3945

A Model for the Prediction of the Performance
of a Spined-Tube Absorber—Part 2:

Model and Results

A. Terrence Conlisk, Ph.D.

ABSTRACT

In this paper a mode! for the heat and mass transport on
a vertically oriented spiny tube is developed based on the
dimensional analysis given in part 1. I is shown that when the
influence of surface tension is neglected between the spines,
there is an enhancement of the mass transfer rate 10 the liguid
film; however, the enhancement is not farpe. It is suggested
that the enhancement is due to the generation of a variation of
the mass fraction on the local spine scale. The influence of the
coolant flow is incorporated as well, and the model mary thus
be used in conjunction with a cycle analysis lo determine
whether given absorber states may be attained. Experimental
results show that when the pitch of the spines is decreased, the
performance of the tube is significantly degraded and the
spines actually inhibit mass transfer. A physical reason for
this, based on the influence of surface tension through capil-
lary effects, is advanced,

INTRODUCTION

This paper examines the nature of the flow and heat and
mass transfer on a spiny tube of a given dimension, A model 1o
predict the total mass absorbed on the tube and other relevant
design quantitics is developed based on the dimensional analy-
sis of the problem described in part 1 (Conlisk 1996); the nature
of the flow and heat and mass transfer on the tube depends on
the relative magnitude of a number of dimensionless parame-
ters. As noted in part 1 (Conlisk 1996), there are three major
ohjectives of this work:

1. todevelop a relatively simple model,
2 to minimize or eliminate the use of free constants, and

3. to minimize the amount of computing power required.

The model may be executed on a personal computer, with the
solution for o single design point taking only seconds to run,
The present model takes full advantage of the existence of
closed-form, analytical solutions for the mass fraction, temper-
ature, and flow velocity,

The miodel for the absorption problem on the spiny tube is
based upon analysis of two regions of interest. In the region
between the spine rows, it is assumed that the influence of the
spines themselves is negligible and the heat and mass transfer
problems are governed by the global variables of total flow rage
and total length of tube. In the region between a pair of spines on
a given spine row, heat and mass tansfer problems are
governed by the pitch of the spine tube, defined as the distance
between spine rows (Conlisk 1996). Between a pair of spines, it
is nssumed that the wall temperature is constant because the root
chord of the spines is so short and a closed form for the mass
ahsorbed there may be obtained. The root chord of a spine is the
length of the spine in the primary flow direction at the base of
the spine (Conlisk 1296).

In past work by the author (Conlisk 1992, 19944, 1994b,
199dc, 1994d, 1995), the wall temperature is required 1o be
specified. To eliminate this requirement, the coolant-side prob-
lem has been formulated and coupled with the film side. In this
way, the entire absorber system is modeled; a countercurrent
mode of operation is assumed. The model is subject only to the
specification of a single coolant-side heat transfer cocfficient
and, in the absence of surface tension effects, no other free
constants need to be specified. The model requires only the
numerical calculation of two integrals and thus a minimum of
numerical work is required.

The plan of this paper is as follows, Using the results of part
1, the coolant flow problem is formulated in the next section.
Next, the spiny tube model is developed and results for the
outlet mass fraction and temperature and absorbed mass flux are
presented. The influence of surface tension is discussed in the
following section.

A. Terrence Conlisk is an associate professor in the Department of Mecharmical Engineerinig ut Ohio State University, Columbus.
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Greometry showing the coolant side and film side
in cross section. The solution film thickness is
greatly expanded. The spines are not shown in
this figure.

Figure 1

COOLANT FLOW

The nature of the coolant flow problem s considered and
how it is coupled with the solution side. All the variables are
nondimensionalized based on global vanables; the total length
af the tube (L) and the velocity (L) based on total flow rate. The
analysis here is similar to that discussed by Conlisk (1995) and
the same notation is used for many of the vanables, Using the
standard heat balance in the tbe (Incropera and DeWint 1990),
the coolant-side bulk temperature is defined by the equation

. dTg,
Meoollpeaal gz = GsAr (n
Whiere
Ar = heat transfer area on the solution side,
4y = heat flux,
Tse = bulk temperature on the coolant side,
..r.'::,..,,,; = coolant mass flow rate, and
Cpeool = coolant specific heat,

