + mixc + STQe+ ATQc

_ h~ + . (2.27)
+ PDe + PDc + MLc (2.27)

In the relation, mixing and transient heat transfer processes occur

in the respective spaces; pressure-drop-induced entropy changes occur

between the variable and constant volumes; and the mass leakage irrever-

sibility occurs between the compression and buffer spaces.

Special attention should be called to the cylinder heat transfer

irreversibility, because it involves the definitions of the average and

transient components of the heat transfer. In the expansion space, the

instantaneous entropy change due to this process is defined as

h A (T -T
Qwe e se we Te) .

e e

Equation (2.28) can be further decomposed into two components.

hA (T -T) hA (T - T)
Ae se we e ese -e e (Qe T+ (2.29)

Qe T T 'Q ee e

It is convenient, although somewhat arbitrary, to define the first

and second terms as the average expansion-cylinder-wall heat transfer and

transient heat transfer component, respectively. Their cyclic values are

denoted as ASQwe and ASTQe and will be derived in Chap. 4. Similar ex-

pressions for the compression space can be derived without further effort.

The specific derivation of these entropy production terms will not

be given until Chap. 4, where the effects of various loss mechanism are

to be discussed fully. However, some general background review is pro-

vided here.
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From the Maxwell relations, 2 5 one of the general equations for change

of entropy may be written

dh = Tds + vdP , (2.30)

or

ds = dh dP . (2.31)T T

Note that s, h, and v are intensive properties that are independent

of mass and represent, respectively, the specific entropy, enthalpy, and

volume.

For an ideal gas,

Pv = RT , (2.32)

h = CpT . (2.33)

Substitute Eqs. (2.32) and (2.33) into Eq. (2.31) and integrate over in-

itial and final states, resulting in

dT dP
jds= As = c f -T -R P. (2.34)

For a flow process, the variation of entropy becomes

mAs = AS = m p f T - R f d ) (2.35)

To obtain the cyclic entropy change, perform the integration over a

complete cycle,

AS 2 m (c - R P) dt* (2.36)

which represents a general relationship for flow processes. In processes

where pressure is constant, such as mixing, the cyclic entropy change
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simplifies to

AS = P \ m In dt* . (2.37)
o*" JQ ^initial/

On the other hand, in processes where enthalpy is constant, such as

throttling processes, the cyclic entropy change reduces to

- m (p R P final
AS =- Rin 1dt* . (2.38)

T JQ\initial

v~~~~~2

* *~~~~~~~~~~~
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3. LHA SOLUTION METHOD

This chapter will reveal the methodology that makes the semi-closed-

form solution for Stirling engine thermodynamic analysis possible. The

chapter consists of ten sections to illustrate the basic principles step-

by-step in their most logical sequence. First, the analysis imposes a

linearized working gas pressure that, in turn, leads to a system of non-

dimensional governing equations. Subsequently, a simple harmonic solution

is assumed for the relevant variables, paving the way for Fourier series

representation of all nonharmonic terms in the governing equations, in-

cluding the enthalpy flux discontinuity. The development further leads

to two coupled systems of equations - the integrated and fluctuating en-

ergy balances - that the working gas must satisfy simultaneously. Thus,

a successive approximation is inevitable for nonisothermal calculations.

Above all, vector representation, a direct product of the harmonic analy-

sis, is introduced for future presentation of significant loss mechanisms.

Finally, the chapter is closed by a cookbooklike summary for LHA proce-

dures.

3.1 Pressure Linearization

Pressure linearization is a key to the present analysis. The va-

lidity of the linearization, in turn, relies on the underlying assumptions

that the amplitudes of the thermodynamic variables are smaller than their

respective mean values. Stirling engines with both low- and (more sur-

prisingly) high-compression ratios have been confirmed, by a nonlinear

analysis to be described later, to satisfy this criterion, so that the

use of linearized pressure in the analysis is justified. Two simplified

results, mean and fluctuating pressures, will now be derived.

The ideal gas law states that

PV = mRT . (3.1)

As mentioned, all variables will be represented by
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P = P + AP

V = V + AV

(3.2)
m = m + Am

T = T + AT ,

where the barred and the delta quantities refer to the mean and perturbed

components, respectively, satisfying inequalities:

AP Am AT AV
<< 1 , << 1 , << 1 , and - << 1 . (3.3)

P m T V

Substitute Eq. (3.2) into Eq. (3.1), resulting in

P (1 +AP mRT - (3.4)
\ / v 1 +AV

V

Now, linearize the nonlinear term by retaining the first-order terms

to obtain

l+AP( Am AT AV (3.5)P ( 1 +-) - _ (1 +_ + (3*5)
P V m T V

This equation leads to two obvious but useful approximations:

toRT
P (3.6)

V

AP = Am + AT AV (

P m T V

Equation (3.6) states that under the linearization, the mean pressure

may be computed by the product of mean values of other variables. When

applied to Stirling machines, static equilibrium conditions require that
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the same mean pressure should prevail in all control volumes and satisfy

me R T mc R m R T d- e e c c d (3.8)
P -- _ .(3.8)w V V V

e c d

Equation (3.7) further states that the pressure perturbation is a

linear summation of the respective fluctuating components. More impor-

tantly for the harmonic oscillations of major interest, each term in

Eq. (3.7) can be regarded as a vector, and this will greatly facilitate

vector analysis. By this interpretation, Eq. (3.7) now states that the

pressure vector is the resultant of the mass, temperature, and volume

vectors.

Substitution of Eq. (3.2) into Eq. (3.7) yields

- = - + ----- · (3.9)
P m T V

This equation represents the linearized instantaneous pressure. It is

this approximate pressure expression that will be used in the pressure-

containing terms wherever they occur in the conservation equations.

3.2 Nondimensional Equations

To simplify subsequent analysis, it is convenient to deal with the

governing equations in dimensionless form. For this purpose, a set of

dimensionless parameters and variables will be introduced.

Time: t* = wt (3.10)

Rate constants:

h A hA
e se c sch* = , h* =

e - -
m c wm c
e v c v

(3.11)

k m k m w k P

pe pc - mc -
P P m

w w w
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Independent variables:

m md m T T
m* = m T*T* (3.12)

me md m Te T
' dc e c

Dependent variables:

P Pd P
P* P* P* (3.13)e d p c

P P P
w w w

Prescribed variables:

V V X X
V* = e V* - c X* p (3.14)- XX* (3.14)e c p X d X

V V pm pme c

Temperature constants:

_ T _ T T Twe we H K
T* -w , T* , T*= K (3.15)we y we T H K

T T T Te c e c

Enthalpy flux temperature variables:

T T
T*f - e flux Tc flux (3

e fu eflux ' -(3.16)

e c

Volume constants:

AdX
al = d pm

V
e

(Ad - A ) Xpm
a2 = AdAr pm (3.17)

V
c

AX
p pma3 --= P
V

c
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Cyclic performance parameters:

_He Qwe - (Y- l)W
H* = - Q* = e w*
e cmT w we cm T e e PV

vee vee we

(3.18)

H Qwc 7 (y- 1)W
HC - r

H* = __ , Q** =_ , W* =
c cmT w wc c mT W c PV W

v c c v c w

When these dimensionless parameters are substituted into the linear-

ized pressure equation, the instantaneous nondimensional pressures in the

expansion, dead, and compression spaces are given by

P* = m* + T* - V* , (3.19)
e e e e

Pd = md, (3.20)

P* = m* + T* - V* . (3.21)
c C C C

From Fig. 2.1, the expansion volume depends only on the motion of

the displacer piston, while the compression volume depends on the motion

of both the displacer and the power piston:

Ve Ve - AdXd , (3.22)e e d d'

V = V + (Ad ) Xd- A X ·. (3.23)
c c d r) d pp

V and V represent the average volumes when both pistons are at their
e c

midstroke positions. Xd and Xp are the prescribed piston motions and they

are defined equal to zero when the pistons are at midstroke. The volume

equations in dimensionless form are

V* = 1 - a1 X* (3.24)
e d (

V* = 1 + a2 X- a3 X* . (3.25)
c d p
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Using those parameters just introduced, the governing conservation

equations transform to a system of ordinary differential equations in non-

dimensional form:

m dm*
k* = m* - m* - T* + V* , (3.26)

- pe d d e e em dt*
w

m dm* md dm*
ek* - + - k * - = m* + T* -(3.27)

pc dt* pc c c c d
m dt* m dt*

w w

dm* m dm* mc dm*
+ + - k* (1 - m* - T* + V*) ,(3.28)
-- - -M m c c C

m dt* m dt* m dt*
w w w

dm*
y T* n + h*(T* - T*) = (y - l)(m* + T* - V*)

e flux dt* e we e e e e

dV* d(m* T*)
x d + e e (3.29)

dt* dt*

dm*
y + hT* + h* - T*) = (y - l)(m* + T* - V*)

c flux dt* c wc c c c

dV* d(m* T*)
c c c

x d + dt* (3.30)dt* dt*

where the enthalpy flux discontinuities are characterized by, respec-

tively,

TT*H dm* > 0
T* e
e flux (3.31)

e e

for the expansion space and
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T* , dm* > O
T*K c
c flu T* dm* < 0 (3.32)

c c

for the compression space.

3.3 Harmonic Oscillations

The piston motions in most kinematic Stirling engines have waveforms

that are harmonic or can be approximated by harmonic functions. Thus it

seems reasonable to assume that the thermodynamic variables may also be

approximated by harmonic functions. This assumption will be most accurate

when the amplitudes of the oscillating variables are small relative to

their mean values.

Because only a steady state solution is of interest, the analysis

then becomes fairly straightforward. The system can be solved by the

method of undetermined coefficients if all variables undergo simple

harmonic oscillations:

m* = 1 + Y sin t* + Y cos t*

m* = 1 + y sin t* + y cos t* ,
d 3

m* = 1 + y sin t* + Y cos t*
C 5 6

T* = 1 + Y7 sin t* + Y8 cos t* , (3.33)

T* = 1 + y sin t* + Y1 cos t* ,

X* = y sin t* + y2 cos t*
d 12

X* = yI4 sin t* ,

where yl-Y10, which concern the thermodynamic variables, are unknowns to

be determined. For the present, yll-Y, representing the piston posi-

tions, are specified as for kinematic engines. Later, when free pistons

are allowed to respond dynamically to the various forces upon them, Yl-y14

are also treated as unknowns to be determined. All the y's provide infor-

mation on the amplitudes of the variables as well as phase angles with
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respect to the power piston displacement, a parameter commonly used as a

reference in experimental measurements. Note that yl3 is left out inten-

tionally, because it is reserved for load coefficients in future free-

piston dynamic analyses.

3.4 Truncated Fourier Series Representation

The general strategy of the LHA method is to transform the governing

equations into harmonic forms (constant terms plus sine terms plus cosine

terms). When the assumed harmonic solutions [Eq. (3.33)] are substituted

into the governing equations [Eqs. (3.26-3.30)], the only remaining non-

harmonic terms are the enthalpy flux, work, and internal energy terms in

the energy equations. These nonharmonic terms are then represented by

Fourier series that are truncated after the first harmonic. Fourier

series provide an accurate way to approximate arbitrary periodic func-

tions. Moreover, Fourier series can account for discontinuities; Taylor

series do not have this capability because they are restricted to con-

tinuous functions that have continuous derivatives of all orders.

To illustrate the Fourier series expansion procedures, the expansion-

space energy equation will be used. In general, a truncated Fourier

series can be expressed as

f(t*) = ao/2 + al sin t* + a2 cos t* , (3.34)

with

ao = l f f(t*) dt* , (3.35)

1 F2(

1 = 1 2 f(t*) sin t* dt* , (3.36)

27r

a2 = 1 f(t*) cos t* dt* , (3.37)

where aO is the Fourier zero-order coefficient and al and a2 are first-

order coefficients.
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The goal now is to represent the enthalpy flux, work, and internal

energy terms in the energy equations by a truncated Fourier series. With

the assumed harmonic solutions, all the Fourier coefficients can be inte-

grated analytically. The wall heat transfer terms in the energy equations

and the mass conservation equations are already in harmonic form.

3.4.1 Enthalpy flux

The function to be expanded in a Fourier series is

dm*
f(t*) = y T* (3.38)

e flux dt* '

The constant (zero-order) term in the Fourier series is identical to the

cyclic enthalpy flux H* as defined in the integrated energy balance (seee
Chap. 2). Because of a discontinuity in enthalpy flux in accordance with

the mass flow direction, the cyclic enthalpy flux must be evaluated by two

half-cycles:

a 0 dm* dm*
H* =-= T* dt*T* t dt* (3.39)

e 2 27T < 0 e dt* > 0 H dt*e 2 aedt* < Jdm* > 0

The first integral represents outgoing enthalpy flux when the mass

leaves the expansion space at the instantaneous gas temperature T*; the

second one denotes incoming flux when the gas emerges from the heater and

enters into the expansion space at the heater temperature T*. Because theH

mass flow rate m* is a harmonic function, it has the same magnitudes but
e

opposite signs over the two half-cycles; more specifically,

/dm*\ dm* \
e (e e} 1 (3.40)

\dt*/dm* > 0 dt*m <
e e

Since T* is a constant, it is possible to consolidate the two inte-
H

grals into a single one, if integration limits can be properly defined:

V~~_ do~dm*
He* Y (T* T ) dt* (3.41)

Jdm* < 0
e
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To find the integration limits over which the mass flow remains nega-

tive over one-half cycle, define e as a value of t* such that dm*/dt*
e e

vanishes. Then,

tan 1 ( 1 /y2) , for Y2 > 0

0e = (3.42)
tan- 1 (1/Y) + , for Y < 0

or

Yl Y2
sin 0e and cos e = . (3.43)

/2 + y2 /y + y2

The rate of change of m* is negative when 0 < t* < 0 + I.
e e e

The cyclic enthalpy flux is found by substituting the assumed har-

monic solution for the expansion-space temperature and mass flow and per-

forming the integration over the limits from 0 to 0 + a. After con-
e e

siderable algebraic manipulations, the result reads

=* (T* - 1) /y2 + + y - y(3.44)
e iT H 1 2 4 7Y2 Y7

This equation reveals that there are two contributions to the overall

cyclic enthalpy flux. The first term can be interpreted as the steady

enthalpy flux and simply represents the amount of energy convected by the

total mass between two constant temperature levels: the heater tempera-

ture TH and the mean expansion-space gas temperature T . On the other

hand, the second term denotes the apparent enthalpy flux that is derived

primarily from fluctuating components of the mass and temperature. Con-

sequently, the second term depends not only on the amplitudes of me and

Te but also on the phase angle between them. In general, the phase angle

of the mass variation leads the temperature.

The Fourier coefficient of the sine component can be evaluated in

much the same way as that of the constant term in the series, but involves

a more complicated integral. Again, for alternating mass flow, the cyclic
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integration is decomposed into two parts:

f r ^ Tr ^ < 0 e dt*

dm*
x sin t* dt* + T* d sin t* dt (3.45)

fdm* > 0 H d t
e

Using the fact that

dm*\ /dm*

odt*dm* > 0 dt-m* (3.46)
e e

and

(sin t*)dm > 0 =-(sin t*)dm < ' (3.47)
e e

the two integrals can be combined as

e dT dm*f e eeJi = (T*e + T) d- sin t* dt* . (3.48)

e

By proper substitution of the harmonic expressions and performing

the definite integrals, Eq. (3.48) simplifies to

a, = -[FF(l)]yl - [Y T + FF(2)]y 2 ; (3.49)
1 e 2'e

the dimensionless average hot-end temperature and two correction factors

for nonisothermal cylinders are defined, respectively, by

T = (1 + T) , (3.50)

FF(1) =- y2 (Y8 cos3 0 - y7 sin3 ae) , (3.51)e 7 e
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2y
FF(2) = 3 [y7 cos 8e (sin 2 06 + 2) - Y8 sin3 0e] . (3.52)

Interpretation of the Fourier coefficient hierarchy gets more dif-

ficult, if not impossible, when proceeding to the higher orders. In

Eq. (3.49), a1 is expressed as if a linear combination of the mass ampli-

tudes is involved; however, the correction factors shown in Eqs. (3.51)

and (3.52) indicate a highly nonlinear interaction between mass and tem-

perature fluctuations. Consequently, it is difficult to provide an easy

physical interpretation. Nonetheless, at the isothermal limit these

correction factors vanish because no temperature swings would exist

(Y7 = Y8 = 0). This fact will be used as initial conditions for adiabatic

or more general calculations when successive approximations are discussed

(Sect. 3.7).

