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Prediction of the Performance of a Spined-Tube
Absorber—Part 1: Governing Equations and

Dimensional Analysis

A. Terrence Conlisk, Ph.D.

ABSTRACT

The falling liquid film has become a popular means of
transferring heat and mass from a vapor to a binary lig-
uid, especially in gas-fired heat pump systems. Ideally, the
required amount of heat and mass transfer can be accom-
plished by using a simple cylindrical tube; however,
increasingly stringent size and weight requirements for
the machine generally prohibit use of the simple cylindri-
cal surface and other, more complex, surfaces have been
sought that are believed to have a higher absorption
capacity. Thus, in this paper, absorption of water inle a
lithium-bromide-water (LiBr-H-0) film on a spine-finned
ar spiny tube is considered. The governing equations for
the fluid flow and heat and mass transfer problems are
derived, and ir is shown that selution to the full equations
for use in a design is not practical. Dimensional analysis
is employed 10 simplify the governing equations consider-
ably when the influence of surface tension is small. It is
shown that on the local spine scale, the temperature dis-
tribution is conduction-dominated and when the influence
of surface tension is ymall, the mass transfer problem is
governed by essentially smooth tube dynamics. A model
for the performance of the tube is developed in part 2.

INTRODUCTION

In this paper the nature of the flow and heat and mass
transfer on & spine-finned tube is examined. A model to
predict the total mass absorbed on the tube and other rele-
vant design quantities is developed in part 2 of this work
{Conlisk 1996) based on a dimensional analysis of the prob-
lem given in this paper; the nature of the flow and heat and
mass transfer on the tube depends on the relative magnitude
of a number of dimensionless parameters. There are three
major objectives of this work. First, the primary objective
has been to develop a simplified design procedure to calcu-

late the mass absorbed on the “spiny” tbe as a function of
a number of geometric and flow parameters. Second, there
has been a concerted effort 10 minimize the use of free
constants to better fit the experimental data. Finally, we
have alst sought to minimize the need for large-scale
computing power, The present model may be executed on
a personal computer, with the solution for a single design
point taking only seconds to run,

The geometry of the spiny tube is complicated (Figure
1), with the flow theoretically able to vary on a length scale
much shorter than the length of the tube; a schematic of the
tube defining the local spine coordinate system is shown in
Figure 2. At this point it is perhaps appropriate to define the
spiny tube geometry and define terms. In the local spine
coordinate system, the direction of the z coordinate is
termed the axial direction, the direction of the x coordinale
is termed the spanwise direction, and the direction of the y
coordinate is termed the normal direction. The axial direc-
tion is the primary direction of fluid motion. The pitch of
the tube is the distance between spine rows, and the chord
of the spine is the length of the spine in the primary flow
direction. The chord at the base of the spine is termed the
root chord, and the length scale (L) depicted in Figure 2 is
the pitch. A spine row is the collection of spines in the tube
azimuthal direction. For example, a single spine from three
spine rows is depicted in Figure 2b. A spine channel is the
region between two spines in the same row. A spine channel
has a local spanwise length equal to L, and an axial length
equal to the local spine chord.

As with all flows that can be modeled as a continuum,
the fluid flow is governed by the solution of the Navier-
Stokes equations along with conservation of mass. To make
matters more complex, the energy and mass transfer equa-
tions must be solved simultanecusly in the same geometry.
Because of the extremely complicated geometry, solution
of the full Navier-Stokes equations in each spine channel
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Figure I  Photograph of a typical section af a spiny tube.
and between spine rows would be a formidable task, the
results of which would likely be of no use for design of
these tubes. Consequently, a different approach is taken
here; the simplifications considered are those that arise
when some of the physical effects inherent in the flow and
heat and mass transfer problems may be neglected.
Whether certain physical effects can be neglected depends
on the magnitude of the relevant dimensionless parameters
for each of the fluid, heat, and mass transfer problems. Two
results of this type of approach are the facts that, on the
locul spine scale, the temperature may be assumed to be
conduction-dominated and that significant mass transfer
can be shown to take place only near the liquid-vapor inter-
face (Conlisk 1992, 19944, 1994b, 1994¢). In the present
problem, a critical simplification is the fact that for the
parameters considered in the experiments (Miller 1993;
Miller and Perez-Blanco 1994), direct calculation of the
surface-tension-driven flow near the spines does not appear
to be necessary 1o develop a simplified model for the best-
performing tubes (Conlisk 1996).