2 Measures the dimensionless distance from the top of the tube
(Figure 1). In the experiments, the coolant flow passage 1s an
Annulus with an inside radius, 7, and an outside radius, r; (the
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inside wall radius): this is depicied in Figure 1. Since convec-
tion of heat is neglected on the solution side and conduction
also dominates through the tube wall, the dimensional heat
flux is

-

’ 172 .
gs = m“ﬁ'lhﬁbl = ad Egpuﬂmﬂnhuh' (2)

Note that the energy flux at the interfiice is assumed to be
composed of the latent heat released in the phase-change pro-
cess because convection in the vapor is small, as noted in part
1. Solving for the bulk temperature in the coolant using Equa-
tion 1,

THC{EJ_TB('M = E'{hﬂ”—h,{z”- (3)
where

uﬁ”zgzpunhn”q.r

E'= (4)

MeoolCpopal

Equation 3 expresses the important result that the rise in bulk
temperature is directly proportional to the increase in pertur-
bation film thickness. Note that this equation contains no
adjustable parameters; however, to actually calculate the per-
turbation film thickness, the film-side heat transfer coefficient
must be specified. This is discussed nex1.

The temperature distribution within the tube wall is conduc-
ton-dominated and in dimensional form, with r measured from
the centerline of the tube (Figure 1):

In| £

rﬂ‘
r= {T“r" Twc']—r + T“'f (5-;
In -?J
r.

I

where Ty is the wall temperature on the film side and Ty is
the wall temperature on the coolant side. By balancing the
heat load at the wall on the solution side, one obtains

b2 »
_ar,In(r,/r)pUS " BEmaoh,,,
Tw—Twe = - k l

(6)

W

where &, is the conductivity of the wall.
Nondimensionalizing Equation 3, one gets

B - THI'.' = Th'm
8C ﬁr {?)

E
=8, + E‘?‘“"{ 1) =hy(2)).
AT is the difference between the film surface and wall temper-
atures at the inlet on the solution side. Balancing the heat load
at the wall on the coolant side,
Twlz) = Taele) = mao, (8)
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where v is defined by

apUed " BEhy,[r, et -
—. + —— &
| r

1= = .

c

Now from the conduction-dominated temperature distribu-
tion and the boundary condition at the interface discussed in part
1, on the film side

BS = Hw-n“.ﬂ;l,nﬂ1 ll.]ﬂ}
where A = (8Y2BugRePr)/Ja. Using Equation 7 in dimension-
Jess form and the equilibrium condition at the interface,

Eﬁ- Lo ‘B‘nc—ﬂlﬂl‘luﬂw (11)
and
- IB b
Qg = C nc'EMuﬂ"'ﬁf (12}

with A’ = A + yand C = Aw/C;AT. Substituting the solution for
the mass fraction (Equation 26 in part 1) into Equation 12 and
using Equation 7, an integral equation for the mass absorbed
emnerges and the equation is given by

r }ﬁagdl

n(:_ []l” i
-~ | E [z e
= - Cu[ﬂ_Tjﬂm“udr_A man]+ ﬁ

~ Taking the Laplace transform of Equation 13, solving for
mgo in the transform plane, and then inverting yiclds

b — g
. _ H Jre Fdx “lﬂli‘
4
mah = “]Dil 3 F i (1 )
ﬂ[.t + —-'—] + I+ —=
ABT) Tt 2fwlpil
where H is a parameter defined by
T = Twi
H = CE+ BCour “"JI'I.1 (15)

A AAT

5 is the position of the pole of the function

I

) = s~ +5""/|Dy|.

AAT
where s is the complex variable for the Laplace inversion. To
obtain the bulk coolant temperature, the film thickness is
required and from the above expression for the mass flux, the
result is
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In Equations 14 and 16, ), is a parameter defingd by

; ]m
~ A
Dy 'uc{i} ’

The coolant side is incorporated by specifying the coolant
mass flow rate, the specific heat, and the average heat transfer
coefficient. In addition, the wall thickness and wiall conductiv-
ity must be specified. However, it is noted that AT = Tg;, —
Twin 15 unknown until the coolant-side temperaure is known,
The standard Dittus-Boelter correlation (Incropera and Dewitt
1990) is used to calculate the coolant heat transfer coefficient
(Miller 1993).