For brevity, the derivation of the Fourier coefficients of the cosine

components will not be repeated, but the final results are

a2 = [T e - FF(3)] Yl + [FF(1)] Y2 (3.53)

where

FF(3) =- - [Y7 cos3 0e - Y8 sin Be (cos 2 e + 2)] . (3.54)

This completes the Fourier representation of the enthalpy flux that

is given by

dm* -
Y T* ef = H* + al sin t* + a2 cos t* .(3.55)e flux dt* e

3.4.2 Wall heat transfer

Unlike enthalpy flux, the wall heat transfer term is already in har-

monic form. When the term is decomposed with respect to the mean expan-

sion-space gas temperature,

h*(T* - T*) = h*(T* -1) h* T*)
e we e e we e e

= * + h* (1 - T*) . (3.56)
we e e
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This equation already assumes the form of a truncated Fourier series. By

inspection, the first term on the right-hand side of Eq. (3.56) is the

cyclic wall heat transfer by convection (Q*e) that was defined in the

integrated energy Eq. (2.10). Substitution of the assumed temperature

solution into the second term results in a simple harmonic function. The

complete wall heat transfer expression is:

h (T * = - Q h* Y7 sin t* - h* Y cos t . (3.57)
e we e ve e e

3.4.3 Work output

Generally, Fourier representation of a work term that includes pres-

sure nonlinearity presents insurmountable difficulties because it involves

evaluating nonstandard integrals. Fortunately, with the assumption of a

linearized pressure, the evaluations of Fourier coefficients can be done

with ease. The assumption of the pressure linearization and the errors

that may possibly be introduced have been quantified by an independent

nonlinear analysis of the same set of equations. The surprisingly small

discrepancies are encouraging. More discussion will be given later

(Sect. 3.8).

The work term to be expanded in a Fourier series is

dV*
f(t*) = (y - 1) (m* + T* - V*) (3.58)

e e e dt*

The zero-order or constant term is the cyclic work output W* as defined
e

in the integrated energy Eq. (2.10). After substitution into Eq. (3.35)

and integration, the result is

0 (y - l)al
W = -2= [Y12(Y1 + y)- Y + y) - l + (3 59)e 2 2 1

Similarly, the Fourier coefficients for the sine and cosine terms are

found by substituting into Eqs. (3.36) and (3.37) and integrating

al = (Y - 1) a Y 12y (3.60)

a2 = -(y - 1) a Y1 1 . (3.61)
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The complete Fourier expansion for the work term is

dV*
(y - 1) (m* + T* - V*) e = W* + (Y - 1) a y2 sin t*

e e e dt* e 1 12

- (y - 1) a yll cos t* . (3.62)

3.4.4 Rate of change of internal energy

As pointed out before, a steady state solution has been defined when

there is no net change in the internal energy over a cycle, or equiva-

lently, a vanishing constant in the Fourier series. The first-order

Fourier coefficients, following the same procedures as the other terms,

can be shown to be

a1 = -(Y2 + Y8) . (3.63)

a2 = Yl + Y7 (3.64)

Therefore, the Fourier representation for the rate of change of the

internal energy becomes

d(m* T*)

-dt* = - (Y2 + Y8) sin t* + (y + Y7) cos t* . (3.65)dt* 2 a 1 7

The Fourier coefficients for the compression space can be derived by

repeating the same process described previously, or by transforming the

expansion-space expressions by replacing the subscript e with the sub-

script c and by making the following substitutions:

FF(1) replaced by FF(4), y, replaced by yg

FF(2) replaced by FF(5), y8 replaced by y1 ,

FF(3) replaced by FF(6) , (al y1 ) replaced by (-a 2y1 + a3 14) , (3.66)

Y1 replaced by y5 , (alY12) replaced by (-a2Y 2 )

y2 replaced by y6 , T* replaced by T .2Z 6 H K
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The Fourier expressions for the compression space are summarized as fol-

lows:

Enthalpy flux:

dm*
C

YT* flux dt H* + a
1 sin t* + a 2 cos t* , (3.67)

c flux dt* c

where the Fourier coefficients appear similar to that of the expansion

space.

al = -[FF(4)]y5 - [YTC + FF(5)]y 6 , (3.68)

a2 = [YTC - FF(6)]y5 + [FF(4)]y , (3.69)

where

c: (1 +T*) , (3.70)

2y
FF(4) = - (Y0O cos 3 c - Y sin 3 0c) (3.71)

2y
FF(5) = - [yg cos 0 (sin 2

c + 2) - Y0 sin3 e] , (3.72)

FF(6) = - 9 c (3.7

FF(6) = - [y cos3 3c - Y1 sin c6(cos 2 6c + 2)] , (3.73)

Y5
sin = -2==

5+ 6
(3.74)

Y6
cos 0 =-

c +Y
5 Y6

Wall heat transfer:

h* (T* -T*) = Q - h* Yg sin t* - h* y1 cos t* . (3.75)
c w c c c c 9 c 10
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Work output:

dV*

(y - l)(m* + T* - V*) = W* - (y - 1) a Y12 sin t*
c C c dt* c

+ ((a 2 Yl - a3 Y14) os t* . (3.76)

Rate of change of internal energy:

d(mc T*)

-dt = 0 - (Y6 + Y10) sin t* + (y5 + y ) cos t* , (3.77)
dt* 6 10 5 a

where quantities relating to the cyclic average are

H* = (T - 1) y + Y + (Y5 YiO - Y6 Y9) 6 ( 3 . 7 8 )

Q* = h* (T* - 1) , (3.79)
wc c wc

* ( - 1 [(a2 - a3Y1)(y 6 + Y1) - a2Y 12 (Y5 + g9)] . (3.80)

3.5 System of Integrated Equations

As stated repeatedly, if a steady state solution is sought, the work-

ing gas must satisfy an overall cyclic energy balance, or the so-called

Integrated energy equation, in the respective spaces simultaneously. More

specifically, the previous integrated energy equations [Eqs. (2.10 and

2.11) in Sect. 2.3] should be met:

H* + Q* = W*
e we e

H*+ Q* = W* .
c wc c
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The mean gas temperatures in each space are characterized by the re-

spective integrated energy balances but in a coupled manner. This cou-

pling is linked through the continuous mass shuttling between the control

volumes. With harmonically varying thermodynamic variables, quasi-closed-

form solutions become available as already shown, and the mean gas tem-

peratures of the expansion T and compression space T can be solved

explicitly.

Z1(1)T H + Zl(2) + h A T -W
T H - --- H -- ---- -- ese we e (3.81)
Te Z1(1) + h A

e se

Z1(3)T K + Z(4) + h A T - W
T= K z ------+ c h sc wc c (3.82)T (3.82)C ~c Zl(3) + h A

where all the functions of Z1's are defined in a more workable form:

Zl(1) = Wc m y2 + y2 (3.83)
I pe 1 y2

Zl(2) = -- P V (y y - y y ) Y (3.84)
4( - 1) we 1 8 2 7

Z1(3) = c m + y2 (3.85)
T p c

Z1(4) = 4(y ) w Vc (5 Y10 - (3.86)

and where W and W were defined in Eqs. (3.18), (3.59), and (3.80). It
e c

becomes obvious that calculations of the mean temperatures cannot be done

without knowing their fluctuating components, which are yet to be deter-

mined. This problem will be addressed and solved in the next section.
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3.6 System of Fluctuating Equations

So far it has been established that the working gas must simulta-

neously satisfy the integrated energy equations and the instantaneous

(full) equations. The full equations have been approximated by truncated

Fourier series. Taking the difference between the full equations and the

integrated equations results in the so-called fluctuating equations that,

in essence, are comprised of the sine and cosine terms from the Fourier

expansions.

The system of fluctuating equations is derived from the three mass

distributions and two energy equations by collecting sine and cosine

components.

Mass distribution 1:

m k pe Y2 - 3 + y + al Yl nsin t*

/me \

+ kpe Y1 + Y2 - Y4 + Y8 + al y 2 cos t* = . (3.87)mw

Mass distribution 2:

Mem md

- - Y k* + ya -- k* 1 - - + a 2 - a 3.[ „ Pc 2 *'2 kc 2 34 -y ~ 2 3

Me Md
x sin t* + c Y i + k c Y3 + Y4

- y6 - Y10 + a2 y l cos t* = 0 . (3.88)
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Mass distribution 3:

me md mc

m- Y2 - Y4 -- yY6+ + Yg) - k*

1 mMe md mc

x (a2 Y - a3 Y1 ) sin t* + +Y

+ kmc (Y6 + Y1 ) - kmc a2 Y12 cos t* = 0 . (3.89)

Expansion-space energy equation:

[FF(l)yl + D(7,2)y2 + h* Y 7 - Y8 + ( - 1) al y12]

x sin t* + [D(8, l)y1 - FF(1)y 2 + Y7 + h* Y8

- (y- 1) a1 y 1 1] cos t* = 0 . (3.90)

Compression-space energy equation:

[FF(4)y5 + D(9, 6)y6 + h* yg - yo (- 1) a2 y12]

x sin t* + [D(10, 5)y5 - FF(4)y6 + Yg + h* Y1

+ (y - 1)(a2 yll - a3 Y 14 )] cos t* = 0 . (3.91)

Recall that the solution was originally assumed in terms of 10 un-

determined coefficients (y -y 10). The system of fluctuating equations

is used to solve for these undetermined coefficients. Since sin t* and

cos t* are orthogonal functions, the sine and cosine coefficients in

Eqs. (3.87-3.91) must vanish to satisfy the equations for all t*. This

leads to a set of nonhomogeneous algebraic equations that may be repre-

sented by a 10 x 10 matrix:
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- - k* -1 0 0 0 1 0 0 0

*e k* 1 0 -1 0 0 0 0 0-I, 01y

mw

me m

0 Me I - _ k* -
1 0

0 n -I Y, Yj 2Y1 + Y4

0kc 0 k* I 0 -I 0 0 0 -I y, aZY2PC - 2 PC 2

_ o°kdw
o0 - - - k* -0 * 0 0 k* 0- c i- 4

D(7,l5) D(7,2) O 0 0 n h^ -I 0 0 Y7 mc -M )acy

0 0 0 0 0(9,5) 0(9,6) 0 0 h -I ( -* I)a'y

0 0 D (10. 0 0 00 h - I)ayY,

D(8,2) = -FF(1),

D(9,5) = FF(4),

D(9,6) = --1 + yT + FF(5),

D(10,5) = 1 - yT + FF(6),

D(10,6) = -FF(4).

Equation (3.92) can be written in tensor notation as

D1 y. b1 ,(3.94)
ij Yj = bi ' (3.94)

where Dij, yj, and bi represent the coefficient matrix, unknown vector,

and nonhomogeneous vector, respectively. The coefficient matrix contains

most of the thermodynamic constants. The nonhomogeneous vector contains

the information about the specified volume variations.

The fluctuating equations are written as a linear system. A careful

observation of the coefficient matrix reveals that the equations are not

completely linear. Some of the coefficients in the matrix (enthalpy flux
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Fourier functions and elements containing T and T ) are functions of the

undetermined coefficients. The problem is solved by an iterative process

where the matrix elements are treated as constants during each iteration.

The values of the coefficients are then updated after the undetermined

coefficients have been computed.

3.7 Successive Approximations

The coupled system of the integrated energy equations and the fluctu-

ating equations requires an iterative solution for any case other than an

isothermal one. This process includes three key elements: initializa-

tion, choice of matrix solution method, and convergence criteria. For

calculations departing from the isothermal case, a reasonable initial

guess has been proven to be the isothermal limit. In the current computa-

tions, the mean gas temperatures in the respective spaces are initialized

by setting them equal to the adjacent heat transfer component tempera-

tures, namely, constant heater and cooler temperatures. In addition, the

six nonisothermal correction factors [FF(n), n = 1, 2,...6] are set equal

to zero, which corresponds to an isothermal condition without temperature

fluctuations. For the matrix solution method, the choice of subroutines

and needed accuracy will determine calculation efficiency and cost. Stan-

dard IBM FORTRAN subroutines, DECOMP and SOLVE, are used to perform matrix

operations, which have been proven satisfactorily in accuracy, efficiency,

and economy. Finally, the solution convergence criteria rely on the ini-

tial guess as well as the specified operating conditions. By experience,

fast convergence is attainable, usually in 10 to 15 iterations.

To perform the iterative solution effectively and automatically, a

FORTRAN code is written. The process shown in Fig. 3.1 indicates the

underlying computation procedures in sequence:

1. Initialize

T = T

T TK

FF(n) = O, (n = 1, 2,...6)
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ASSUME Te, T,,
FF(n) = 0,(n = 1,2 .... 6)

CALCULATE Dij

SOLVE DijYj = bi

FOR yj

EVALUATE INTEGRALS IN
INTEGRATED ENERGY EQUATIONS,

SOLVE FOR NEW Te, Tc,
AND COMPUTE NEW FF(n)

ITERATE UNTIL

Te,,Tc CONVERGE

Fig. 3.1. Flow chart for successive approximations.

2. Calculate temperature-dependent (T and T ) elements in Dij and bi.e c

3. Solve the nonhomogeneous matrix equations

Dij Yj bi

for yj by DECOMP and SOLVE .

4. Solve for improved T and T from integrated energy equations and
e c

compute new values for FF(n), (n = 1, 2,...6).

5. Return to step 2 until T and T converge.

3.8 Comparison with Nonlinear Solutions

A key assumption in LHA is that the amplitudes of all variables are

small compared with their mean values. To quantify the possible errors
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that may be introduced by this assumption, an independent nonlinear analy-

sis has been conducted. The nonlinear analysis uses the identical set of

equations derived in Sect. 2.2, but does not linearize. The solution

method adopted is a standard IBM numerical integrator, called the CSMP

(Ref. 1). Use of this well-established software avoided unnecessary pro-

gramming efforts in numerical integration. Readers who are interested in

the nonlinear formulation, the method of solution, and detailed results

should refer to a report by Banduric and Chen. 26

All performance predictions in this report are based on two examples,

the RE-1000 Nominal and RE-1000 Modified engines. The RE-1000 Nominal

configuration simulates Sunpower's RE-1000 free-piston Stirling engine.

This engine was selected because it will eventually be analyzed in free-

piston mode; however, in the present report, the piston motions are speci-

fied. Table 3.1 lists the RE-1000 Nominal dimensions, and Table 3.2 lists

the RE-1000 Nominal operating conditions used in the calculations. The

values were estimated from a report published recently by Schreiber. 2 3

The RE-1000 Nominal engine has a modest volume compression ratio of about

1.30:1.