The model for the absorption problem on the spiny tube
is based upon analysis of two regions of interest. In the
region between the spine rows that is depicted in cross
section in Figure 2b (region 1), it is assumed that the influ-
ence of the spines themselves is negligible and the heat and
mass transfer problems are governed by the global variables
of total flow rate and total length of the tube. In the region
between individual spines that collectively make up a spine
row, termed here a spine channel, the heat and mass transfer
is assumed to vary on the axial length scale defined by the
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Figure 2 Geometry of the spiny tube: (a) schematic of a
rypical end viw of a portion of a tube; (b) side
view af three spine rows; (c) end view of a single
spine channel.

tube pitch (Figure 2c, region 2). In this region between the
spines it is assumed that the wall temperature is constant
because the chord of the spines is so short, and in this region
a closed form for the mass absorbed is obtained (Conlisk
1995).

Patnaik et al, {1993} and Perez-Blanco (1988) have
developed design tools in ammonia-water and LiBr-H,0
mixtlures for absorption into falling films on smooth tubes.
For the LiBr-H,0 problem, Patnaik et al. (1993) use a one-
dimensional approach 1o calculate the amount of water
vapor sbsorbed into the liquid film. They use standard
correlations for heat and mass transfer coefficients to mode)
the heat and mass transfer in the film. Heat and mass trans-
fer coefficients are taken from the literature to complete the
problem so, strictly speaking, the work is not truly predic-
tive. Design charts are produced for a wide variety of cool-
ant and film-side parameters (see also Andberg and Vliet
[1983]). Fundamental calculations have also been
performed by Grossman (1983), Additional references and
an extensive discussion of past work in the area appears in
Conlisk (1992). It is instructive to note that all this work is
for smooth tubes and, to the author's knowledge, no work of
a predictive nature for an enhanced tube has appeared in the
literature (although Conlisk [1994c] has formulated the
problem for the fluted wbe). Indeed, the numerical tech-
niques used in much of the work in the absorption area
simply cannot be applied to more complicated geometries.
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The plan of this paper is as follows, In the next section,
the assumptions of the model are presented and the full
governing equations are presented next. Then, dimensional
analysis is employed to determine the impartant physical
effects that must be incorporated into the model; in this
section, the magnitude of each of the dimensionless paramn-
eters is calculated and, on this basis, the fluid flow and heat
and mass transfer problems may be greatly simplified. The
solution for the fluid flow on the tube is given and, follow-
ing this, the heat and mass transfer problems are formulated
and solved; in particular, because the influence of surface
tension is weak, at least for the best-performing tubes, the
solution for the smooth tube may be employed as the gener-
ator of a model for the Heatron tube.

In past work by the author (Conlisk 1992, 1994a,
1994b, 1994c¢), the wall temperature must be specified. To
eliminate this requirement, in part 2, the coolant-side prob-
lem has been formulated and coupled with the film side, and
a model for the prediction of the absorbed mass flux on the
spine-finned tube is developed. In this way, the entire
absorber system is modeled; a countercurrent mode of
operation is assumed. The model is subject only Lo the spec-
ification of a single coolant-side heat transfer coefficient
and, in the absence of surface tension effects, no other free
constants need to be specified. Moreover, the model
requires only the numerical calculation of two integrals and
thus a minimum of numerical work is required.

ASSUMPTIONS

The methods to be used are similar to those used in
Conlisk (1992). The analysis is fully two-dimensional and
does not require the use of any heat and mass transfer coel-
ficients on the solution side. The following are assumptions
are made.

+  The fluid is Newtonian having constant properties. The
tube is oriented vertically, and the flow and heat and
mass transfer problems are assumed to be steady.

= The vapor is a pure fluid, and hence, no mass transfer
takes place in the vapor. The velocity in the vapor is
low and so the liquid-vapor interface is, to leading
order, stress free. The vapor is taken to be water vapor.

+  The film is thin in the sense that acceleration of a fluid
particle within the film is negligible. This means that
the Reynolds number is small, typically being on the
order of 20 to 60. The effect of surface waves on mass
transfer is neglected, as suggested by Javdani (1974).

«  Conduction is the dominant mode of heat transfer in
the liquid film.