The only numerical calculation required is the evaluation of
the integrals in Equations 14 and 16, which cannot be easily eval-
uated analytically. Recall that the calculations based on the
assumption that the temperature becomes o Huction-domi-
nated immediately upon entrance to the tube. The results of
Conlisk (1992, 1995) suggest that this assumptipn 1 i
mately correct, since the adjustment region is sha
film surface temperatures are unknown and one o these must be
iterated. As in Conlisk (1995), we iterate on the d imensionless
film surface temperature (Bg); a relative test 4 used with a
convergence criterion of 1 . In geneml, the scheme converges
in less than 10 iterations.

o test the accuracy of the model, results fort
were calculated and compared with the experiment; these resulis
are given by Conlisk (1995). The results for all fio
good on the film side, although the temperaturg
outlet on both the film and coolant sides are sa
predicted.

The calculation of the absorbed mass flux
out in two ways. First, the absorbed flux has b
using the standard one-dimensional approach des
ous work (Conlisk 1992; Miller 1992). Howevet, the absorbed
mass flux can also be calculated using the two-dimen ional anal-
ysis; the mass flux is directy related to the film thickness and the
result for the total mass absorbed is

L.
J-umwnit = _h]{l}l {ITJ

where hy(1) is the film thickness al the outlet given by Equa-
tion 16. In the results of Conlisk (1995), the ore-dimensional
approach tends to overpredict the two-dimensiopal results.

At this point, all the preliminary work dquired for the
development of the spiny tube model is completg. In particular
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the mass ahsorbed is considered to be 4 perturbation (not neces-
sarily small) to the smooth-tube results in which an expression
for the mass absorbed between the spines is required. The model
is described next

THE SPINY TUBE MODEL

The data in Table 2 of part 1 suggest that surface tension
effects are effectively negligible for the tubes with a 1/4-in. pitch,
1 bit more important for the 3/16-in. pitch, and possibly a first-
order effect for data sets ht3-1 and ht3-2; consequently, we begin
by using the smooth-tube analysis of the previous section to
build the spiny tube model. In the model, the wtal absorbed mass
flux is considered to be the sum of a smooth-tube component
plus a spiny wbe component:

- -

ﬂ.‘lw = A"‘H:I“;"'tl "-"'lm]f;’n:p' {Is}

where A, is the ratio of the total area of the tube minus the
portion between the spine channels to the total surface area of
the tube. The units of , are, say, kg/m®/s. Thus, using the
scaling parameters maotivated by previous work (Conlisk
1992, 1994a) and with M,z = m,/P U the dimensionless
mass flux is thus given by

?;fnl" = Ef;lnT
152 . Ei;zf,, v
=8 "ep A mgs0+ (1 "Am}"é%}"fjma:pﬂ ;

In Equation 19, it is assumed that each spine channel around
the circumference contributes the same amount to the absorption
process. If a mass absorption enhancement parameter is defined

by

(19)
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then Equation 19 may be written concisely as

-I“-fn?' = ‘EHIEE{AmﬂL‘nﬂ"' (1 "ﬁm]Mt"-‘MPu}' (20)

The absorbed mass flux in the region between each pair of
spine rows is given by Equation 14 in the global dimension-
less variable z; the global variable z is made dimensionless on
the length of the tube. The spiny tube component of the mass
flux is modeled based on the realization that as the solution
passes between the spines, the local length scale is the pitch of
the tube rather than the total length of the tube. Moreover,
each spine channel carries only a small portion of the total
mass flow down the tube. In addition, physical arguments sug-
gest that the wall temperature difference through the spine
channel will be very small. It is through the axially varying
wall temperature difference that the influence of the coolant
flow on the film is felt. The mass transfer in this region is
likely 1o be driven by the lack of equilibrium between the bulk
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of the film and the wall as characterized by the fact that f # 0.