Table 3.1. RE-1000 Nominal engine
dimensions and parameters

Maximum displacer stroke, m 4.04 x 10-2

Maximum piston stroke, m 4.20 x 10-2

Piston diameter, m 5.723 x 10-2

Displacer diameter, m 5.723 x 10-2

Displacer rod diameter, m 1.666 x 10-2

Mean volume, m3

Expansion space 6.36 x 10-5
Heater 3.96 x 10-5
Regenerator 5.94 x 10-5
Cooler 2.85 x 10-5
Compression space 1.036 x 10-4

Mean heat transfer surface areas

Expansion space, m2 1.392 x 10- 2

Compression space, m2 2.292 x 10-2
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Table 3.2. RE-1000 Nominal engine
operating conditions

Working fluid Helium

Frequency, Hz 30

Average pressure, MPa 7

Piston stroke, m 2.80 x 10-2

Displacer stroke, m 2.80 x 10-2

Displacer phase angle, deg 45

Heater temperature, K 900

Expansion cylinder wall 900
temperature, K

Cooler temperature, K 300

Compression cylinder wall 300
temperature, K

The RE-1000 Modified configuration was designed to study the effects

of higher compression ratios. The dimensions and operating conditions of

the RE-1000 Modified are identical to the RE-1000 Nominal, except for the

changes listed in Table 3.3. The dead volume was arbitrarily reduced in

the RE-1000 Modified, and the piston strokes were varied between zero and

their maximum values to simulate compression ratios between 1:1 and

1.89:1.

Table 3.3. RE-1000 Modified engine
dimensions and operating conditions

Maximum displacer stroke, m 4.20 x 10-2

Displacer rod diameter, m 0

Mean volume, m3

Heater 1.98 x 10-5

Regenerator 2.97 x 10- 5

Cooler 1.43 x 10- 5

Compression space 4.77 x 10- 5

Piston stroke Variable

Displacer stroke Equal to piston



44

A sensitivity study was performed to compare the LHA and nonlinear

performance predictions. The RE-1000 Nominal configuration was analyzed

over a wide range of loss coefficients. The losses were examined indepen-

dently (decoupled) as well as in various combinations (coupled together).

Also, the RE-1000 Modified configuration was analyzed over a range of com-

pression ratios. The comparison between LHA and nonlinear predictions

provides vital information about the mathematical accuracy of the assump-

tions made in the LHA.

A comparison between the LHA and nonlinear CSMP predictions when

losses are not coupled is given in Table 3.4. From top to bottom, the

first, second, and third sets, respectively, represent predictions when

the only losses are heat transfer, pressure drop, and mass leakage. Note

first the effect of finite-cylinder heat transfer acting alone. For the

mean gas temperature in the expansion T and compression T spaces, the

LHA consistently overpredicts, except at the isothermal limit. The maxi-

mum discrepancy occurs for the adiabatic cylinders; however, the differ-

ence is very small, about 2.6 and 0.6 K or 0.3% and 0.2% in the expansion
-r

and compression spaces. Predictions of the heat input Qi and output

Qout, by the linear and nonlinear solutions, differ by only a fraction

of 1%. As for the work output Wout, which is the difference between heat

input and heat output, the agreement is also excellent, with the LHA

showing a slightly lower value. A similar trend holds true for the effi-

ciency. Overall, the LHA shows the worst effect, although a very small

one, in calculating the work output and efficiency for cylinders with

finite heat transfer rates.

Secondly, when the pressure drop acts alone, the LHA systematically

overpredicts Te and Tc, but underpredicts Qin and Qout' Consequently,

this leads to an alternating prediction in work output and efficiency.

The magnitude of the discrepancy in predicted work output and efficiency

increases with increasing pressure drop coefficients, but it is always a

small increase.

Finally, when mass leakage acts alone, the effects show the same

trends as pressure drop. This is not surprising because both loss mecha-

nisms are modeled in a similar way.



Table 3.4. Predicted performance comparison between LHA and CSMP
for the RE-1000 Nominal engine with decoupled losses

heI hc kpekc c km Te (K ) Tc (K) Qin (W) Qout (W) ut (W) Effe' c pe' pc 1~mc out (W )

(W/m2.K) (Pa.s/kg) (kg/Pa-s)
CSMP LHA CSMP LHA CSMP LHA CSMP LHA CSMP LHA CSMP LHA

0 0 0 851.5 854.1 311.2 311.8 3,961 3,955 1,465 1,465 2,496 2,491 63.01 62.97
10,000 0 0 885.5 886.2 302.2 302.6 3,784 3,786 1,540 1,545 2,244 2,242 59.31 59.21
25,000 0 0 891.9 892.2 301.0 301.3 3,510 3,504 1,519 1,522 1,991 1,982 56.73 56.57
62,500 0 0 896.4 896.6 300.5 300.6 3,193 3,178 1,353 1,351 1,840 1,827 57.63 57.49

125,000 0 0 898.1 898.3 300.2 300.3 3,080 3,063 1,205 1,201 1,875 1,862 60.88 60.78
0.3D9 0 0 900.0 900.0 300.0 300.0 3,046 3,041 1,015 1,014 2,031 2,027 66.67 66.66

0 0 0 851.5 854.1 311.2 311.8 3,961 3,955 1,465 1,465 2,496 2,491 63.01 62.97
0 0.33333D7 0 856.7 858.4 312.4 313.3 3,589 3,586 1,647 1,640 1,942 1,945 54.11 54.25
0 0.66667D7 0 861.3 862.8 314.0 314.9 3,207 3,207 1,814 1,809 1,393 1,398 43.44 43.60
0 1.D7 0 866.0 867.3 315.3 316.4 2,825 2,821 1,977 1,968 848 853 30.02 30.24
0 1.33333D7 0 870.7 871.8 316.7 317.9 2,433 2,431 2,127 2,118 306 313 12.59 12.88
0 0 0 851.5 854.1 311.2 311.8 3,961 3,955 1,465 1,465 2,496 2,491 63.01 62.97
0 0 0.5D-8 851.9 854.5 311.7 313.3 3,794 3,790 1,734 1,733 2,060 2,057 54.29 54.28
0 0 1.D-8 853.6 855.9 312.8 314.2 3,550 3,545 1,944 1,942 1,605 1,603 45.23 45.23
0 0 2.D-8 859.2 861.3 313.3 314.5 2,929 2,928 2,170 2,168 759 760 25.93 25.96
0 0 3.D-8 866.3 868.2 312.6 313.6 2,297 2,297 2,186 2,182 111 115 4.82 4.99
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More evidence supporting the accuracy of the LHA is provided in

Table 3.5, which is intended to compare the two solution methods (LHA

and CSMP) when two or more loss mechanisms are acting simultaneously.

In Table 3.5, from top to bottom, the first, second, and third sets repre-

sent adiabatic, semiadiabatic, and isothermal cylinders, respectively;

discussion will follow that order.

The comparison for the adiabatic cylinders is done so that the first

line represents a calculation without pressure drop or mass leakage; the

second line is mass leakage acting alone; the third line is pressure drop

only; and the last line is pressure drop and mass leakage acting together.

LHA overpredicts the mean gas temperatures but underpredicts heat absorp-

tion and heat rejection, which leads to mixed predictions in work output

and efficiency. However, the magnitudes of all discrepancies are small

(a fraction of 1%). The calculations for semiadiabatic and isothermal

cylinders are applied similarly, and the predictions follow the same

trends. The magnitude of the discrepancies is still small, but the dis-

crepancies are larger than for adiabatic cylinders.

The comparison between LHA and nonlinear predictions of RE-1000

Nominal performance in Tables 3.4 and 3.5 can be summarized by examining

three important performance parameters: heat input, heat output, and

efficiency. Heat input and output are computed from the pressure-volume

integrals in the expansion and compression spaces. All LHA predictions

for heat input and output fall within +0.3% and -0.8% of the CSMP values.

Efficiency is actually computed from the heat input and output. All LHA

predictions for efficiency differ from CSMP values by no more than +0.29

and -0.33 percentage points. The discrepancies seem completely insignifi-

cant, considering that the best, and most carefully calibrated, numerical

codes cannot predict Stirling engine performance to better than 10% or 20%

because of a lack of knowledge of the processes and correlations involved

in the computations. Therefore, it can be said with confidence that the

LHA approximation is very reasonable over a wide range of loss coeffi-

cients, at least for low compression ratios.

A key assumption in the LHA is that the amplitudes of the oscillating

variables are small compared with their mean values. The error that may

be introduced by this assumption has been proven to be inconsequential for



Table 3.5. Predicted performance comparison between LHA and CSMP
for the RE-1000 Nominal engine with coupled losses

- T Efficiency
he, hc kpe* kp kmc e (K) (K) Qin (W) out (W) ut (W) E ency

(W/m2-K) (Pa-s/kg) (kg/Pa-s)
CSMP LHA CSMP LHA CSMP LHA CSMP LHA CSMP LHA CSMP LHA

0 0 0 851.5 854.1 311.2 311.8 3,961 3,955 1,465 1,465 2,496 2,491 63.01 62.97
0 0 1.D-8 853.6 855.9 312.8 314.2 3,550 3,545 1,944 1,942 1,605 1,603 45.23 45.23
0 0.66667D7 0 861.3 862.8 314.0 314.9 3,207 3,207 1,814 1,809 1,393 1,398 43.44 43.60
0 0.66667D7 1.D-8 863.7 864.8 315.5 316.4 2,806 2,801 2,244 2,241 562 561 20.03 20.02

62,500 0 0 896.4 896.6 300.5 300.6 3,193 3,178 1,353 1,351 1,840 1,827 57.63 57.49
62,500 0 1.D-8 896.7 896.9 300.6 300.8 2,868 2,856 1,626 1,622 1,242 1,234 43.31 43.20
62,500 0.66667D7 0 897.2 897.4 300.6 300.8 2,452 2,434 1,636 1,632 816 802 33.27 32.95
62,500 0.66667D7 1.D-8 897.4 897.6 300.8 301.0 2,142 2,129 1,874 1,869 268 259 12.52 12.19
0.3D9 0 0 900.0 900.0 300.0 300.0 3,046 3,041 1,015 1,014 2,031 2,027 66.67 66.66
0.3D9 0 1.D-8 900.0 900.0 300.0 300.0 2,885 2,872 1,323 1,316 1,562 1,556 54.14 54.17
0.3D9 0.66667D7 0 900.0 900.0 300.0 300.0 2,279 2,261 1,270 1,262 1,010 998 44.29 44.16
0.3D9 0.66667D7 1.D-8 900.0 900.0 300.0 300.0 2,113 2,119 1,568 1,559 565 560 26.47 26.43
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small volume compression ratios, but it might become significant for

larger compression ratios. To address this possibility, a comparison be-

tween LHA and CSMP predictions for the RE-1000 Modified configuration,

with adiabatic cylinders and no other losses, has been performed over a

range of compression ratios. The compression ratio was varied by specify-

ing piston amplitudes between 20% and 100% of the maximum values permitted

by their mechanical constraints.

The results of the comparison, which are listed in Table 3.6, confirm

our expectation that the errors associated with the LHA approximation

become larger as the compression ratio is increased. However, even at the

maximum compression ratio of 1.89, which is too high to be representative

of practical engines, the LHA predictions for heat input and output are

only 1.1% and 2.2%, respectively, below the CSMP values, and efficiency is

overpredicted by only 0.5 percentage points. The LHA and CSMP efficiency

predictions from Table 3.6 are plotted vs compression ratio in Fig. 3.2.

The LHA calculations do not seem to create any noticeable error unless the

compression ratio exceeds 1.6.

ORNL-DWG 84-4426 ETD70 ---- | ----------I I I

CARNOT

65

U
L 60

L i

55

50 l l
10 12 1.4 1.6 18 2.0

COMPRESSION RATIO

Fig. 3.2. Efficiency comparison between LHA and CSMP solution
methods for RE-1000 Modified configuration.



Table 3.6. Predicted performance comparison between LHA and CSMP for the RE-1000 Modified
configuration with adiabatic cylinders and no other losses

TW, 7r ~Efficiencyxa T (K) T (K) Out
paa Compression e ( ) c in W (W)

„-- ~ ratio
pm CSMP LHA CSMP LHA CSMP LHA CSMP LHA CSMP LHA CSMP LHA

0.2 1.13 873.9 874.7 305.0 305.8 682.4 683.2 241.7 241.4 440.7 441.8 64.58 64.66
0.4 1.28 847.6 851.5 310.1 311.9 2,698 2,690 1,008 1,006 1,690 1,684 62.60 62.59
0.6 1.45 821.9 830.1 314.6 318.4 5,982 5,947 2,371 2,352 3,611 3,595 60.37 60.45
0.8 1.66 796.7 810.1 318.2 325.3 10,470 10,372 4,394 4,331 6,076 6,041 58.03 58.24
1.0 1.89 772.5 791.3 320.3 332.8 16,054 15,871 7,148 6,988 8,906 8,883 55.47 55.97

aRatio between the power piston displacement amplitude and its maximum value.
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Generally, the LHA solution method appears to provide very acceptable

accuracy for Stirling engine applications. Much of the accuracy of the

LHA solution can be attributed to the Fourier representation of the energy

equations. Fourier analysis provides a logical way to represent arbitrary

periodic functions in terms of a constant term and a first harmonic. Non-

linearities, such as the enthalpy flux discontinuity, are accounted for by

the effect that they have on the constant term and the amplitude and phase

of the first harmonic. Nonlinearities also create higher harmonics, but

neglecting these effects seems to induce very little error. Unfortu-

nately, the Fourier analysis creates the need for iteration; however,

this minor complication seems to be worth the improved solution accuracy.

3.9 Vector Representation

Additional physical insight into Stirling engine processes can be

gained by plotting results in a vector diagram. 2 7 A vector diagram pro-

vides information about the relative amplitudes of and phase relationships

between harmonic variables. Generally, the length of a vector is propor-

tional to the amplitude of the oscillation, and the direction of a vector

represents the phase angle of the oscillation.

When harmonic variables are expressed in terms of sin(wt) and cos(wt)

components, a vector diagram can be drawn easily by setting up a Cartesian

coordinate system. The Cartesian coordinate, shown in Fig. 3.3, consists

of two base vectors, sin(wt) and cos(wt), that are orthogonal functions.

The sine axis lies in a horizontal direction, positive leftward, and the

cosine axis lies in a vertical direction, positive downward. In this co-

ordinate system, phase angles are positive in a counterclockwise direc-

tion. The cosine vector is rotated 90° ahead of the sine vector because

cos(wt) reaches a maximum value of 90° before sin(wt).

The general form of a harmonic variable (e.g., pressure) is

P = P + a sin(wt) + b cos(wt) .
w

Only the time-dependent portion of a harmonic variable can be represented

in a vector diagram. Thus, the pressure oscillation is plotted (Fig. 3.3)

by drawing a vector from the origin to the point (a,b). The length of the
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= tan-
1

(ba)

(a,b)

COSINE

Fig. 3.3. Cartesian coordinate system with sine and cosine as
orthogonal unit vectors.

vector is equal to the pressure amplitude (/a2 + b2), and the direction of

the vector is at a phase angle 8 = tan- 1 (b/a) from the sine axis.

A better understanding of vector presentation is provided by an ex-

ample vector diagram for the RE-1000 Nominal engine with adiabatic cylin-

ders and no other losses (Fig. 3.4). In the LHA, the piston motion was

chosen as a reference with only a sine component; thus, the piston posi-

tion vector is drawn along the sine axis. All other vectors are drawn

relative to the piston position vector. In the RE-1000 Nominal engine,

the displacer and piston amplitudes are equal, and the displacer phase

angle Ed is 45°. Thus, the displacer position vector is drawn 450 ahead

of and equal in length to the piston position vector. The expansion vol-

ume [Eq. (3.22)] reaches a maximum when the displacer position reaches a

minimum. The expansion volume vector is drawn opposite the displacer po-

sition vector. The compression volume [Eq. (3.23)] is an area-weighted

sum of the piston and displacer positions. The resultant compression vol-

ume vector lags the expansion volume vector by about 106°. The total vol-

ume vector is the vector sum of expansion and compression volume vectors.