+  The relevant balance for mass transfer is between ordi-
nary diffusion of mass and bulk convection. Thermal
diffusion is negligible and, because the pressure
changes within the system are small, pressure diffu-
sion is negligible,

Nz

LiBr-H,0 mixture of interest, this means that the mass
fraction at the interface is a linear function of the
temperature there.

*  The liquid-vapor interface is in equilibrium. FI“H“:

* The flow is evenly distributed between each pine
channel, so the flow is independent of the azimputhal
direction. The flow in each spine channel is ind¢pen-
dent of the flow in the other spine channels.

= Ina given spine channel, the local wall temperatyre is
assumed to be constant,

GOVERNING EQUATIONS ON
THE LOCAL SPINE SCALE

The primary effect of the spines is to allow the [flow,
and hence the heat and mass transfer, to vary on a scale
much shorter than the tube length, much as the fluted wbe
generates a transverse flow driven by surface tension |from
the crest to the trough of the flute (Johnson and Cynlisk
1987; Conlisk 1994c). In that case, this transverse|flow
prevents rapid growth of the film thickness down the wbe
and changes the vertical length scale over which the film
thickness may change from the length of the tube to a
length based on a balance between surface tensiog and
gravity (Johnson and Conlisk 1987).

In this section the form of the governing equati
the local spine coordinate system is examined to detegmine
the nature of the flow and heat and mass transfer proflems
there; the initial point of the domain is the inlet to the spine
channel, and the end point is the inlet of the next spine
channel. The spanwise width of the domain is on the prder
of the distance between the spines at the liquid-vapor jnter-
face (L,; Figure 2). Thus, the new length scale ip the
primary flow direction is the pitch of the tube. It i§ then
indicated how the governing equations on the global ycale,
defined by using the total length of the tube instead f the
pitch for the axial length scale and by assuming axisymme-
try, are obtained.

In what follows, the governing equations are nondi-
mensionalized on the local scale based on the length trind
(Ly. hy", L), where the directions (x", ", 2°) are dgfined
in Figure 2 and L, is the nominal spine separation {n the
spanwise direction, hy' is the film thickness at the ifjlet to
the domain, and L, is the pitch of the tube. For the
of interest, it appears that L, - L. The velocity scal
is computed from flow rate considerations, which

ns in

scales are fixed by u:~ir|lgtI the classic one-dimengi
Nusselt relation /g = ghy /v, where v is the kin
viscosity,

Based on the flow rates of interest in this proble
film thickness scale, hu'. is much smaller than all the|other
length scales in the problem, and the flow variations in the
y-direction are much greater than those in the othdr two
directions. Because of this, the flow is viscous inll
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throughout the film, All parameters in this section are
defined on the local spine scale unless otherwise specified.

To illustrate the basic procedure, consider the
momentum equation in the z-direction. which is given by

F[u.a“—'. - ‘EPL; + wta—w.-] = —é‘E;
ax E\‘}- ﬂz H:

a'?'_w. azwq azwo}
+pe+il e+ v 5
& [3.: 2 3y R

where | is the dynamic viscosily, p is the density, and all
the * variables are dimensional. To define dimensionless
distances, we write, for example, in the x-direction, x =
x'IL,, and similarly for the other directions using the
length triad as defined above. For the velocities, we write
(u, v, w) = (", v", w') Uy, Then, for example,
2 _12
a:t e L{I_:t

and. substituting into the momentum equation, we obtain

v aw 'H-"'HW

Pﬂé[‘"'%’—"*-a‘*‘r]
L,ox  p ¥ L.o:z

Multiplying through by h:ff Wy we obtain

dw | dw dw

E
L

= —E‘Fgei + ReFr

where
A=L/L,
£, = ho'Ly
Re = Uﬂ.t,;fv.
and the dimensionless pressure is p = p /(U hgy") and Fr

is @ Froude number, defined by Fr = ghy'/Uy". This equa-
tion corresponds to the third component of Equation 1.
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Governing Equations for the Fluid Flow

The governing equations for this problem are the
Navier-Stokes equations; as noted above, only the steady
flow equations are considered. In the present problem, the
flow is of the lubrication type and it is natural to use the film
thickness to define the Reynolds number. Nondimension-
alizing the equations as described above, the governing
equations in nondimensional form are given by

-I + + E;:r
£ Re(y- Vv =p+ %

n y (1)
2 - i

20V L2209V
+E;F311+.-h E‘Pa—"i.