Here [3 is defined (Conlisk 1996) as
Cilyin* Ca= Oy pypx
p= o . @1
Thus for use in Equation 19 we define
- C
mﬂ_q_-.{]- = A._HGEE}- {2—2}

ap
where

I
Bar g3

D"’:Erfc(lﬂ—“::::[ } (23)

Glz) = ¢

where D, and A, are parameters based on local spine quan-
titics and are defined by

A,
D“p e ﬁ‘u_g

E: - Be_RePra

Ay = ia

Equation 22 may be derived in smooth-tube variables by
assuming that the wall lemperature is locally constant <o that
in dimensionless terms 8y, = 0, The solution is given in Con-
lisk (1995).

To begin the solution process, the geometrical parameters
for the spiny tube are input and the dimensionless parameters are
calculated. The number of points in the grid mr = N, + |, where
N, is the number of spine rows on the tube; thus, each grid point
corresponds to the outlet of row § or the inlet to row i + 1 in the
glabal coordinate system. The number of rows per six inches was
measured by the author during a visit to a national laboratory;
based on this measurement, for the 1/4-in. pitch, there are 240
spine rows; for the 3/16-in. pitch, there are 320 spine rows; and
for the 1/8-in. pitch, there are 480 spine rows. The number of
spine rows is related to the pitch by the equation

L=N,L
= — (24)

Pﬂ - NJI‘

where Ly, is the root chord of the spine in the primary flow
direction and has been measured to be about 1/32 in. The pitch
of the tubes is defined as F' = F'g + L, Use of Equation 24 for
Py allows variation of the chord of the spines while keeping
the pitch the same.

The numerical procedure used for the spiny tube is the same
as discussed previously for the smooth tube. In Figure 2 are the
results for the local absorbed mass flux as a function of axial
location down the tube for the data set htl-2. The dashed line is
far the spiny tube and the solid line is for the smooth twbe. Note
that the enhancement provided by the spiny tube is not great and
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Figure 2 Demensionless mass flux as a funciion of distance Figure 3 Film (highest), bulk {solution side), and bulk
dewn the tube for the spiny (dashed curve) and the coolant temperature (lowest) as functlons of
smooth tube for data set hel-2. distance down the tube for the data ser bt f-2.

TABLE1 Results for the Spiny Tube Model for the Length of the Spines Being 'y, in.*

Data Set htl-1 htl-2 ht2-1 ht2-2 L ht3-1 hid-2
Solution Side
Mass Fraction LiBr In 6014 SA53 62E6 6273 5927 260
Average Mass Fraction LiBr Out
Experiment 5796 J6060 A161 G118 5821 B1HS
Theory 5731 JB044 H130 B056 5648 BGI1R0
Theory (smooth) 5755 6064 6150 BORT 710 G158
Film Temperatare In (K] 325.44 325.00 329.53 33045 e 259
Average Temperature Out
Experiment 315.45 321.21 324.19 317.47 30E.93 32342
Theory 311.57 313,86 324.91 313.99 3243 31286
Theory (smoath) 311.29 31301 324.14 312.82 311.37 32104
l.g T e e e e £ A ————— ——
Mass Ahsorbed o
Experiment 0174 L029] D082 L2333 D085 U189
Theory 1D 0227 D309 0102 D328 N2329 01w
Theory 2D A188 0273 089 0292 0189 R )
Theory (smooth 1D) 0207 0276 J0RS D281 D176 0138
Theory (smooth 2D) 0172 0245 0077 0250 0146 0132
[ e ———————— e e ————————— e e e
Coolant Side
Temperature Chut
Experiment 32124 314.29 325.18 313.55 31100 321.26
Theory 3010 310,712 324.24 310.50 31062 32042
Theory (smooth) 0584 31045 324.13 310,11 31020 320,08

* No free constants nre used in the comparisons
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is concentrated in the portion of the wbe away from the
entrance. The rapid vaniation of the absorbed mass flux near the
entrance is due to the presence of a discontinuity in the mass
fraction at the inlet z = 0; this discontinuity is discussed in both
Conlisk (1992) and Grossman (1983); Conlisk (1992) has
shown that the local film thickness near z = 0 behaves like & ~
| + Age, where Ag is a positive constant and d is a positive
constant between 0 and 1. From Equation 1 of part 1 (Conlisk
1996), this behavior leads to an integrable singularity in the
mass absorbed.