Most of the change in total volume is caused by the motion of the power

piston; but some small change is also caused by the displacer motion act-

ing through the area of the displacer rod (8.5% of the power piston area).

The total volume vector is almost, but not exactly, 180° out of phase with
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Fig. 3.4. Vector diagram showing relevant thermodynamic variables
for RE-1000 Nominal engine with adiabatic cylinders and no other losses.

the piston position vector. The pressure vector shown in Fig. 3.4 was

computed from the LHA analysis. The pressure phase angle Bp is important

because it is a parameter that is measured in many experimental engines.

Heat input, heat output, work output, and efficiency can be computed

from a vector diagram. Because these quantities are functions of only the

pressure and volume vectors, some simplifications are made to the vector

diagrams. For clarity, the two position vectors and the sine and cosine

axes are omitted. Also, because only the relative amplitudes and phase

angles between the vectors are important, the entire diagram can be ro-

tated so that the total volume vector lies in the horizontal direction.

One final modification to the vector diagrams is the addition of the

rate of change of volume V vector (Fig. 3.5). The derivative of a har-

monic variable is always represented by a vector that lies 90° ahead of

the variable. Thus, the V vector points upward and is normalized by the

frequency to ensure a unit vector. The work output of an engine is equal

to the dot product between the pressure and Vt vectors. Heat input and
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Fig. 3.5. Simplified vector diagram showing only pressure and
volume vectors.

output are equal to the dot product between the pressure and V vectors

Ve

and the negative dot product between the pressure and V vectors, respec-

tively. Efficiency is related to the phase angle fp between the pressure

vector and the negative total volume vector. The derivation of this rela-

tionship is given in Appendix B.

3.10 Summary of LHA Procedures

The LHA procedures can be summarized by nine steps.

1. The working space is divided into control volumes.

2. The conservation equations (mass, momentum, energy) are written for

the control volumes.

3. It is assumed that P, m, T, and V have small amplitudes relative to

their mean values, and a linear form of the ideal gas law is used to

express P in terms of m, T, and V. V is expressed in terms of X; X

is a specified harmonic function.

4. A complete transient solution is not pursued. The LHA method is re-

stricted to steady state solutions. Harmonic solutions, in terms of

undetermined coefficients (Y1, Y2, etc.), are assumed for m and T and

are substituted into the governing equations.are substituted into the governing equations.
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5. Nonharmonic terms are represented in governing equations by truncated

Fourier expansions.

6. The general form of each governing equation becomes:

E constant terms + E sin(wt) terms + E cos(wt) terms = 0 .

A solution exists for all times only if

Z constant terms = 0 ,

E sin(wt) terms = 0 ,

E cos(wt) terms = 0

7. Most of the sin(wt), cos(wt) terms are linear functions of the unde-

termined coefficients (Y1, etc.). Nonlinear combinations of yl, Y2,

etc., are treated in a quasilinear manner. The resulting linear

system of algebraic equations is solved using standard matrix theory

to find the values of y1, Y2, etc.

8. After yl, Y2, etc., are obtained, the constant terms in the governing

equations are solved to compute the values of other unknown parameters

such as T , T , etc.

9. A few iterations are needed because of coupling between T , T , etc.,

in step (8) and the quasilinear approximations in step (7).
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4. LOSS MECHANISMS

Four loss mechanisms that significantly affect engine performance

will be discussed extensively. These losses are adiabatic effects,

transient heat transfer, pressure drop, and mass leakage.

All results to be presented are direct applications of the LHA to

the reference engines, RE-1000 Nominal and RE-1000 Modified, coupled with

the entropy analysis for allocating individual loss mechanisms. In the

course of discussions, vector diagrams will be used from time to time to

illustrate the underlying physics, and considerations of the degree of

coupling among losses will be provided.

4.1 Adiabatic Effects

This section includes a discussion of the thermodynamics of adia-

batic cylinders and an analysis of the dependence of adiabatic efficiency

loss on the compression and temperature ratios. The section will con-

clude with a discussion of the two mechanisms, revealed by entropy analy-

sis, that are responsible for the adiabatic loss effects.

4.1.1 Thermodynamics of adiabatic cylinders

For a high-speed Stirling engine, the bulk of the gas in the cylin-

der behaves nearly adiabatically, while gas in the adjacent heat ex-

changer components acts more isothermally. The combination of adiabatic

and isothermal volumes causes a loss mechanism, known loosely as the

adiabatic loss, that reduces thermal efficiency.

As a numerical example illustrating the thermodynamics of adiabatic

cylinders, the RE-1000 Nominal engine (see Tables 3.1 and 3.2 for operat-

ing conditions and dimensions) will be used. With adiabatic losses only

(i.e., no pressure drop, mass leakage, or heat transfer to the cylinder

walls), all the rate constants are set equal to zero in Eq. (3.92). Solv-

ing the matrix equation by the IBM subroutines DECOMP and SOLVE for the

unknowns yl-y1 0 determines completely the amplitude and phase information

associated with all the thermodynamic variables. The results are illus-

trated over an entire cycle to show their interrelationship (Fig. 4.1).
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For an engine with prescribed sinusoidal volume variations, LHA

predicts sinusoidal variations around their mean values for all thermo-

dynamic variables. General observations from Fig. 4.1 reveal that the

pressure and temperature in both spaces are almost in phase (a character-

istic of adiabatic cylinders) as expected. But, unlike the pressure and

temperatures, masses in both spaces are neither in phase nor out of

phase.

A more instructive understanding of the thermodynamics can be ob-

tained if the cycle is broken down into four distinct regions of equal

span. These regions are defined with respect to the total volume vari-

ation and are bounded by the vertical dashed lines in Fig. 4.1. Region 1,

labeled as C + H, starting at a phase of about 42° and ending at 132°,

represents the gas displacement from the cold cylinder to the hot cylin-

der. In this region, the total volume is near its minimum value and al-

most constant; however, a sharp rise and fall are observed in the mass

inventories of the expansion and compression spaces. The pressures and

temperatures are rising because the gas is being heated as it is dis-

placed from the cold to hot cylinder. Region 2, labeled expansion (EXP)

and spanning from 132° to 222°, is characterized by a large increase in

total volume with small mass changes in the expansion and compression

spaces. The pressures and temperatures in region 2 are decreasing be-

cause the gas in the cylinders expands adiabatically as the total volume

increases. The trends in region 3 (gas displaced from hot to cold end)

and region 4 (compression) are opposite to those of regions 1 and 2.

Observation of the temperature variations discloses some intrinsic

properties of adiabatic cylinders. In the expansion space, there is a

temperature overshoot above the heater temperature (900 K) over a fairly

small fraction of the cycle (in this case, it lasts about 600). The gas

temperature stays below the heater temperature over the remaining times.

Moreover, during the expansion phase, the working gas, with its peak al-

location (me at maximum) in the expansion space, begins to expand adia-

batically at a temperature close to heater temperature and falls well be-

low that level. As a result, the mean gas temperature in the expansion

space (T = 854 K) is considerably below the heater temperature of 900 K.
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Conversely, there is a temperature undershoot below the cooler tem-

perature (300 K) in the compression space. Unlike the temperature over-

shoot, the undershoot condition persists for a relatively long span

(about one-third of a cycle). At other times, the gas temperature re-

mains above the cooler temperature. Furthermore, during the compression

phase, the working gas, with its peak allocation in the compression space

(mc at maximum), starts to compress adiabatically at a temperature close

to the cooler temperature and rises above it. Consequently, this causes

the mean temperature in the compression space (Tc = 312 K) to be higher

than the cooler temperature of 300 K. These mean temperatures provide a

measure of the degree of departure from isothermal cylinders: the larger

the departure, the larger the adiabatic loss.

The PV-diagram of the RE-1000 Nominal engine with adiabatic cylin-

ders is presented in Fig. 4.2. The large area enclosed by a curve in a

clockwise direction represents the work produced by the expansion space.

The expansion-space work output is equal to the heat input. The small

area bounded by a curve in a counterclockwise direction denotes the work
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Fig. 4.2. P-V diagram for RE-1000 Nominal engine with adiabatic

cylinders.
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absorbed by the compression space, or the heat rejected. The algebraic

sum of these two areas represents the net work performed by the engine.

Adiabatic and isothermal engines differ greatly in power output and

efficiency. An adiabatic cylinder is a cylinder where no heat transfer

occurs between the cylinder wall and the gas within the cylinder. An

isothermal cylinder is a cylinder where an infinite heat transfer takes

place between the cylinder wall and the gas so that a state of thermal

equilibrium is maintained at all times. A comparison in RE-1000 Nominal

engine performance between adiabatic and isothermal cylinders is shown in

Table 4.1. The power output of the adiabatic engine is larger than that

of an isothermal engine because the adiabatic cylinder produces a higher

pressure amplitude than the isothermal cylinder for a given swept volume.

However, the reverse holds true for efficiency. The efficiency of an

isothermal engine is equal to the Carnot value, which is the maximum pos-

sible efficiency that any engine can achieve.

Table 4.1. RE-1000 Nominal engine
performance comparison: adiabatic

vs isothermal cylinders

Cylinder heat Power output Efficiency
transfer (W) (%)

Isothermal 2027.0 66.67

Adiabatic 2636.9 62.97

4.1.2 Dependence of adiabatic efficiency
loss on compression ratio

Three important variables that affect adiabatic efficiency losses

are compression ratio, temperature ratio, and working fluid. In dis-

cussions to follow, the term "compression ratio" refers specifically to

volume compression ratio, not pressure ratio. In this subsection, con-

siderations will be restricted to the adiabatic loss dependence on com-

pression ratios and working gases, while keeping the heat exchanger tem-

perature ratio constant.
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A study of the effects of adiabatic efficiency losses over a range

of compression ratios requires changes from the RE-1000 Nominal configu-

ration. This is achieved by a combined reduction of dead- and mean-

compression volumes and an increase in power piston amplitude. The exact

numerical values for the RE-1000 Modified engine are listed in Table 3.3

for reference. The combined modification produces a volume compression

ratio ranging from 1 to 1.89.

Both monatomic and diatomic gases are studied. The heat capacity

ratio of a diatomic gas, such as hydrogen or air, is 7:5, while the heat

capacity ratio of a monatomic gas, such as helium, is 5:3.

When the LHA method is applied to the RE-1000 Modified configuration

with no other losses, the results shown in Fig. 4.3 are obtained. The

graph includes three curves: efficiencies for an isothermal cylinder en-

gine (the Carnot efficiency is 67% for a temperature ratio of 3:1), an
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batic cylinders.
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adiabatic cylinder engine with a diatomic gas, and an adiabatic cylinder

engine with a monatomic gas.

For engines with isothermal cylinders, the efficiency remains the

same regardless of the compression ratio and the working gas used. How-

ever, for adiabatic cylinders, the efficiency depends on the working gas.

An adiabatic cylinder is less efficient with a monatomic gas than with a

diatomic one because for a given volume change, the monatomic gas will

have larger fluctuations in both pressure and temperature.

It is important that the loss of efficiency caused by adiabatic gas

behavior in the cylinders increases as the compression ratio increases.

Such a loss is very significant. For example, at a compression ratio of

1.89 with helium (monatomic gas) as the working fluid, the loss in effi-

ciency is more than 10 percentage points. Hence, Fig. 4.3 illustrates a

major drawback of high compression ratio engines: they have much greater

adiabatic efficiency losses than low compression ratio engines.

Figures 4.4 and 4.5 illustrate why this loss is high. Figure 4.4

shows the temperature fluctuation in the expansion space vs the phase

angle of the power piston (i.e., the power piston position) for various

compression ratios. When the pistons move sinusoidally, the gas under-

goes periodic compression and expansion adiabatically; a temperature

fluctuation develops, and the mean gas temperature shifts below the

heater temperature. This effect intensifies when the compression ratio

is increased. For instance, at a low compression ratio of 1.13 (case 1)

corresponding to a piston amplitude that is one-fifth of the maximum pos-

sible value, the temperature amplitude ITel and the mean gas temperature

T are 34 and 875 K, respectively. Tripling the piston amplitude of

case 1 (compression ratio = 1.45) almost triples the ITel and lowers

Te substantially. A fivefold increase in the piston amplitude over

case 1, equivalent to a compression ratio of 1.89, results in a signifi-

cant increase in temperature swing (ITel = 145 K) and also a very large

fall in the mean gas temperature.

Similar and equally important effects have been observed in the com-

pression space, except that the mean gas temperature shifts upward and

remains above the cooler temperature (Fig. 4.5).
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4.1.3 Dependence of adiabatic efficiency loss
on temperature difference

In a typical engine with a large compression- expansion-space tem-

perature difference, the adiabatic temperature fluctuations in the gas

may be fairly small compared with the mean temperature difference. This

means that adiabatic effects are relatively small; but for low tempera-

ture difference machines (including heat pumps), the adiabatic effects

become very significant.

The adiabatic effects can be demonstrated by plotting efficiency vs

heater temperature (Fig. 4.6); the effect of different working gases is

also shown. For isothermal engines, the efficiency does not fall to zero
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until there is no temperature difference between the two spaces. How-

ever, for adiabatic engines, positive power is not produced unless a cer-

tain finite temperature difference between the heater and cooler is ex-

ceeded. In this particular instance, the minimum temperature difference

for power production for the monatomic gas is about 34 K. The reduction

in efficiency is less critical at higher heater temperatures; for exam-

ple, for a monatomic gas at a heater temperature of 900 K, the reduction

is 3.7 percentage points out of 67% Carnot efficiency. However, at a

heater temperature of 350 K, the reduction is 9.3 percentage points out

of 14% Carnot efficiency.
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4.1.4 Mechanism for adiabatic efficiency loss

Fundamentally, the adiabatic effects leading to efficiency reduction

below the Carnot value can be attributed to two distinct mechanisms: mix-

ing and external heat transfer irreversibilities. The entropy production

caused by each one will be derived and discussed.

4.1.4.1 Entropy production due to external heat transfer. Heat

transfer across a finite temperature difference is an irreversible thermo-

dynamic process because it results in an increase in entropy. There are

four distinct regions where the external heat transfer irreversibilities

occur in a typical Stirling engine:

1. Entropy change by heater heat transfer. During that part of the

cycle where working gas flows out of the expansion space and into thecycle where working gas flows out of the expansion space and into the
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heater, the instantaneous entropy change may be represented by Eq. (2.35),

if the heating (or cooling if there is a temperature overshoot) is so ef-

fective that the process will be completed almost spontaneously at the

heater inlet.

dm fTH dT
AS =c - - ) J - d m <0. (4.1)
QH p dt T e

e

The average entropy production over that part of the cycle where mass

flows out is, therefore,

e e
tAS cp e f in dt* (4.2)
QH P e dt*

with the integration intervals defined by

tan-1 ( ) Y2 > 0

0 = (4.3)
e

(tan 1 j-) + , y < 0
n ( Y2 0

2. Entropy change by cooler heat transfer. Similar expressions for

the entropy production caused by cooler heat transfer irreversibility may

be written as

. dmc TK dT
QK -= ( d)dm < O (4.4)

QK p dt di < c
c

for the instantaneous entropy change, and

ASQK = c m f dt* n (4.5)
cp dt
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for the average value, where

tan-l 1 Y >0

0= · (4.6)

tan- 1 () (Y , y6 <0
C6 

6

3. Entropy change by expansion-cylinder average heat transfer. As

defined in Eq. (2.29), the instantaneous entropy change caused by this

component is represented by

hA (Tw -- )
A = e s e (4.7)

Qwee

The average value may be obtained by integrating over an entire cycle

hA / 1
AS s ese _ -- dt* (4.8)

Qwe 2T 2 T T*
\e e

After substituting Eq. (3.33) for T*, a closed-form solution is possible;e

/T

hA we
e se \T

AS = , e -- .(4.9)
SQwe =I /1 - y2 y2

4. Entropy change by compression-cylinder average heat transfer.

To avoid duplication, the derivations that are similar to those for the

expansion cylinder will not be repeated. The cyclic entropy production

caused by this contribution is

hA X -
_ c sc T
AS c= . (4.10)
Qwc - _2-QWC /1 -- y2 _ 2

3 10
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With the derived entropy production caused by external heat transfer

in the four regions, the average temperatures at which energy enters and

leaves the cycle can be computed by use of Eqs. (2.25) and (2.26);

Qin
Tin- (4.11)

AQH + SQwe

and

-Qout
T- = out (4.12)out

ASQK + AS
QK Qwc

Given the average temperatures, the efficiency reduction caused by the

external heat transfer irreversibility can be computed from Eq. (2.22).