where Re is the Reynolds number based on the length
(hy") and the scale velocity (Up) as defined above. The
operator V is defined by

d 19 d
v, = A GE 5 @)

-+
The vector p is the pressure gradient and body force and
is defined by

5

p= (--.3'&“\‘:.t ngf -gz;. ReFr - F.‘Fgg}

Because the film is very thin, the continuity equation
requires that the velocity nergal to the film surface is
O(g,p), s0 the velocity vector V= (i, Egvg W) where v =
Egp¥g + - 1O leading order. Thus, any mass absorbed 1%
first and foremost O(€,;). The continuity equation is given

by
v, y=0. (3)

The above equations are similar in form to equations
derived in the three-dimensional lubrication theory except
that the present flow is induced by gravity rather than by a
pressure gradient (Hamrock [1991], p. 144). Equations 1
and 3 are a set of four highly nonlinear partial differential
equations, which, in general, must be solved numerically.

Referring to Figure 2, the boundary conditions are no-
slip at the spines and on the tube; that is, the fluid velocity
must be zero at these locations. If each spine channel is to
be analyzed as a separate fluid system, upstream and down-
stream conditions are required. For example, one can spec-
ify the undisturbed velocity upstream of the spine channel;
the downstream condition can be formulated in several
ways. If the pitch of the tube is long enough, to a good
approximation, it can be specified that the solution is
locally independent of the axial coordinate.

Finally, there are conditions at the free surface. The free
surface conditions express the fact that the stress must be
continuous across the interface; these conditions serve 10
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specify the pressure distribution as well as (in the usual
case) velocity gradients at the interface (Weyhausen and
Laitone 1960) and are given by

dh 1 r] dhdi[+d£ ke dy
S Pﬁﬁﬁy e

(4)
du o Ow ] 1 1%k
...E [a— .’LE— CahE,F[R—I-FEJE;.

-P+z§tl Ae JP[ : g-“ :agl’
(s)
-.hr I dw
A fr calg+ 72}
dly zd‘.ﬁd» ldud&
LTS sh AP o el v
Do it - il
*ﬁ*%54%£$ Q

o B
a Rz v=h

where R and R are the principal radii of curvature of the
interface with respect to medium 1 (say, the vapor) and
medium 2 (say, the liquid film}, and A is the dimension-
less film thickness. Note that the pressure on the viscosity
has been scaled (p = p"NpUylhy")) and so the capillary
number, Ca = ap/ully, enters the boundary conditions at
the interface. Here, W is the dynamic viscosity and o is
the surface tension coefficient, which is assumed to be
constant. If the dimensionless pressure were scaled on the
surface tension, then the Weber number would enter the
equations, The Marangoni effect, which corresponds to
the generation of flow patterns as a result of surface ten-
sion gradients, has not been included in the free-surface
boundary conditions; more will be said about this in part 2
of this work (Conlisk 1996). The expression for the radii
of curvature is given by Wevhausen and Laitone (1960},
and for thin, flat films the result is

¥ .\ 1 & e ' 1:3 B
Ry Ry %37 H,x
Note that the influence of the vapor has been neglected
in Equations 4 through 6. Consider, for example, Equation

6, which, in the absence of surface tension {E,fCa << 1)
reduces to

dw _
E}—D.

The vapor stress would normally appear on the right side
of this equation; however, because the film is thin and the
vapor flow varies on a much larger seale, it is not high
speed (sssumption 2), and, because the liquid viscosity 15

114

much greater than the vapor viscosity, the leading-order
vapor stress term is of a much lower order.

It is clear that Equations | and 3, subject to the bound-
ary conditions, are extremely complex, and a closed-form
solution that satsfies all the boundary conditions, includ-
ing those at the spine surfaces, does not exist. Moreover, the
geometry of the spiny lube effectively prevents the use of an
efficient computational approach to solve the full govern-
ing equations in an individual spine channel. Thus an alter-
native approach must be employed and this approach is
based on analyzing the order of magnitude of each of the
relevant governing dimensionless parameters; this
approach is also employed in the heat and mass transfer
problems as well.

The flow rate of fluid across the interface (1.e., the mass
absorbed into the film) is obtained by taking the dot product
of the velocity vector with the gradient of the film thick-
ness; the result is

d i
Mg = uu,ﬂlua'f—wg::' aty = h. i7)

In the present nondimensionalization on the local spine
seale, zranges from zero to one, y ranges from zero to f, and
the domain in x ranges from x=—f(y, 2) 1o x=f5(y, 2), where
Sy and f> are functions defining the spine profiles (Figure 2).