In Figure 3 are the film surface (highest), solution bulk
temperature and coolant bulk temperature (lowest) for the condi-
tions of Figure 2. Here it is noted that the difference between the
film and the bulk solution temperature is decreasing slightly with
distance down the tube. Nute that the bulk coolant temperature
varies only mildly; this figure is similar in character to Figure 4
of Patnaik et al. (1993), who present the same temperatures in
dimensionless form. [t should be noted, however, that due to the
one-dimensional nature of that work, the inlet bulk solution
temperature is assumed to equal the inlet film surface tempera-
ture. Results for the surface and bulk mass fractions (not shown)
exhibit similar trends,

Table 1 shows the results for the six data sets whose dimen-
sionless parameters are given in Table 1 of part 1, The agreement
between theory and experiment for the 1/4-in. pitch tube is rela-
tively good and this seems 10 coincide with the relatively small
value of the local spine parameter €,,%Ca (Table 1 of part 1). The
outlet solution and coolant temperatures are consistently under-
predicted; the reason for this is unknown. As the pitch of the tube
becomes smaller, e,,*Ca increases until, for bath the data sets
having a 1/8-in. pitch, the agreement is poor. This coincides with
increasing values of €,,°Ca. Table 2 gives the results for the
parameter set htl-2 as a function of the chord of the spines. Note
that according to the present model, a longer spine root chord
may be advantageous, although a longer chord increases the
likelihood that the absorbed mass flux may be reduced due 1o
capillary effects; clearly, there is a trade-off here and this point
needs more work., In Table 3 are results for ht1-2 as a function of
the number of spine rows for the 1/32-in. spine root chord, Note
the monotonic increase in the mass absarbed; also note that a
small number of spine rows does not increase the mass ahsorbed.
It should also be noted that the present results agree well with the
experimental data presented by Miller and Perez-Blanco (1994)
in Table | of that work. In particular, the 6.4-mm tube is the Y-
in, pitch tube quoted here, although some of the other specifica-
tions are slightly different. Several runs were made using those
data and the result for the total mass absorbed using the full two-
dimensional analysis is 0.0118 kg/min, which compares favor-
ably with the experimental value of 0.0110 kg/min obtained by
subtracting the mass flow out from the mass flow in rows 12 and
13 of the table in Miller and Perez-Blanco (1994),
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TABLE 2 Results for the Spiny Tube Model for the
Lnngtl'l of the SPH'IEB !.ﬂw in. and for 1f32 in.
for the Data Set ht1-2

Spine Length 1116 132
Saolution Side

Average Mass Fraction LiBr Ow 6023 6047
Average Temperature Out 31491 313.86
Mass Absorbed ( =% ; 1D) 0349 0309
Mass Absorbed ( A% ; 2D) 0309 02
Coolant Side

Temperature Out 31106 310.72

TABLE3 Results for the Spiny Tube Model as a
Function of the Number of Spine Rows or

Pitch for Data Set ht1-2*
Spine Rows 1] 60 | 120 | 180 | 240
Solution Side
Average Mass Fraction (6069 | 6066 | 6061 | 6056 |.6047

LiBr Out
Avernge Temperature Our 313,01 (33,14

Mass Absorbed o=

313.36(313.59(313.86

Theary (1D) 0276 |.0282 |.0290 [.0299 |.0309
Theory (2D) 0245 | 0250 |.0257 |.0265 |.0273
Coolant Side

Temperature Out J10451310.500310.57|310.64|310.72

* The first column {s the smooth tube case, The 240-row column is
the !y in. pitch case. The spine chord is Yay in.

In summary, it is clear that the spiny tube increases the
absorbed mass flux when compared with a smooth tbe.
However, as the experimental data make clear, the enhancement
is obtained for only a limited range of pitch and the enhancement
is not large. Further analysis suggests that the physical mecha-
nism for the decrease in the mass absorbed for smaller pitch is the
capillarity effect caused by surface tension, and this is investi-
gated next.

THE INFLUENCE OF SURFACE TENSION

In the absence of surface tension, the calculated resulis
show a monotonic increase in the mass absorbed as the number
of spine rows increases, which is equivalent to the pitch decreas-
ing. On the other hand, the experimental results show a decrease
in the mass absorbed as the pitch decreases.