T T
out K

AEHT T - TH (4.13)
in H

4.1.4.2 Entropy production due to mixing. Mixing gases at differ-

ent temperatures is another irreversible thermodynamic process. In a

typical Stirling engine, mixing occurs when gas enters the expansion or

compression spaces; however, the derivation and discussion will concen-

trate on the expansion space.

When a differential element of gas dme at the heater temperature TH

flows into the expansion space, it mixes with the gas in the cylinder at

instantaneous mass me and temperature Te . The entropy production caused

by mixing can be better described by a heat transfer process as illus-

trated in Fig. 4.7. Assume that there is heat transfer at an instanta-
dm

neous rate of = cp dt (TH - T) between the gas added to the cylinder

and the gas already in the cylinder so that the added mass is heated to

Te before it is mixed. Because the added mass is very small compared

with the mass inside the cylinder (i.e., dme << me), the temperature of

the larger mass me will be barely affected, while the infinitesimal mass
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(dme) will either be cooled or heated, depending on the relative tempera-

tures between the heater temperature and the instantaneous expansion gas

temperature. During the process, the change of entropy for the mass of

gas already in the cylinder may be approximated by

dm

Q c ( - Te)
S - dt T te > (4.14)
T T dm > 0
e e

This approximation is reasonable because the temperature remains fairly

constant during the heat transfer, for the reasons just given. The

change of entropy for the small mass that is added to the cylinder can be

computed from Eq. (2.35),

dm T e dT
S = c t--J T- dm > . (4.15)

p dt T' e
H

Therefore, the net instantaneous rate of change of entropy in the

expansion space caused by heat transfer between the two masses is the sum
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of the changes calculated by Eqs. (4.14) and (4.15),

dm
c dt e(T,, -T ) dmADmixe cp (1 1 e+i

dT e
mixe p T + cdt dmi > . (4.16)

The average rate of entropy change over that part of the cycle where

gas flows in may be obtained by integrating over the proper intervals.

Thus,

-- e H
AS = c m f [ i ln -) + - dt* , (4.17)

p e dt*
-- e

where 0e has been defined in Eq. (3.42).

A similar mixing process exists in the compression space. The

derivation will not be repeated; however, the final result is

-r - f 6 0 dm * /T

A-- mixc = Cp f * Jmixc p c Jc _ - -dt* , (4.18)T

where 6c was defined in Eq. (3.74).

These derivations are valid only for adiabatic mixing at constant

pressure. For processes that involve norconstant pressure, additional

contributions due to that effect have to be incorporated in the full

derivation of entropy changes (Sect. 2.5).

Numerical integration is inevitably needed to evaluate these inte-

grals over the indicated intervals when mixing occurs. In the evalua-

tions, temperature and mass oscillations were obtained from LHA predic-

tions.

The total mixing-controlled entropy production in the engine is the

algebraic sum of the contribution from each of the two spaces. The cor-

responding efficiency reduction may be allocated with reference to



70

Eq. (2.23),

Aout (mi + Smi xc)
A Mix . (4.19)

in

4.2 Transient Heat Transfer Loss

As the gas in the Stirling engine is compressed and expanded, the

temperature of the gas oscillates up and down. Gas temperature oscilla-

tions create an oscillating temperature gradient between the gas and the

cylinder wall that results in convective heat transfer. This presents an

irreversible thermodynamic process and leads to a loss of both power and

efficiency.

In an engine where there is a continuous displacement of the working

fluid between the hot and cold cylinders, the losses caused by transient

heat transfer are closely coupled to the losses caused by adiabatic cyl-

inders. Gas springs can be used as an example to examine transient heat

transfer losses in a more pure form because the adiabatic losses de-

scribed in Sect. 4.1 do not exist in gas springs. This section will be-

gin with a discussion of gas springs and will continue with a discussion

of the working space of an engine.

4.2.1 Gas spring with sinusoidal motions

A gas spring undergoing a harmonic oscillation can be used to ex-

plain the transient heat transfer losses simply because it provides a

closed-form solution for a perfect seal condition in which the mass re-

mains constant. This analysis serves as a stepping-stone to dealing with

the more complicated case of an engine working space where mass is dis-

placed continuously.

A general gas spring analysis has been presented in Appendix A,

where both transient heat transfer and seal leakage losses occurring

simultaneously are treated. For the sake of illustrating transient heat

transfer losses in a gas spring, consider the special case with no leak-

age. The analysis will assume that the piston undergoes a simple
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harmonic motion in which only a sine component exists. Thus,

V* = 1 + IV*l sin t* ,(4.20)
s s

where IV*I = IVSI/V is the dimensionless volume amplitude.

Under such conditions, the solution for pressure is greatly simpli-

fied from Eq. (A.36),

+ y - 1 s (y - 1) h*
P* = 1 - Iv* 1 sin t* + s cos t*(4.21)

s s 11 + h*2
s s

where the first term represents the mean pressure and the second term, in

the square bracket, signifies the time-dependent component. It is this

component that contains information on transient heat transfer loss,

which will be investigated further.

The effects of transient heat transfer loss over a wide range of

heat transfer coefficients h* in a vector diagram (Fig. 4.8) can be shown
s

by constructing an envelope containing the trajectory traced by the heads

of pressure vectors for different heat transfer rates between wall and

gas. The envelope is defined by Eq. (4.21) and turns out to be a
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semicircle that is characterized by the following descriptions:

1. The two end points, marked A and I, represent the adiabatic and iso-

thermal limits:

JP*/IV*ll = y , for h* + 0 (adiabatic cylinders),
ss S

IP*/IV*II = 1 , for h* + - (isothermal cylinders).
ss s

2. As the value of nondimensional heat transfer coefficients, (h*) in-
5

creases, the head of the pressure vector travels along the semi-

circle, which is centered at (- + , o) and has a radius of y--

3. The minimum, labeled W, occurs when h* = 1 and is at a point on the

graph defined by (- 2 + , -- 1)

This result is rather simple, but it has very significant implica-

tions. Recall that only that component of pressure in phase with the

rate of change of volume V contributes to the work. At the adiabatic

limit, the pressure and volume vectors are out of phase by 180°; the gas

pressure attains its maximum when the volume becomes minimum. Because

there is no component of pressure in phase with V , there is no transient

heat transfer loss, and no net work is required to drive the piston.

Furthermore, the spring force is proportional to y, as it should be for

an adiabatic gas spring. Because there is no transient heat transfer

loss, the spring is said to be perfect.

The other extreme is the isothermal limit (h* + -). Again, pressure

is 180° out of phase with volume, and the gas acts as a spring but with a

lower spring rate than before. The ratio of the pressure vector length,

and, therefore, the spring force, for the adiabatic and isothermal cases

is y. There is no component of pressure in phase with velocity, and,

therefore, no transient heat transfer loss.

Immediately away from these two extremes, the pressure vector in

general has two components: one, 180° out of phase with the volume vec-

tor; and the other, 180° out of phase with the rate of change of volume

vector.

When the heat transfer coefficient between wall and gas increases,

the head of the pressure vector rotates counterclockwise. The downward

vertical component, in a negative V direction, increases until it
s
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reaches the minimum point W and then decreases all the way to the iso-

thermal limit. This leads to a transient heat transfer loss that in-

creases from zero to a maximum and then decreases back to zero. There-

fore, there exists a worst case W that produces a maximum transient heat

transfer loss.

From the previous discussions, it has been shown that there is no

transient heat transfer loss for an isothermal or adiabatic gas spring,

but that it does take finite net work to drive a piston with an interme-

diate cylinder. To derive the expression for power loss, the pressure-

volume integral must be evaluated. This is given by

_ 1 r2 dV

Ws Psdt dt* , (4.22)

or in dimensionless form,

-_ w 21 dV*

s P* sdt* . (4.23)

Substituting Eq. (4.21) for P* and Eq. (4.20) for volume variation

and evaluating the integral results in

2 P V (y - 1) h*
W = (4.24)

s 2 s 1 + h*2
s

This relation reveals that

1. Work has to be performed on the piston externally as indicated by the

negative sign; therefore, it is a power loss.

2. The power loss is, among other factors, proportional to the square of

the volume amplitude.

3. No power loss exists for an adiabatic gas spring because of a vanish-

ing heat transfer coefficient (h* + 0); nor does it exist for an iso-

thermal one because of an infinite heat transfer coefficient

(h* +).
s
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Equation (4.24) can be further simplified by the following manipu-

lations. Recall that the mass inside the cylinder remains constant if

the seal is perfect. For such a case, the linearized ideal gas law [Eq.

(3.7)] reduces to

AT AP AV
s s ss= + s . (4.25)

T P V
s w s

Using Eqs. (4.20), (4.21), and (4.25), the temperature amplitude can be

related to the volume amplitude by

(y - 1)2
IT*1 2 v12- v (4.26)
s 1 + h*2 s

s

Replacing the volume amplitude with the temperature amplitude in Eq.

(4.24) results in

_ h A T T \ 2
_ S S SW =_ ss- .- (4.27)

s 2

Equation (4.27) shows that the power loss is uniquely characterized

by the product of the square of the relative temperature amplitude, with

h A T as the proportionality constant. Again, there is no power loss
s ss s

for both adiabatic and isothermal gas springs, but different interpreta-

tions must be applied. For adiabatic gas springs, even though the tem-

perature fluctuation attains a maximum, the zero heat transfer coeffi-

cient makes the power loss vanish. On the other hand, for the isothermal

gas springs, although the heat transfer coefficient approaches infinity,

the zero temperature oscillation nullifies the power loss.

4.2.2 Working space of a Stirling engine

Transient heat transfer losses in the working space of a Stirling

engine depend primarily on the heat transfer rates between the cylinder

walls and the working fluid. Unfortunately, adiabatic losses are also

affected by the heat transfer rates. Thus, unlike a gas spring where the
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adiabatic and transient heat transfer losses do not interact, it is not

meaningful to investigate the transient heat transfer losses separately

from the adiabatic losses in an engine.

Engine performance results, as a function of heat transfer coeffi-

cients and based on the RE-1000 Nominal configuration with no other

losses, are presented in Fig. 4.9. There is no transient heat transfer

loss at the adiabatic extreme (left side of plot) because there is no

heat transfer between the gas and the walls. However, the adiabatic
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Fig. 4.9. Power output and efficiency vs heat transfer coefficients
for RE-1000 Nominal engine.
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losses that were discussed previously (Sect. 4.1) are present, the effi-

ciency is less than the Carnot value, and the power output is greater

than for the isothermal engine. There is no transient heat transfer loss

at the isothermal limit (right side of the plot) because the temperature

of the gas equilibrates with the local wall temperature. Both efficiency

and power output show a worst case in the semiadiabatic region. This re-

sult for the engine might have been anticipated based on the gas spring

analyses. The minimum efficiency occurs at a slightly lower heat trans-

fer rate than the minimum power.

Heat transfer rates in the expansion and compression spaces have a

very strong effect on the temperature oscillations of the working fluid.

Figures 4.10 and 4.11 show, respectively, the expansion- and compression-
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space temperature waves for a wide range of heat transfer coefficients.

Three effects can be seen as the heat transfer rate increases: (1) The

amplitudes of the temperature oscillations decrease. (2) The mean gas

temperatures become closer to their respective adjacent heat exchanger

temperatures. (3) The phases of the temperature waves shift. At the

isothermal limit, the gas temperatures become constant and equal to the

heat exchanger temperatures.

For additional insight, the same results are presented in a vector

diagram (Fig. 4.12). There are three major differences between the vec-

tor diagrams of a gas spring and the working space:

1. In the gas spring, the pressure vectors lie in the third quad-

rant with a downward vertical component 180° away from the V vectors and
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represent a damping force. The product of this damping force with V pro-

duces a negative power or loss. For an engine, the pressure vectors lie

in the second quadrant with upward vertical components in phase with V.

This represents a driving force, and positive work is produced from the

engines.

2. In the analysis of the gas spring with sinusoidal motions, it

has been shown that adiabatic springs produce a larger pressure swing

than isothermal ones, but with the same phase. This is not the case for

an engine working space. Although the trend for the pressure amplitude

is similar for isothermal and adiabatic spaces, the two vectors do not

coincide. In fact, the adiabatic pressure vector rotates counterclock-

wise away from the isothermal one, which leads to a loss in efficiency as

described in Appendix B.

3. For the gas spring, the envelope traced by the pressure vector

as h* varies is a semicircle. This is not true in the working space

where the envelope is somewhat modified and becomes a pseudo-semicircle.

With reference to Fig. 4.12, two significant features of the engine

performance, power output and efficiency, can be inferred. With respect

to power output, the projection of the pressure vector onto the rate of

change of total volume vector is proportional to the amount of work that

the engine produces. Thus, adiabatic cylinders will generate substan-

tially more power than isothermal cylinders because the vertical pressure
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component is greater. The vector diagram can be used to explain the

worst case lying between ideally isothermal and adiabatic cylinders. As

h* increases, the head of the pressure vector travels along the pseudo-

semicircle, and its component in the Vt direction first assumes a maximum

at point A for the adiabatic cylinders, then decreases to a minimum at

point P for the worst case, and then rises back to the isothermal limit

at the point I. The vector diagram confirms the characteristics de-

scribed previously.

Efficiency can be proven to depend on the phase angle between the

pressure vector and the negative total volume vector (Appendix B). The

angle is maximal for isothermal cylinders, representing the Carnot effi-

ciency. As h* increases, the head of the pressure vector moves counter-

clockwise along the locus. The phase angle, and, hence, the efficiency,

decreases until the worst case (point E), where the pressure vector is

tangential to the curve, and then recovers back to the Carnot limit. The

points P and E define the worst case for the power output and efficiency,

respectively, and correspond to different h* values. The efficiency mini-

mum is at a smaller h* than the power minimum, as discussed earlier.

4.2.3 Entropy production due to transient heat transfer

Transient heat transfer is an irreversible thermodynamic process

that gives away heat at high temperatures and regains it at lower tem-

peratures. The entropy change in the expansion space caused by this pro-

cess has been defined in the second component of Eq. (2.29) and is re-

peated here:

hAs(T - Te)
ATQ e s <(4.28)

TQe Te

The cyclic entropy production may be computed by integrating Eq.

(4.28) over a cycle,

e se dt . (4.29)
AT~ se- l [ -- dt* . (4.29)

20
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Substituting the solution for T* from Eq. (3.33) into Eq. (4.29)
e

gives

e- s d t * (430)
ASTQe = 2-h - J 1+ y sin t* + y cos t* - dt* * (4.