Heat Transfer

Using the scalings of the previous section, the mechan-
ical energy equation may be written in dimensionless form
as

_'
E?FREFL‘{V' vor

& 28T 2297 (8)
= —g+E —3+AE _—3,
ay"  "ar Pax

where Pr is the Prandtl number. The boundary conditions
are

T=7,,# the spines, (9)
T = T, at the wall, (10}
and
g, = a- V)T

‘ (11)
o {\'.chrm“hahffﬂ, at y= 'y

where j; denotes the normal direction to the interface,

is the heat flux in that direction, and Ay, is the heat of
absorption. The heat flux defined in Equation 11 is due
solely to the latent heat released in the phase-change pro-
cess. There may be energy convected back into the vapor
if the velocity in the vapor is fast enough. However, it is
easily shown that the ratio of the heat transfer due to con-
vection to the latent heat released in the absorption pro-
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cess is proportional to a vapor Lewis number (Ley =
cpvdTyhgp,). In the experiments, Ley is on the order of
0.01. Thus, unless ATy is very large, convection of heat
back into the vapor should be small. This fact is supported
by experiments (Miller 1995).

Note that once the velocity field is known, the energy
equation becomes essentially linear in temperature. This is
asimplifying feature; however, it is observed that the equa-
tion is still fully three-dimensional in its present form and
is dependent upon an unknown film surface flux, m, , and
the unknown shape of the fully three-dimensional film
surface, h,

Mass Transfer

The mass transfer problem is defined by a balance of
ordinary Fick diffusion and bulk convection of mass and is
given by (Bird et al, [1960], p. 555 fol.):

A

= d” N
E:PRI:SI:{V-,‘?IHJJ‘ = a—i"'
¥
4 . (12}
29°@, 4,300,
+E=‘P 3 Erp T
iz dx
subject to
da, 2
p- i aty = 0, (13}
(V)
i (14)
= —tReScm,(| —mdj at y= 4,
and
(- Vi)w, = 0 at the spines. (15)

S¢ is the Schmidt number. In Equation 14, the factor 1 —
0y comes in because of the form of the species flux rela-
tive to fixed axes and due to the fact that only water vapor
Is being absorbed (Bird et al. [1960), p. 499). The mass
fraction gradient at the spine surface vanishes because the
velocity normal to the wall is zero there (the solid wall
condition). As with the energy equation, the mass transfer
problem is fully three-dimensional and dependent on an
unknown surface flux and film surface. The initial condi-
lion is that wy be specified at the inlet to the spine chan-
nel.

The Equilibrium Condition

Note from Equations 11 and 14 that the temperature
and mass fraction fields are coupled through the presence
of the unknown absorbed mass flux, m, - Consequently, one
additional equation is required for closure of the system.
This equation is obtained from the assumption of equilib-
flum at the liquid-vapor interface, and, for a linear absor-
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bent (Grossman 1983), the equilibrium condition takes the
form

, = T+Cn (16])
where C, and C; are constants that are fit to equilibrium
data for the LiBr-H,O mixture at a given pressure for the
temperature range of interest,

Governing Equations on the Global Scale

The governing equations have been derived for the flow
field and the heat and mass transfer problems in the local
spine coordinate system in which the length scale in the
direction of primary motion is the pitch. The corresponding
global coordinate system is defined as that system in which
the total length of the tube is the length scale in the primary
direction of motion, which 1s the z-direction, The governing
equations in the global coordinate system, defined by using
the length of the tbe for the length L, and by assuming
axisymmetry, are obtained by setting d/dx = 0. In the global
coordinates, because the length of the tube is much greater
than the pitch of the tube, £ << £,

Discussion

In the present section, the governing equations have
been derived in nondimensional form in the local spine
coordinate system. To solve the problem on the spine scale,
each of the governing equations for the fluid flow and the
heat and mass wransfer problems, along with the boundary
conditions, must be solved within all of the spine channels.
Clearly, solving the entire system is a daunting task; the
equations for the fluid flow, in the general case, are highly
nonlinear and require the determination of an unknown free
surface, All the equations are fully three-dimensional. Even
if a solution were possible, no design procedure could be
developed using the computer code because of the large
amount of computer time required. Consequently, other
methods must be used 1o simplify the complex system of
equations. To this end, the magnitude of each of the dimen-
sionless parameters that govern the problem was analyzed
to determine which terms in each of the equations govern
the fluid low and heat and mass transfer problems. For this
purpose, two regimes were delineated where the heat and
mass transfer take place on different length scales: (1) the
region between the spine rows where the fluid is assumed
to behave based on the global length and velocity scales
defined by the entire length of the thbe and 1ol flow rate
(region 1) and (2) the region within each spine channel
where the flow and heat and mass transfer are governed by
the pitch of the tube (region 2). These two regions are
depicted in Figure 2.