To better understand this phenomenon, additional study of
the influence of surface tension has been undertaken. The influ-
ence of surface tension can emerge in two distinet ways, First,
if the liquid-vapor interface is curved, there is an effect based on
the nonzero value of the surface tension coefficient; this effect
is termed capillarity and is proportional to the capillary number
as described in part 1. In the present formulation, this effect is
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characterized by the capillary number Ca and the Jocal value of

which is the ratio of the film thickness to the pitch of the tube.
Second, if the surface tension varies with temperature and mass
fraction, there will be an additional circulation set up due to the
generation of an additional induced stress. In a pure fluid, the
circulation set up by the surface tension gradient with tempera-
ture is called the Marangoni effect. It should be noted that in the
general case, the surface tension coefficient will be a function of
the mass fraction and temperature. However, for the present
problem, the surface tension gradient will be a function only of
temperature gradient because of the linear relationship between
mass fraction and temperature in the equilibrium condition at the
interface. Also note that the present situation does not, strictly
speaking, correspond to classic Marangoni convection since we
are dealing with a fluid mixmure, In what follows, this fact is
denoted by putting the lerm Marangoni in quotes.

For LiBr-H,0, the surface tension decreases with increas-
ing temperature and decreases with increasing water mass frac-
tion (Luddy 1987; Yao et al. 1991; Hozawa et al. 1991) and for
simplicity it is assumed that

O = O = YT = Ti) = Ypg{ @y = Oy 5n) (25)

where @y is the surface tension coefficient at T = Ty, and at
0y = W45y here both vr and vy, are assumed constant. It is
recalled that @, is the mass fraction of water. The variation of
surface tension induces an additional stress at the liquid-vapor
imerface, leading to a boundary condition at the interface of
the form

e eMaag €Ma_gn

% - Pa; B 3 (26)
Here Ma and Ma,, are “Marangoni” nurmbers:
AT Aw
Ma = LA__'C.E Ma 31"'.’5._._‘:!!_ (2N

ktry © ™ klfy

In the global smooth wbe vanables, eEMa 001 and so the
effect of the variation of surface tension with temperature
appears negligible; a similar comment applies to the variation of
surface tension with mass fraction. In the region between the
spines, £, Ma/Pr .05, which suggests that the influence of the
surface tension gradient with emperature is also not important
there. A similar result holds for the varintion of surface tension
with mass fraction using data from Yao et al, (1991). This is
consistent with the assertion of Sternling and Scriven (1959),
who suggest that a large surface area is required for the
“Marangoni” effect to be significant. From this discussion, it
does not appear that “Marangoni” convection is significant for
the parameters of this problem, and the primary influence of
surface tension is in the capillary effect.

As mentioned above, the decrease in the mass absorbed
seems to coincide with the growth of the punnmarl:,Pj'Cu. From
Equation 20 of part 1 (Conlisk 1996), the z-velocity is multiplied
by the factor (| — A&*Ca) and so it is reasonable to look for a
correction to the total absorbed flux on the local spine scale in the
form of
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TABLE4 Results for the Spiny Tube Model as a
Function of the Number of Spine Rows or

Pitch for Data Set ht3-2*
Spine Rows (1] 320 | 360 | 400 | 480
Solution Side
Average Mass Fraction  [.6158 | 6135 |.6155 | 6155 6158
LiBr Out

Avernge Temperatre Out |321.34321.411321.43|321.43|321.41
Muss Absorbed a“";

Theory (1D) 0149 | 0154 | 0154 | 0153 |0149
Theory (2D) A132 10137 0137 [.0136 |.0133
Coolant Side

Temperature Out 320.08(320.12(320,12{320.12(321.00

* Corrected for the influence of surface tension {capillary). The first
column is the smooth tube case. The 480-row column is the '/g
in. pitch case. The spine chord is ' n. and A=3.0.