This integration can be performed explicitly, leading to a closed-

form solution

AS hA1 __- (4.31)
TQe e se ( _y2 ( 42- 3

7 - Y8

Note that (y7 + y2) represents the square of the relative temperature

amplitude, and (y2 + y2) < 1 for small oscillations. Thus, the previous

exact solution can be approximated by

STQe hAe [1 + (Y + ) - 1] , (4.32)

or

hA /IT |\ 2

AS e= A (4.33)
TQe 2 \T

where

ITel 2
V- /Y +Y8 * (4.34)

T 7 8T
e

Equation (4.33) shows that the cyclic entropy production caused by

the transient heat transfer in the expansion space of an engine is char-

acterized by the product of the square of the relative temperature ampli-

tude, with heAs as the proportionality constant. The corresponding

power loss [Eq. (2.24)] can be obtained if Eq. (4.33) is multiplied by

Tout' which represents the average temperature at which energy is
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rejected:

hA T /IT |\2
~ e seout (435)

TQe 2 \ /(

Suprisingly, eq. (4.35), for the expansion space of the engine, is

similar in form to Eq. (4.27), for the simple gas spring. This is not

coincidental because both are uniquely characterized by two key parame-

ters: conductance (i.e., product of heat transfer coefficiency h and

area A) and temperature amplitude. However, note that the temperature

fluctuation in the expansion space of the engine is affected by the con-

tinuous mass movement in and out of the cylinder. This effect has been

accounted for in the LHA analysis.

There is no transient heat transfer entropy production for either

truly adiabatic or perfectly isothermal cylinders. For the adiabatic

cylinders, no heat is exchanged with the walls although the amplitude of

the temperature swing inside the cylinder reaches its maximum. For the

isothermal cylinders, the reason for the absence of transient heat trans-

fer loss differs. Here, there is absolutely no temperature oscillation

although the conductance approaches infinity.

Similarly, the counterpart of those equations for the compression

space can be derived:

ASTQc h -SC Y - 12 (4.36)hc sc(1 --

representing the exact solution for the cyclic entropy change, and

hA /IT 1\2

ASTs 2 sC ---- (4.37)
TQc 2 \T /

for the approximate solution.

The corresponding power loss over a cycle is

h A sTot (IT C\
CAW-- ~--1 c~out _(4.38)

TQc 2 \T
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Finally, it can be stated that the total efficiency reduction [Eq.

(2.23)] by transient heat transfer for an engine is

An =(AS + A ) T /Q . (4.39)
THT TQe TQc out in

4.3 Effect of Combined Adiabatic and Transient Heat
Transfer Losses on Efficiency

So far, formulae for allocating losses due to the effects of mixing,

external heat transfer irreversibility, and transient heat transfer have

been derived and discussed, as a result of the Second-Law analysis. It

remains to be shown how the theory is applicable to typical Stirling en-

gines. Thus, calculations are performed by use of the reference engine

(RE-1000 Nominal) to quantify efficiency reduction by individual and/or

combined mechanisms over a wide range of heat transfer rates (with no

other losses such as pressure drop and mass leakage losses).

The results (Fig. 4.13) are summarized in a composite plot to show

the relative importance among individual loss mechanisms in relation to

the overall. Remember that the effect of interactions between the adia-

batic and transient heat transfer losses is fully taken into account by

the LHA even though it remains possible to allocate the total loss be-

tween the individual mechanisms. The ordinate in Fig. 4.13 indicates

the efficiency loss below the Carnot value in percentage points. The

abscissa signifies the heat transfer coefficient between cylinder wall

and gas in a log scale. At the operating condition of the RE-1000

Nominal engine, both heat transfer coefficients in the expansion and com-

pression space are about equal and estimated by the authors to be near

1000 W/(m 2 -K).

Figure 4.13 consists of four curves. Curves 1 to 3 represent, re-

spectively, the efficiency loss allocation due to transient heat trans-

fer only, external heat transfer irreversibility only, and mixing only.

Curve 4 represents the total of curves 1 to 3.

Curve 1 is a bell-shaped curve that represents the efficiency loss

due to the effects of transient heat transfer alone. This curve is
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produced by a three-step calculation:

1. calculate cyclic entropy change in the expansion space by Eq. (4.31),

2. calculate cyclic entropy change in the compression space by Eq.

(4.36), and

3. calculate the efficiency loss due to transient heat transfer only by

Eq. (4.39).

As expected, there is no transient heat transfer loss for perfectly adia-

batic or perfectly isothermal cylinders, but there exists a worst case

for semiadiabatic cylinders with finite heat transfer rates. The worst

case occurs right at the line of symmetry of the bell-shaped curve be-

cause it represents the maximum efficiency loss. For this particular ex-

ample, the worst case occurs at a cylinder-to-gas heat transfer coeffi-

cient of 40,000 W/(m 2.K) in both spaces and produces a very significant

efficiency loss of about 9.5 percentage points. At 1000 W/(m 2-K), close

to the value estimated for the real engine, the loss is 0.7 percentage

points.
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Curve 2 represents the effect of external heat transfer irreversi-

bility. To generate the curve, a string of calculations is required:

First, in the expansion space

1. calculate cyclic entropy change due to heater heat transfer by Eq.

(4.2),

2. calculate cyclic entropy change due to the average component of the

wall heat transfer by Eq. (4.9), and

3. calculate the average temperature at which gas enters the system by

Eq. (4.11).

Second, in the compression space

1. calculate cyclic entropy change due to cooler heat transfer by Eq.

(4.5),

2. calculate cyclic entropy change due to the average component of the

wall heat transfer by Eq. (4.10), and

3. calculate the average temperature at which gas leaves the system by

Eq. (4.12).

Third, calculate the efficiency loss due to external heat transfer

irreversibility by Eq. (4.13).

The efficiency loss revealed by these calculations attains its maxi-

mum at the adiabatic limit, then decreases gradually as the heat transfer

coefficient increases, and finally vanishes at the isothermal extreme.

Curve 3 denotes the effect of mixing inside cylinders. Like curve 1,

this curve results from a three-step calculation:

1. calculate cyclic entropy change in the expansion space by Eq. (4.17),

2. calculate cyclic entropy change in the compression space by Eq.

(4.18), and

3. calculate the efficiency loss due to mixing by Eq. (4.19).

The behavior of the efficiency loss as a result of mixing is rather

intriguing. It has a finite value near the adiabatic limit, then rises

to a maximum as the heat transfer coefficient is increased. After the

maximum, the mixing loss declines slowly and eventually diminishes when

it approaches the isothermal extreme, where no mixing should exist. The
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reason for this maximum can be attributed to the complex effects of tem-

perature overshoot in the expansion space and temperature undershoot in

the compression space over different parts of the cycle. The mixing loss

is small over the entire heat transfer range, which may be somewhat of a

surprise because the loss due to adiabatic cylinders is commonly called

mixing loss. Based on the Second-Law analysis, the "adiabatic loss" is

the sum of the mixing and external heat transfer (EHT) losses; and most

of the adiabatic loss is due to heat transfer rather than mixing irre-

versibilities.

Curve 4, the outermost envelope, represents the total sum of the in-

dividual loss mechanisms and gives the overall efficiency loss.

In summary, the following general conclusions may be stated:

1. the effects of external heat transfer irreversibility dominate in the

range of small heat transfer coefficients,

2. the effects of transient heat transfer dominate in the range of in-

termediate heat transfer coefficients, and

3. the effects of mixing remain small in magnitude through the whole

spectrum of heat transfer coefficients and, thus, are the least im-

portant.

4.4 Pressure Drop Loss

4.4.1 Effects of pressure drop on engine performance

Up to this point, all the examples have assumed a common pressure in

the engine. In reality, however, an oscillating pressure difference ex-

ists between the compression and expansion spaces. This pressure differ-

ence is caused by fluid friction and acceleration as the working gas

flows through the heater, cooler, and regenerator.

The effects of pressure drop on engine performance are shown in Fig.

4.14 as a function of the pressure drop coefficients. The LHA predic-

tions are for the RE-1000 Nominal configuration with adiabatic cylinders

and no other losses. The range of pressure drop coefficients is selected

to cover the range of positive engine power output. With zero pressure
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Fig. 4.14. Power output and efficiency vs pressure drop coef-
ficients for RE-1000 Nominal engine.

drop, the performance of the engine is equal to that of the ideal adia-

batic engine. As pressure drop increases, both power output and effi-

ciency fall until they both reach zero. However, power output shows a

more linear relationship than efficiency.

The effect of pressure drop is also shown in a vector diagram in

Fig. 4.15. The pressure vector labeled Pe = Pc' represents uniform

pressure and is found where there is no pressure drop. As the pressure

drop coefficient increases, the pressure oscillations in the expansion

and compression spaces are no longer identical. The expansion-space

pressure amplitude becomes smaller, and the vector rotates clockwise.

Concurrently, the compression-space vector becomes larger and rotates
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counterclockwise. The outermost pair of nonuniform pressure vectors

[kpe = k = 12 x 10-6 (Pa.s)/kg] shown in the diagram corresponds to a

case where the power output is about 0.5 kW.

The vector difference (Pc - Pe) between the two nonuniform pressure

vectors represents the amplitude and phase angle of the oscillating pres-

sure drop across the heat exchanger components. This vector is displayed

in Fig. 4.16 to show its relationship with three other vectors: dis-

placer position, displacer velocity, and expansion volume. Recall that

the displacer position vector is opposed to the expansion volume vector

because they are out of phase by 180° (i.e., when the volume is at a

maximum, the displacer position is at a minimum). Furthermore, the dis-

placer velocity (symbolically represented by Xd) is ahead of the dis-

placer position by 90° for harmonic motion.

From the vector diagram, some key thermodynamic parameters can be

identified:

1. Expansion-space work integral

= # PedVe

= heat addition

= component of Pe that lies in the direction of Ve'
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As pressure drop increases, the positive work component decreases

monotonically. Consequently, the area of the work diagram in the expan-

sion space (clockwise) is reduced.

2. Compression-space work integral

= # PcdVc
= heat rejection

= component of Pc that lies in the direction of V

As pressure drop increases, the negative work component increases.

Hence, the area of the work diagram in the compression space (counter-

clockwise) is enlarged.

3. Pressure drop loss

= (Ad- Ar) (Pc - Pe) dXd

= displacer loss that must be balanced by a displacer drive force

= component of (Pc -- Pe) that lies in Xd direction.

The pressure drop vector (P - P ) actually has two components. One
C e

component lies in the -Xd direction. This component acts like a damper

or dashpot. The other component lies in the Xd (or -Xd) direction and

acts like an inertial force or added mass.
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4.4.2 Entropy production due to pressure drop

Mass flowing across a pressure differential is an irreversible ther-

modynamic process. In the present study, pressure drop through the heat

exchangers is represented by two throttling processes: one between the

expansion and dead volumes, the other between the compression and dead

volumes. During a throttling process the enthalpy remains unchanged, and

for an ideal gas, the temperature remains unchanged as well. The appli-

cable formula for entropy production is Eq. (2.38), which is repeated

here,

_ R 2- _ dm Pfinal
AS ~- t) in ( itial dt* . (4.40)

21 J \ t Vinitial)

Therefore, the entropy production due to pressure drop between the

expansion and dead volumes becomes

r2 /m \ dm* /P*
AS =Rm ff e

1 In ( dt* , (4.41)
PDe wJ 0 \m dt* \P*/

and between the compression and dead volumes

_ /2Tr /m dm* m dm* /p*\
ASP = Rm f n dt e d d )n dt* . (4.42)P Dc w JO i dt* mw dt / K d

It is interesting to observe that the magnitude of the entropy gen-

eration depends on the operating frequency as well as the mass-weighted

pressure drop between the initial and final states; the higher the fre-

quency and pressure drop, the larger the entropy production. Also, note

that in Eq. (4.42) the total mass flow between the compression space and

the dead volume is the combined rate of change of mass inventory in the

expansion space and the dead volume [i.e., d/dt (me + md)] and not just

the mass inventory in the dead volume (i.e., dmd/dt).
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The total pressure-drop-induced entropy production within the engine

thus equals the sum of these two components:

ASP = ASDe + SPDc (4

4.5 Mass Leakage Loss

4.5.1 Gas spring with sinusoidal motions

Isothermal gas springs with seal leakage provide an elegant closed-

form solution as shown in Appendix A; therefore, the effects of mass

leakage can be illustrated analytically. Consider a gas spring that un-

dergoes harmonic motion with only a sine component as expressed by Eq.

(4.20). Under such conditions, the pressure wave solution for an iso-

thermal spring with seal leakage [Eq. (A.30)] simplifies to:

/ ~1 ~ k*
P* = 1 - Iv*| sin t* + ms cos t (4.44)

s s \1 + k*2 1 + k* 2

ms ms

where the first and second terms, respectively, represent the mean pres-

sure and the fluctuating component. The fluctuating pressure wave, in

general, consists of sine as well as cosine components. It is this fluc-

tuating pressure wave that contains interesting information on the mass

leakage loss. This will be studied further by use of a vector diagram.

In the vector diagram (Fig. 4.17), a family of pressure vectors

emanating from the origin will rotate counterclockwise as the mass leak-

age coefficient increases. The head of the normalized pressure vector

traces a semicircle over the whole spectrum of coefficients. A normal-

ized pressure vector is defined as the pressure vector divided by the di-

mensionless volume amplitude or more specifically, P*/IV*Is s
The two end points of the semicircle will be established first. At

the limit of a perfect seal (k* = 0), the cosine term of Eq. (4.44) van-
ms

ishes and only the sine term survives; the normalized pressure vector is

in the negative sine direction with a magnitude of 1 (left-end point),

which represents the maximum pressure excursion as an isothermal gas
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spring. For such a case, there is no power loss because the pressure

vector is perpendicular tohe the v o. A the otmher extreme where

there is no seal (k* + ), both terms of Eq. (4.44) vanish. Thus, the
ms

pressure vector degenerates to the point of origin (right-end point)

where the pressure amplitude is zero. Such a case represents a constant

pressure resulting from pressure equalization between the cylinder and

buffer spaces (see Fig. A.I). Again, there is no power loss because of

no pressure variation.

A gas spring with intermediate mass leakage shows a worst case la-

beled as W. The worst case occurs where the normalized pressure vector

attains a maximum component that lies in the negative V direction,
s

therefore, leadaig to a maximum power loss. The coordinates of the worst

case are shown to be (-1/2, -1/2) when the mass leakage coeff icient as-

sumes a value of unity (i.e., k* = 1).
ms

4.5.2 Effects of mass leakage on engine performance

In the formulation, leakage is allowed to occur between the working

space and the buffer space where a state of constant pressure and tem-

perature is maintained. The change of the working space mass is further

assumed to be in linear proportion to the pressure difference between the
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two spaces. The magnitude of the mass change is controlled by a leakage

coefficient.

Engine performance can be very markedly affected by leakage. The

extent has been quantified by varying the leakage coefficient between

zero and a value that results in no net power. The results predicted by

the LHA method are shown in Fig. 4.18. Again, the predictions are for

the RE-1000 Nominal configuration with adiabatic cylinders and no other

losses.

The vector representation of the leakage loss is shown in Fig. 4.19.

Some similarities to the isothermal gas spring with leakage are apparent.

The locus of the heads of the pressure vectors corresponding to various

leak coefficients is nearly semicircular. As the leakage rises, the
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pressure vectors rotate counterclockwise, and the work component falls

monotonically and vanishes at the point Z, where the pressure vector is

normal to the Vt vector. Beyond that point, power is needed to drive the

engine because of a negative work component. Concurrently, the phase

angle that is proportional to efficiency, between the pressure vector and

negative total volume vector, shrinks as does the efficiency. Moreover,

that phase angle changes from positive to negative as the pressure vector

crosses the zero net power point. This illustration confirms the per-

formance predictions described previously. If the pressure vector lags

the negative Vt vector, power is produced from an engine; on the other

hand, if the pressure vector leads the negative V t vector, power is ab-

sorbed.