DIMENSIONAL ANALYSIS

In this section, the order of magnitude of each of the
dimensionless parameters that arise in the problem is exam-
ined. A simplified system of equations containing the
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essential features of the full system may be developed, lead-
ing to a simplified model for the flow and heat and mass
transfer on the spiny tube.

Magnitude of the Dimensionless Parameters

Specifically, six data sets exhibiting different inlet flow
rates, temperatures, and mass fractions and, hence, differ-
ent mixture properties have been studied, two for each of
the pitches considered. The pitch is defined as the distance
from the inlet of one spine channel to the inlet of the next
and is denoted by L. in Figure 2. There are N, = 15 spine
channels per circumference in each spine row {Vandersip
1993). The typical average velocity ([/y) based on the total
flow rate down the tube is defined by

m = PhoCUo: a7

where € is the circumference of the tube. The nominal
film thickness on the spiny tube may be calculated by an
equation that balances the overall effect of gravity and
viscous stresses; this equation is given by

*3 ;
Uo = Pghg I, (18)

which is formally equivalent to the equation derived
directly from the Nusselt analysis (Conlisk 1992). In this
case, ReFr = 1. This results jn a global film Reynolds
number of about Re = (Ughg)/v —20-60. The same
procedure may be repeated for the flow between each
spine channel, with the length scale Lx replacing the cir-
cumference in Equation 17.

Table 1 gives the overall range of selected parameters
for the spiny tubes. The specific data sets studied corre-

TABLE 1 Physical Dimensions and Other Param-
eters of the Spiny Tubes Considered in this Paper’
Tube hase radius (in.) 368
Total flow mte kg/min 0410
Flow rate per spine channel (ke/min) check 01604
Average inler film thickness (in.) - D04
Total tube length (1D 5
Mumber of spine rows/ft 45-96
Axial length scale (£,;in.) 5/32-8/32
Spine root chord (in.) 1/32-1/16
Spine gap (Lyin.) 1/16-3/16
Bulk temperature in *C 30-55
Pressure (Tor) 10.34

The average velocity and film thickness are calculated
based on o balance between gravity and viscous forces.

spond to those provided by Miller {1993) for three sets of
pitches; these data set are denoted by htl-1, ht1-2, ht2-1, he2-
2. hi3-1, and hi3-2. The other data sets provided by Miller
(1993) have qualities similar to those chosen specifically for
analysis. The pitches considered are 0.25 in. {ht1-1, htl-2),
0.1875 in. (ht2-1, ht2-2), and 0.125 in. (h3-1, hi3-2) (see also
Miller and Perez-Blanco [1994]). Table 2 gives the dimension-
less parameters calculated for the coresponding spiny tubes
for both the global and local length scales.

Consider now the nature of the fluid dynamics problem.
From Table 2 it is noted that eRe << 1; this means that the

TABLE2 Spiny and Smooth Tube Parameters for Physical Parameters of Data Sets Provided by Miller (1 993)"

Data Set hil-1 htl-2 hi2-1 hi2-2 hi3-1 hid-2 |
Mass Flux (kgfmin) AG0G 5215 AD32 9170 A633 9010
Mass Fraction, LiBr in. S04 4252 AH286 £273 5927 6260
Absorber Pressure {lore) 10.34 10.34 10,34 10.34 1034 10,34
Film Temperature (K} 32544 325.00 329.53 330,45 e 32592
Coolant Temperature (K) 308,28 308.13 323.40 0779 308.80 31889
Mass Transfer Parameter o 480 0111 0524 0345 269
Film Parameter (€ % 10%) 1.8 23 1.8 24 1.8 23
Film Parameter (Eq,) 43 055 56 075 O88 A1
Renyolds Number (Re) 30.94 54.54 2293 50,65 29.11 49.71
Capillary Number (Ca) 65.20 397 68.08 3808 65.44 008
5; Cd (035 0066 o113 0160 0446 0533
Prandil Number (Pr) 1885 20,67 21.31 217 2043 2.08
Schmidt Number (S¢) 2149 2456 2412 2690 2389 2565
Lewis Number(Le) 0RE 0084 D088 0082 086 {0086
Jakob Mumber (Ja) L6 D045 A48 JKE 0026 0025