TABLE S Results for the Spiny Tube Model as a
Function of the Number of Spine Rows or

Pitch for Data Set ht1-2*
Spine Length 0 | 320 | 360 | 400 | 480
Solution Side
Avernge Mais Froction  |.606% (6048 | 6047 6046 (6048
LiBr Out
Avernge Temperature Out (31301 [314.07({314.09/314.17|314.30
Mass Ahsorbed f.':,
Theory (11} A276 10311 |.0313 0314 0310
Theory (2D) L0245 |.0276 |.0278 |.0279 |.0277
Coolant Side
Temperature Out 31045(310.74|310.76(310.78|310.76

* Corrected for the influence of surface tension (capillary). The first
column is the smooth tube case. The spine chord s Y4y in. and
A=3.0,

r;:nT. oy = K= J"Eipﬂﬂjr;!ﬂr- (28)

Results for the corrected mass absorbed for data set ht3-2 are
depicted in Table 4. Note that the maximum value of the mass
absarbed is obtained somewhere around a pitch of 3/16 in.
(320 spine rows or stages). Similar results are depicted in
Table 5 for the data set htl-2; since the only significant differ-
ence between the two data sets is the coolant temperature, we
would expect the maximum result to be around the same pitch
as that for data set h13-2 and this is the case. Note that for data
set hi3-2, the corrected values agree well with the experimen-
tal results. The value of A, which, strictly speaking, is defined
as A = LJL, is somewhat a matter of choice; in the present
context, this must be considered as a constant encompassing
the overall effects of the pressure gradient and film effects due
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to surface tension. Consequently, the value of % = 3.0, while
realistic for the tube considered, must be viewed as a heuristic
estimate of all the effects of surface tension,

The precise reason for the decrease in the mass absorbed as
a result of surface tension is o matter for some speculation. It is
known that a thinner film is better for mass absorption than a
thicker film. To see this, consider the spiny tube component of
the mass flux, which is given by Equation 22. In the regime
between the spines, the value of D 1sp 18 small. Using the defini-
tions of the dimensionless parameters and the fact that Uy =
ghy %M, we consider the limiting case of D, small; then it is
easily shown from Equation 22, along wi{g the asymptotic
expansion of the error function (Abramowitz and Stegun |965)
for large argument, that in the region between a pair of spines
(1.2, in a spine channel)

12 N
T Bo(1/2) D, gyl2
ma = €8 B0 - 27 @)
-md:m gi";p ﬁﬂ“ll::.
where B = Awfl and it is readily seen that
' 1
m"__;,—'+a{lj for rﬂl:;:' small, {30}
o

At o fixed flow rate as the pitch decreases, because of the
increased number of spine rows, the fluid is expected to wick
up a given spine. Consequently, the average film thickness
may become so thick that the mass absorbed is significantly
reduced. Additional work is required to quantify this effect,
however.

SUMMARY

In the present work a model for the caleulation of the mass
absorbed on a spiny tube has been developed. The model is
subject to the specification of only a single avernge heat transfer
cocfficient on the coolant side. The model requires a minimum
of numerical computation, with the mass absorbed given by a
single integral that can easily be evaluated numerically by a stan-
dard procedure, It has been shown that the total mass absorbed
is enhanced for the spiny tube over the smooth-tube result;
however, the enhancement is not large and is significantly
decreased with increasing influence of surface tension through
capillarity,

The geometry of the spiny tube is complicated; moreover,
the solution to the absorption problem requires the simultaneous
solution of the velocity field and the temperature and mnss frac-
lion over the entire tube. As noted in part 1 (Conlisk 1996), the
problem near the spines is generally fully three-dimensional.
Thus, substantially computational approaches to this problem
dre not likely to be productive. Thus a rational approach to the
solution of the full problem has been sought by evaluation of the
various physical effects through calculation of the relevant
dimensionless parameters of the flow and heat and mass transfer
problems,

In the region between a pair of spines, the mass transfer has
been assumed to be governed by ashort-length scale correspond-
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ing to the pitch of the wbe. The magnitude of the dimens
parameters for heal transfer indicates that a good approx;i
may be obtained by a simple conduction-dominated 1
Finally, the mass transfer problem may be reduced 1o g p
similar to the smooth-tube case, where mass transfer take
only near the liquid-vapor interface.