4.5.3 Entropy production due to mass leakage

Mass leakage between the compression space (where pressure fluctu-

ates) and the buffer space (where pressure remains constant) is another

irreversible thermodynamic process. Such a process is irreversible be-

cause mass is lost at a high pressure and regained at low pressure. The

cyclic entropy change associated with this process presents no difference
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in principle from that of pressure drop. Thus,

2_ f2 m m dm* md dm * m dm
AS = Rm f e + + _c d ln ( dt*. (4.45)
MLc W J d m dt* m d t*

4.6 Coupling of Losses

Until now, the transient heat transfer, pressure drop, and leakage

losses have been examined independently. The Second Law of Thermodynamics

provides a rational means to allocate the individual loss mechanisms when

two or more of the losses are coupled together. Thus, the Second-Law

analysis, coupled with the LHA method, has been applied directly to the

RE-1000 Nominal configuration for various loss combinations. The loss

coefficients for 12 cases studied are listed in Table 4.2. In the table,

the rate constants for both the pressure drop and seal leakage are chosen

to exaggerate the coupling effects beyond those to be expected in a well-

designed and -constructed engine. The highlights of the results are sum-

marized in Tables 4.3 and 4.4; one shows the efficiency loss allocations

[Eqs. (2.19) and (2.27)], whereas the other shows the power losses [Eq.

(2.24)].

Table 4.2. Loss coefficients for coupling studies

Heat transfer
Cylinder eat tnfer Pressure drop, Seal leakage,
heat coefficient, k k ch e a t = h k = kpc kmc

transfer he he ck
transfer [W/m 2-K)] [(Pa-s)/kg] [kg/(Pa.s)]

Adiabatic 0 0 0
0 0 1.0 x 10- 8

0 6.7 x 106 0
0 6.7 x 106 1.0 x 10-8

Semiadiabatic 62,500 0 0
62,500 0 1.0 x 10-8
62,500 6.7 x 106 0
62,500 6.7 x 106 1.0 x 10- 8

Isothermal 3 x 108 0 0
3 x 108 0 1.0 x 10- 8

3 x 108 6.7 x 106 0
3 x 108 6.7 x 106 1.0 x 10-8
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Table 4.3. Coupled efficiency loss for RE-1000 Nominal engine

Carnot Adiabatic
Cylinder heat Carnot Adiabtic Pressure Seal

transfer efficiency THT drop leakage
(%) EHTa Mixing

Adiabatic 66.67 -3.45 -0.25 0.00 0.00 0.00
66.67 -3.51 -0.21 0.00 0.00 -17.72
66.67 -3.37 -0.29 0.00 -19.40 0.00
66.67 -3.34 -0.23 0.00 --16.90 -26.18

Semiadiabatic 66.67 -0.34 -0.18 -8.67 0.00 0.00
66.67 -0.32 -0.19 -8.94 0.00 -14.01
66.67 -0.32 -0.26 -13.12 -20.02 0.00
66.67 -0.30 -0.26 --13.53 -18.17 -22.22

Isothermal 66.67 0.00 0.00 0.00 0.00 0.00
66.67 0.00 0.00 0.00 0.00 -12.49
66.67 0.00 0.00 0.00 -22.50 0.00
66.67 0.00 0.00 0.00 -19.83 -20.40

aExternal heat transfer irreversibility consists of four heat
transfer components: heater, cooler, average expansion cylinder, and

average compression cylinder.

Table 4.4. Coupled power loss for RE-1000 Nominal engine

Reference Adiabatic
Cylinder heat powera THT Pressure Seal

transf ertransfer (W) EHT Mixing drop leakage

Adiabatic 2636.9 -136.3 -9.9 0.0 0.0 0.0
2363.7 -124.4 -7.4 0.0 0.0 -628.4
2137.9 -108.1 -9.3 0.0 -622.2 0.0
1867.6 -93.4 -6.5 0.0 -473.4 -733.5

Semiadiabatic 2118.9 -10.9 -5.8 -275.0 0.0 0.0
1904.2 -9.2 -5.3 -255.4 0.0 -400.3
1622.9 -7.7 -6.3 -319.5 -487.3 0.0
1419.0 -6.4 -5.6 -288.0 -386.7 -472.9

Isothermal 2027.0 0.0 0.0 -0.1 0.0 0.0
1914.4 0.0 0.0 -0.1 0.0 -358.7
1507.0 0.0 0.0 -0.1 -508.6 0.0
1412.3 0.0 0.0 -0.1 -420.2 -432.2

aReference power is defined as the heat input multiplied by the
Carnot efficiency.
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The tables reveal some interesting loss interactions. First of

all, pressure drop appears to have a significant effect on the other

losses. Compare the cases that have seal leakage and no pressure drop

with the cases that have both seal leakage and pressure drop. An in-

creased pressure drop causes an increase in the seal leakage losses, both

in efficiency and power. These effects hold true for the adiabatic,

semiadiabatic, and isothermal cases. The physical explanation is that

pressure drop causes the amplitude of the pressure wave in the compres-

sion space to increase (see Fig. 4.15). As a result, a larger pressure

difference exists across the piston seal, which leads to a larger leakage

loss. In addition, an increased pressure drop tends to increase the

transient heat transfer loss for those cylinders that are semiadiabatic.

Secondly, seal leakage appears to have a reverse effect on pressure

drop losses. Compare the cases that have pressure drop and no seal leak-

age with the cases that have both. An increased seal leakage causes a

reduction in the pressure drop loss. However, it is difficult to infer

a physical reason. In fact, all of the trends discussed so far may not

hold true for all Stirling machines. Nevertheless, for the RE-1000 Nomi-

nal configuration presented here, the results show rather convincingly

that the losses do seem to couple in a highly complex manner.

Some final comments about the Second-Law analysis and loss alloca-

tion are in order. Efficiency losses are subtracted from the Carnot ef-

ficiency to arrive at an overall efficiency. The Carnot value depends

only on the heater and cooler temperatures and represents the maximum ef-

ficiency that any engine can achieve. The 12 cases shown in Table 4.3

all have the same Carnot value. On the other hand, power losses are sub-

tracted from a reference power output that is defined as the heat input

to the engine multiplied by the Carnot efficiency. The reference powers

shown in Table 4.4 vary from case to case because the engine heat inputs,

which are equal to the expansion-space pressure-volume integrals, are

different. Thus, a comparison of power losses from case to case might be

less meaningful than an efficiency loss comparison because the reference

power outputs vary, whereas the reference efficiencies remain the same.

This should certainly be remembered when second-order, or decoupled,

Stirling machine analyses are undertaken.
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5. CONCLUSIONS

The LHA has proved to be a simple but very effective method for Stir-

ling cycle engine analyses. The present theoretical formulation, which

focuses on thermodynamic development, retains three control volumes (an

expansion space, a compression space, and a dead volume made up of the

three heat exchanger components), while encompassing four of the most sig-

nificant loss mechanisms (adiabatic effects, transient heat transfer loss,

pressure drop loss, and mass leakage loss). The simplicity of LHA is a

consequence of the underlying assumptions of pressure linearization and

harmonically oscillating state variables. The effectiveness of LHA refers

to its ability to provide a better understanding of loss mechanisms while

offering a stable, efficient, accurate, and economical solution to the

governing equations.

LHA provides the opportunity to obtain a better physical understand-

ing of loss mechanisms than do nodal or numerical methods. This is a

direct consequence of the semi-closed-form solution. In some cases, re-

lations between causes and effects can be expressed analytically, lead-

ing to a better feel for the underlying physical processes. Also, the

controlling variables that undergo harmonic variations can be directly

and effectively represented in vector diagrams to provide still further

insight. Thus, the LHA can be used as an analytical tool to explore new

phenomena, especially in free-piston Stirling engine applications.

Even with its simplicity, LHA gives rather accurate solutions to

the equations. The arithmetical accuracy has been checked independently

by a well-established numerical method, the CSMP, which does not assume

linear pressure terms and harmonic variables. The cross comparisons

were made among key thermodynamic parameters such as efficiency, power

output, heat input, heat output, and mean gas temperatures in the expan-

sion and compression spaces, at different loss levels over a wide range

of loss rates. The general agreement is satisfactory; the worst discrep-

ancy in heat input and heat output at a compression ratio of 1.89 is 1.1%

and 2.2%, respectively.
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LHA offers a stable solution and is not subject to the computa-

tional instabilities that are possible with numerical integration meth-

ods. This stability comes from the harmonic representation of the state

variables and the imposed conditions for a steady state solution.

Based on LHA predictions, a Second-Law analysis has been used to

quantify how individual loss mechanisms contribute to the total loss

when two or more losses are acting simultaneously. The allocation of

losses is based on entropy production. Three irreversible thermodynamic

processes that occur in typical Stirling engines were identified: heat

transfer across a finite temperature difference, mixing gases at two

temperatures, and mass flow over a pressure drop. All these processes

lead to entropy production and efficiency and power losses. The analy-

sis shows that (1) efficiency losses are computed with respect to the

Carnot efficiency as the reference value, and (2) the reference power is

the heat input to the engine multiplied by the Carnot efficiency; indi-

vidual power losses are quantified with respect to this reference value.

Some highlights on the loss mechanisms are summarized below:

1. Adiabatic effects

a. are caused by external heat transfer and mixing irreversibil-

ities. Mixing occurs when the working gas enters the expansion

and compression spaces. Irreversibilities caused by external

heat transfer consist of four components: heater, cooler,

expansion-cylinder, and compression-cylinder average heat

transfer. The heater (cooler) heat transfer irreversibility

occurs when the gas enters the heater (cooler). For the RE-

1000 Nominal free-piston engine, the mixing is relatively

insignificant compared with the external heat transfer irre-

versibility by one order of magnitude.

b. require a consideration of the coupled effects of mean tempera-

ture shifts, mixing loss, and transient heat transfer loss.

c. dominate efficiency reduction in cylinders with poor heat

transfer.

d. cause the pressure vector to rotate counterclockwise away from

that of the isothermal vector (Carnot efficiency) so that the
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phase angle between the pressure and the negative total volume

vectors decreases, leading to an efficiency reduction.

e. depend strongly upon the compression ratio; the larger the ra-

tio, the larger the efficiency reduction. For the RE-1000 Modi-

fied engine with a ratio of 1.8:1, the reduction is about 10

percentage points.

f. depend strongly upon the temperature difference between heater

and cooler. For low temperature difference machines, such as

heat pumps, the adiabatic effect becomes very significant.

g. cause the mean gas temperature to shift downwards in the expan-

sion and upwards in the compression space; the larger the adia-

batic effects, the larger the shifts.

2. Transient heat transfer loss

a. is a loss because giving up heat at a high temperature and re-

gaining it at a low temperature is an irreversible thermodynamic

process.

b. reduces adiabatic loss effects.

c. is not present in ideally adiabatic or ideally isothermal cyl-

inders but shows worst cases for both power and efficiency at

some intermediate points between these two extremes.

d. causes an entropy production that is uniquely characterized by

the square of the relative temperature amplitudes in the respec-

tive spaces.

e. dominates efficiency reduction in the intermediate cylinder heat

transfer ranges.

f. causes the pressure vector to rotate counterclockwise away from

the adiabatic vector until reaching the worst efficiency point,

then to rotate clockwise toward the isothermal vector (Carnot

efficiency) so that the phase angle between the pressure vector

and the negative total volume vector first decreases, then in-

creases, leading to an efficiency reduction below the Carnot

value.
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3. Pressure drop loss

a. results from mass flowing through a pressure drop - an irrevers-

ible thermodynamic process.

b. decreases the pressure amplitude in the expansion space and in-

creases it in the compression space.

c. causes the expansion-space pressure vector to rotate clockwise

and concurrently causes the compression-space pressure vector to

rotate counterclockwise from the uniform (common) pressure

vector.

4. Mass leakage loss

a. results from mass lost at high pressure and regained at low

pressure- an irreversible thermodynamic process.

b. causes the pressure vector to rotate counterclockwise away from

the lossless (perfect seal) pressure vector so that the phase

angle between the pressure and the negative total volume vectors

decreases, leading to an efficiency reduction.
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Appendix A

GAS SPRING ANALYSIS

As a proof of principle, the LHA procedure has been applied

to a gas spring. There are two reasons for this choice: first, to pro-

vide a better understanding of loss mechanisms and second, to provide

necessary information for free-piston Stirling engine dynamic analysis.

A gas spring system is simpler than an engine, yet it experiences some

significant loss mechanisms similar to those occurring in engines. When

compared with an engine, which is characterized by two spaces (expansion

and compression), two temperature levels (source and sink), and the po-

tential for producing work, the attributes of a gas spring include a

single space, a single temperature, and no power production. However, a

gas spring does show a transient heat transfer loss and mass leakage.

Consider a typical gas spring as shown in Fig. A.l, in which a pis-

ton separating two volumes undergoes a cyclic motion. The space enclosed

by the cylinder and the moving piston is referred to as the gas spring,

whereas the space above the piston with an open end is the buffer space.

The buffer space is maintained at a constant pressure (e.g., the average

ORNL-DWG 84-4436 ETD

BUFFER
SPACE

PF.TK

k,m
GAS SPRINGms

T,, m,, Ps V,

hs, Ass, Tws o s

Fig. A.1. Schematic of gas spring.
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system pressure P ) and a constant temperature (the cooler temperature

TK). This is true because the effective volume of the buffer space is

very large in comparison with piston-swept volume.

The state of the gas spring is completely defined by two variables:

temperature Ts and mass ms, if the volume variation Vs is prescribed.

Solving for these two variables requires two governing equations, which

are the mass and energy conservation equations. They may be written in

dimensionless forms similar to those used in the engine formulation:

dm*
t = k* (1 - m* - T* + V*) , (A.1)

dt* ms s s s

d(m* T*) dV*
S s s

+ (y - 1) (m* + T* - V*)
dt* s s s dt*

dm*
= T* + h* (T* - T*) (A2)

s flux dt* s ws s

where

T*, if dm* > 0
K' s

T* = (A.3)
s fux T*, if dm* < 0

s s

The meanings of each term and variable in Eqs. (A.I)-(A.3) remain

the same as defined in the engine formulation except with a subscript s

for gas spring.

Note that in the energy equation, Eq. (A.2), there exists an enthalpy

flux discontinuity. The discontinuity arises from the alternating mass

flow into and out of the cylinder, which, in turn, is caused by an oscil-

lating pressure through an imperfect seal between the cylinder and the

piston.

Since only a steady state solution is pursued, harmonic oscillations

of all variables, dependent and independent, will be considered:

m* = 1 + Ysl sin t* + Ys2 cos t* , (A.4)
S
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T*= 1 + y sin t* + y cos t* , (A.5)
s s3 s4

V* = 1 + y sin t* + cos t* . (A.6)
s s5 s6

It should be pointed out that, for generality, the volume variation is

assumed to be composed of sine and cosine components even though the co-

efficients Ys5 and Ys6 are specified. Finally, the linearized pressure

wave can be calculated by

P* = m* + T* - V* . (A.7)
s s s s

Following the same procedures for Fourier representation as outlined

in Chap. 3, the mass and energy equations, respectively, transform to

(kmsYs1 - Ys2 + kmsYs3 - kmsYs5) sin t*

+ (Ysl + KsY2 + kmss 4 - kmsYs6) cos t* = 0 (A.8)

W* - s* FF(7)y + {FF(7) + [- + + FF(8)]2

+ h*Ys3 - Y4 - - 1)Y 6} sin t* + {[1 - Y T S

+ FF(9)]ysl + [-FF(7)]Ys2 + ys3

+ hSys4 + (y - 1)ys5} cos t* = o , (A.9)

where

T = (1 + T) , (A. 10)
s 2 K

FF(7) =- 3 (Ys4 c°s3 s- Ys3 sin3 s) , (A.11)

FF(8) = 2 [Ys3 cos s (sin2 es + 2) - Ys4 sin3 s] , (A.12)

FF(9) =--3 [Ys3 cos3 Os - Y4 sin 6s(Cs 2 Os + 2)] , (A.13)
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sin Es Y= YS , (A.14)

YSI + Y2

= Ys2
cos 8s = (A.15)

Vysl + Ys2

The constant terms in Eq. (A.9) merely represent, respectively, the

cyclic averages of the work output, enthalpy flux, and heat input, the

sum of which should be zero, as demanded by the steady state criterion.

Thus, it follows that the gas spring must satisfy the integrated energy

equation:

H* + Q* = W* (A.16)s ws s '

and, concurrently, a system of fluctuating equations:

is -1 k M 0 Y s kmsys5
1 ks 0 k Ls ys2 I sys6

FF(7) -1 + y-T + FF(8) h* -1 3 (-)y * (A.17)

1 - YTs + FF(9) -FF(7) 1 h -(Y - l)Ys

The gas mean temperature is defined implicitly by the integrated

energy equation [Eq. (A.16)]. Therefore, it requires expression of each

term in that equation in fundamental variables. This can be done by

evaluating the zero-order terms in the Fourier expansions. The procedure

is similar to that for the complete engine analysis

H = ZI(5)(TK - Ts ) + Z1(6) , (A.18)

Q h Ass (T - T) , (A.19)

T ,

ws 5 ss ws 5

Ws = PwVs [Ys5 (y2 + Ys4 ) - 6 (Ysl + Ys 3) (A.20)

Z ( 5) = c- s I 2 + 2 (A.21)
1 + Ys2
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Zl(6) = -- 1) ws (YslYs4 Ys2Y s) * (A.22)

With the aid of Eqs. (A.18)-(A.22), the cyclic mean gas temperature

can now be solved:

Z1(5)T K + Z1(6) + h A T - W
-T~ K S 55 VS S ~~~~~~(A.23)

Bs~ Z1(5) + h A
5 SS

Some interactions exist between the cyclic mean temperature and

fluctuating components. On one hand, the temperature and mass amplitudes

are needed to evaluate the mean gas temperature. Conversely, some ele-

ments in the matrix equation depend on the mean gas temperature. There-

fore, an iterative process is necessary for a complete solution. How-

ever, two special cases that render closed-form solutions will consti-

tute the rest of this appendix.

Case 1: Isothermal cylinder (h* + a) with leakage (k* * 0)
s ms

For this limiting case, the gas inside the cylinder behaves iso-

thermally with no temperature fluctuations. In other words, the system

can be described only by the mass equation with the energy equation dis-

carded. Therefore, a simple analytical solution becomes available.

One interesting consequence from the cyclic gas temperature [Eq.

(A.23)] will be shown. Divide each term in the numerator and denominator

by hs and then take the limit for hs + a, resulting in

T =T . (A.24)s ws

This confirms the notion that for isothermal cylinders, the heat

.s. ~ transfer is so effective that the gas bulk temperature inside the cylin-

der equilibrates with the wall temperature at all times.

*0w ~In the meantime, if each term in the last two equations in Eq. (A.17)

is divided by h* and then h* approaches infinity, the matrix equation
s s
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will simplify to

k ms - 1 kms 0 ys kms
1 ^km s ° ms Ys2 k*sYs 6 (A.25)

0 0 1 0 Ys3 0

LO ° ° 1 - LYs4J 0

The solutions read

k m(kmsYsS + Ys6)
Ysl = 1 +k '2 (A.26)

ms

k* (k*y -- y,)
Ys2 M= (A.27)

1 + k*2
ms

ys3 = 0 , (A.28)

Ys4 = 0 . (A.29)

The first two represent the mass amplitudes, whereas the last two

are the temperature amplitudes. Not surprisingly, it just reconfirms

that there are no temperature fluctuations for isothermal gas springs.

Finally, by use of Eq. (A.7), the pressure wave may be computed:

,* s + kmS sYs5 + Ys6) 1
Ps = 1 + [ I -- + *Ys5I sin t*

ms

+ [k-s( yss-6 - Ys5) cos t* . (A.30)
1 + k*2

ms

This completes the analysis of an isothermal gas spring with mass

leakage acting alone. The significant implications were discussed in

Sect. 4.5.1.
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Case 2: Finite heat transfer cylinders (h* f 0)

with perfect seal (k* = 0)
ms.

For cylinders with a perfect seal, the gas spring will be subject

to transient heat transfer loss only. Under this extreme, the system

can be characterized solely by the energy equation, with the mass equation

disregarded since the mass within the cylinder remains constant. Fur-

thermore, the cyclic enthalpy flux term in the integrated energy equation

no longer exists because no mass flows into or out of the cylinder.

Consequently, the integrated energy equation simplifies to

T 7

Q*= W* (A.31)

or equivalently to the relation

W
T= - -- , (A.32)s ws

h A
s ss

which is obtained from Eq. (A.23) by setting both functions Z(5) and

Z(6) equal to zero because of no mass oscillation (y 1 = Y2 = 0). Con-

currently, the system of the fluctuating equations can be proven to re-

duce to a 2 x 2 matrix equation:

hs - 1 ] 3 (Y- )Ys

1 h * Y 4 -( 1)Ys5J (A.33)

An elegant closed-form solution for Eq. (A.33) reads

(y - 1) (hsYs6 - Ys5)
Ys3 = 2 (A.34)

1 + h 2

-(Y - 1) (hsYs5 + Ys6)
Ys4 = (A.35)

1 + hs
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Finally, the pressure wave can be expressed from Eq. (A.7) as

P* +(Y -- l)(hsYs6 - Ys5) i t*
P = 1 + -- Ys sin t*

L 1 + h2'

[--(r - 1)(hsys5 + ys6)+[-( - 1)(hs,+ Ys+ YsG co t* . (A.36)
I + h* 2

This pressure wave equation is the most important relation for

studying the transient heat transfer loss in semiadiabatic cylinders.

In the first place, it can be used to calculate the amount of work re-

quired to drive the piston externally during a cycle (or the power loss).

Second, by vector representations, it can be used to explain a worst

case. The significant implications were discussed in Sect. 4.2.1.

The average gas temperature can now be derived more explicitly from

the reduced integrated energy equation, that is, Eq. (A.32). Substitu-

tion of Eq. (A.20) for the cyclic work term, coupled with the solutions

for the temperature amplitudes given by Eqs. (A.34) and (A.35), results

in

(7- 1)2 (y25 + Ys6) -
Ts = Tws + Ts (A.37)

,22(1 + hs )

or

f T + (- 1)2 v T ; (A.38)
s ws 2(1 + h*2 ) s

s

or solve for the cyclic gas temperature explicitly:

T = - ws _ (A.39)

s (V _ 1)21 - - Iv*l2

s
2(1 + h*2) S

This relation reveals that for a nearly adiabatic cylinder (h* + 0),

the mean gas temperature inside the cylinder depends on the square of
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the relative volume amplitude; the larger the amplitude (or the piston-

swept volume), the higher the mean gas temperature. This may be a some-

what surprising result, but it is a consequence demanded by the under-

lying physics. Recall that steady state operation is ensured only if the

overall energy of the system is balanced; that is, work output equals

heat input. When the mean gas temperature is greater than that of the

wall, heat is transferred in an amount exactly equal to the work supplied

externally to the piston to overcome the losses.



113

Appendix B

DERIVATION OF THE EFFICIENCY AND PRESSURE PHASE RELATION

For an engine with a uniform pressure, the relationships of the

pressure, total volume, and expansion volume vectors may be depicted by

Fig. B.1, in which the expansion-space volume vector leads the total vol-

ume vector by an angle of 6, and the pressure vector lags the negative

total volume vector by an angle of p.

The work output from the engine during one cycle is:

Wout ~ IPI|Vtl sin (180° -- ) - IPl|Vt sin , (B.1)

where

IP| = amplitude of the pressure,

IVt| = amplitude of total volume,

= phase angle between P and negative Vt.

Similarly, the heat input to the engine over a cycle may be repre-

sented by

Qin IPI IVel sin (1800 - 0 - p) I- IPI {Ve sin (9 + e) , (B.2)

ORNL-DWG 84-4429 ETD

Ve t

Fig. B.1. General relationship between pressure and volume vectors

in Stirling engine.
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where, in addition

IVel = amplitude of expansion-space volume,

6 = phase angle between Ve and Vt.

By Eq. (2.15), the efficiency is defined by

W
out (B.3)

Qin

Substituting Eqs. (B.1) and (B.2) into Eq. (B.3), after some simpli-

fication, results in:

IV ____

n V I sin 6 (cot a + cot ) (B.4)

This establishes the relationship between efficiency and pressure

phase angle p. For an engine with fixed dimensions, the volume ampli-

tudes and phase angle 8 are constant; the efficiency then depends only on

the pressure phase angle. Rotating the pressure vector counterclockwise

reduces p. This, in turn, increases cot p and therefore increases the

denominator in Eq. (B.4), thus reducing n.
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Appendix C

NOMENCLATURE

Ad Displacer cross-sectional area (m2)

A Power piston cross-sectional area (m2)

Ar Displacer rod cross-sectional area (m2)

Asc Wall heat transfer surface area in compression space (m2)

Ase Wall heat transfer surface area in expansion space (m2)

a1 ,a2 ,a3 Nondimensional volume constants defined in Eq. (3.17)

bi A nonhomogeneous vector involving specified volumes as

components defined in Eq. (3.92)

cp Specific heat at constant pressure [J/(kg-K)]

Cv Specific heat at constant volume [J/(kg.K)]

D(i,j) Matrix elements defined in Eqs. (3.92) and (3.93)

FF(n) n = 1,2,...9 Fourier correction factors

f Frequency (Hz)

H Enthalpy flux rate into the compression space (W)

H e Enthalpy flux rate into the expansion space (W)

h Specific enthalpy (J/kg)

hc Cylinder wall to gas heat transfer coefficient in compres-

sion space [W/(m2-K)]

he Cylinder wall to gas heat transfer coefficient in expansion

space [W/(m 2.K)]

kmc Mass leakage coefficient between compression and buffer

spaces [kg/(Pa.s)]

k Pressure drop coefficient between compression and dead

spaces [(Pa.s)/kg]

kpe Pressure drop coefficient between expansion and dead spaces

[(Pa-s)/kg]

m Mass of gas (kg)

mc Mass of gas in compression space (kg)

md Mass of gas in dead volume (kg)

me Mass of gas in expansion space (kg)

mw Total mass of gas in working space (kg)
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P Pressure (Pa)

Pc Pressure in compression space (Pa)

Pd Pressure in dead volume (Pa)

Pe Pressure in expansion space (Pa)

P Cyclic average pressure in working space (Pa)

Heat transfer rate (W)

Q. Cyclic average total heat input rate, Qi = H + Q (W)in in e ye

Qout Cyclic average total heat output rate,out

Qout c - QwC (W)

Qc Cylinder wall heat transfer rate in compression space (W)

Qwe Cylinder wall heat transfer rate in expansion space (W)

R Gas constant [J/(kg-K)]

s Specific entropy [J/(kg-K)]

T Gas temperature (K)

Tc Gas temperature in compression space (K)

Tc flux Enthalpy flux temperature between compression and dead

spaces (K)

Td Constant temperature in dead space,

T = V /[VH /T + V In (TH/TK)/(TH - T ) + V /T I (K)

Te Gas temperature in expansion space (K)

Te flux Enthalpy flux temperature between expansion and dead spaces

(K)

TH Heater temperature (K)

Tin Cyclic average gas temperature at which heat is absorbed

into the engine (K)

TK Cooler temperature (K)

Tot Cyclic average gas temperature at which heat is rejected

out of the engine (K)

T Average wall temperature in compression space (K)

T Average wall temperature in expansion space (K)

Time (s)
t Time (s)
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v Specific volume (m3/kg)

V Volume (m3)

-Vc Prescribed compression volume (m3)

V Average volume in compression space with pistons at mid-

strokes (m3)

Vd Constant dead space volume, Vd = VK + VH + VR ( 3)d u K H R
Ve Prescribed expansion volume (m3)

V Average volume in expansion space with pistons at mid-

strokes (m3)

VH Constant heater volume (m3)

VK Constant cooler volume (m3)

VR Constant regenerator volume (m3)

Vt Total volume in working space, Vt = Ve + Vc + Vd ( 3)

W PV power by gas in compression space (W)

W e PV power by gas in expansion space (W)

WOut Cyclic average total power output (W)

Xd Prescribed displacer position, zero at midstroke (m)

Xda Displacer amplitude, 1/2 displacer stroke (m)

Xp Prescribed power piston position, zero at midstroke (m)

Xpa Power piston amplitude, 1/2 power piston stroke (m)

Xpm Maximum power piston amplitude allowable by mechanical

constraint (m)

Yn n = 1,2,...,14, amplitudes of harmonic components defined

in Eq. (3.33)

Zl(n) n = 1,2,...,6, defined in Eqs. (3.83)-(3.86), also Eqs.

(A.21) and (A.22)

Superscripts

- Average over a cycle

Derivative with respective to time or d/dt

* Nondimensional quantities defined in Eqs. (3.10)-(3.18)

Amplitude of a variable
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Subscripts

s Gas spring

Greek

a0 1'a 2 Fourier coefficients

0 Phase angle relative to power piston (deg)

d Displacer phase angle relative to power piston (deg)
d
p Pressure phase angle relative to power piston (deg)

Y Ratio of specific heats of gas, y = c /c
p v

Am Fluctuating mass component (kg)

AP Fluctuating pressure component (Pa)

Alos Entropy production due to internal irreversibilities de-

fined in Eq. (2.27) (W/K)

ASmix Entropy production due to mixing in compression space (W/K)

ASie Entropy production due to mixing in expansion space (W/K)

ASML Entropy production due to mass leakage (W/K)

ASD Entropy production due to pressure drop between compression
pDc

and dead spaces (W/K)

AS PDEntropy production due to pressure drop between expansion

and dead spaces (W/K)

ASQc Entropy production due to heat transfer in compression

space (AS c ASQ + ATQc ) (W/K)

ASQe Entropy production due to heat transfer in expansion space

(ASQe = ASw e + ASTQe ) (W/K)

SQH E y Qe Qwe TQe (
ASQK Entropy production due to heater heat transfer (W/K)

ASQc Entropy production due to average heat transfer in com-

pression space (W/K)

ASwe Entropy production due to average heat transfer in expan-

Qwc

sion space (W/K)

ASTQc Entropy production due to transient heat transfer in com-
pression space (W/K)
pression space (W/K)
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QASe Entropy production due to transient heat transfer in ex-

pansion space (W/K)

* AS Entropy production due to pressure drop

(ASAp = ASpD + ASPDe) (W/K)

AT Fluctuating temperature component (K)

AV Fluctuating volume component (m3)

WTQc Power loss due to transient heat transfer in compression
TQc

space (W)

AWe Power loss due to transient heat transfer in expansion
TQe

space (W)

AnEHT Efficiency loss due to external heat transfer

An Efficiency loss due to various losses
loss

Anmi Efficiency loss due to mixing
mix

AnTHT Efficiency loss due to transient heat transfer

n Indicated thermal efficiency

n Carnot efficiency
c

e Phase angle between Ve and Vt (deg)

e Defined in Eq. (3.74)

0 Defined in Eq. (3.42)

T Temperature ratio associated with compression space,
c

T = (TK + T)/2 T
c K c c

T Temperature ratio associated with expansion space,
e

Te = (TH + T )/2 T

4P Phase angle between pressure vector and negative total

volume vector (deg)

) Frequency (rad/s)
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