The influence of surface tension may be felt in two
capillarity and the Marangoni effect. It is shown that
paramelers of the present problem, the Marangoni effect js
gible. On the other hand, the decrease in the mass ahsork
the smaller values of the pitch seems to correlate wi
increase of a parameter based on local spine scales | - de,
and the experimental data for the smaller values of the
agree well with a simple linear correction factor fora given
of &. It must be emphasized, however, that the evidence sy
ing this view is circumstantial only, and a full theoretical iy
tion for the drop in the mass ahsorbed cannot yet be giv
qualitative physical reasoning for the drop in absorbed mas:
bedmmﬂufact&lmasmumnpimmwsmnddndﬂhat
the pitch of the tube becomes smaller), the average film 1
ness increases, leading to a smaller value of the absorbed
flux.

In the present model for the spiny tube the presen
waves and their effect on the absorption process have not
considered. This situation is discussed by Conlisk (1992) fc
case of a smooth tube, where it is concluded that the low \
of the Reynolds number renders the influence of waves neg
ble (Javdani 1974). Moreover, as noted by Miller and Pe
Blanco (1994}, no promunent wavy flow was visible in their
alizations, It is expected that the influence of waves on r
transfer will become much more important as the Reyn
number increases.
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NOMENCLATURE

A = constant defined just after Equation 10
A’ = constant defined just after Equation 12
A, = see discussion following Equation 18

Ay = constant defined just after Equation 23
Ar = heat transfer surface area on solution side
i = (@ysin ~ Dapur a1 = @)

C = constant defined just after Equation 12

Cy = constant defining the equilibrium condition at the
interface: vy = T+ C,

Cy = constant defining the equilibrium condition at the
interface; wy = C\T+ C,
Cp = specific heat
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= specific heat of the coolant

= constant defined just after Equation 16
= mass diffusion coefficient

= constant defined just after Equation 23
= constant defined by Equation 4

= Froude number

= acceleration due to gravity

= h'lhy

= dimensional film thickness

= dimensional film thickness at the inlet
= h=1+8"28h +...

= heat of absorption

= convection coeflicient in the coolunt

= constant defined by Equation 15

= Jakob number = c ATV,

= solution thermal conductivity

= thermal conductivity of the tube wall
= tube length

= spine root chord

= Lewis number = PrfSc

= pitch of the tube

= dimensionless mass flux

= m,/ Pl dimensionless mass absorbed
= defined by my = 8' " Brtgo + .

= mass flow rate of coolant

= dimensionless spine tube component of the absorbed
muass flux

= dimensionless scaled spine wbe component of the
absorbed mass flux

= dimensional mass absorbed-smooth component
(Equation 18)

= dimensional mass absorbed spine wbe component
(Equation 18)

= thermal Marangoni number; Equation 27

= mass Marangoni number; Equation 27

= total dimensionless mass flux

= mass absorption enhancement parameter

= number of spine rows

=nt-1

= defined by Equation 24

= Prandtl number = pc,/k

= dimensional heat flux at the interface

= Reynolds number = (Ughy " v

= nner radius of tube; Figure 1

= outer radius of tube (solution side); Figure 1

= inner radius of annulus; Figure 1

Schmidt number = v/Dyy

= thickness of the tube wall between coolant and film

Tpe = bulk coolant temperature
Thcwe = bulk coolant tlemperature out

Ty, = film surface temperature at the inlet
Tw = wall temperature on the film side
Twe = wall tlemperature on the coolant side
Twsn = wall temperature at the inlet on the film side
AT = Tgin = Tt
Uy = ghy v, velocity scale
¥ = dimensionless coordinate normal to wall;
nondimensionalized on Ay,
z = dimensionless coordinate in the axial direction;
nondimensionalized on the length of the whe
Greek Symbols
= p,/p in the film bulk (constant)
B = defined by Equation 21
b = l/EReSc
5y = e, ReSc
£ = hy'IL
Esp = 'ﬁﬂ.‘fl?
¥ = constant defined by Equation 9
The = see Equation 25
Yr = see Equation 25
v = mixiure Kinematic viscosity
= mixture density
P = density of water
o = surface tension defined by Equation 25
o) = O{Tgjy, Wy 5, surface tension
B = (T = Ty VAT
Ba- = scaled coolant bulk temperature
8 = dimensionless film surface emperature
By = dimensionless wall temperature
Aw = g, Q4RULE
Wy = mass fraction of species A

Wy g x= mass fraction in the bulk; constant
Wysin = flm surface mass fraction at the inlet
Q = (y ~ By g)Aw
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