*Here the fit constants C; =

116

— 0048, €, = 1.9526, and the total length of the tbe is [.= 5 ft (1524 m).
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acceleration terms in the momentum equations are negligi-
ble on the global scale, Moreover, even though EpRe ~ 1,
the slow growth of the film thickness due to the large resis-
tance lo mass transfer (see below and Conlisk [1992])
renders the acceleration terms in the momentum equation
negligible on the local spine scale as well, Thus, the fluid
mechanics problem is effectively of the Nusselt type (see
the next section) and ¢losed-form solutions for the velocity
field may be obtained away from the immediate vicinity of
the spines. The influence of surface tension is expected to
be felt first in the local spine system, and it is noted from
Equations 4 through 6 and the expression for the radii of
curvature that the influence of surface tension is governed
by the product E:,,Ca. The influence of this parameter
begins to increase in the data sets hi3-1 and ht3-2, wherc
this parameter is about 0.05. The value of the surface
tension is taken to be 0.083 N/m for all the data sets. Thus
for all the data sets, as a first approximation, the influence
of surface tension on the velocity field is neglected.

From the form of the energy and mass transfer equa-
tions, it is clear that the values of the quantities eERePr and
eReSc determine the nature of the heat transfer and mass
transfer, respectively, near the liquid-vapor interface, Note
from Table 2 that Sc >> Pr; moreover, from the parameters
depicted in Table 2, for all of the data sets, eRePr ~ 0.25 or
less, which means that the influence of convective heat
transfer is relatively minor in the region between the spine
rows. The fact that copduction dominates means that heat
transfer will take place over the entire film. In contrast,
because eReSc >> 1 from the form of Equation 12, appre-
ciable mass transfer will take place only near the interface.

In the region between the spines, £,,RePr can be some-
what Jarge and so convection of heat may be important
locally, However, the temperature gradient in the flow
direction is small and the influence of thermal convection
is reduced, as in the case of a smooth tube. Indeed, Conlisk
(1995) has shown that the neglect of thermal convection in
the smooth tube problem leads to a negligible error in the
prediction of the mass absorbed. Moreover, the results
using the conduction-dominated temperature profile across
the film lead to a good comparison with the experiment, as
shown in part 2 (Conlisk 1996); consequently, a conduc-
tion-dominated profile is assumed throughout the film.

To complicate matters, the velocities in each of the flow
directions must be brought to relative rest at the surface of the
spines. Consequently, there must be a thin region near the
spines where the velocity is reduced to zero. From Equation 1,
the width of this region is on the order of G[]'I.E,_g,}. Theoreti-
cally, because the MNusselt-type flow cannot be valid near the
spines, the three equations that make up Equation 1 must be
solved in a local region near the spines and match the solution
with the Nusselt-type solutions valid away from the spines; the
cquations are similar to those described by Hamrock (1991)
formultidimensional lubrication equations. However, because
the spines are solid surfaces, little mass transfer will take
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place within the boundary layers on the spines and thus,
from a purely mass transfer point of view, solution of the
flow near the spines is not required.

Discussion

At this point, based on the foregoing dimensional anal-
ysis, the fluid flow problem has been reduced to essentially
one of the Nusselt type, where acceleration of the fluid
particles is negligible. Morzover, the problem is effectively
the same as the smooth-tube problem since surface tension
is negligible. In addition, the heat transfer problem has been
shown to be conduction-dominated. Finally, because eReSc
> | everywhere, mass transfer will take place only near the
liquid-vapor interface as in all previous work. In summary,
the magnitude of the dimensionless parameters suggests
that we can begin developing a model for the spiny tube
based on effectively smooth-tube fluid dynamics and heat
and mass transfer.

FLUID DYNAMICS

The influence of surface tension from Equations 4
through 6 is to induce a stress on the flow in the film. While
it has been shown that the influence of surface tension is not
significant for the best-performing tubes, it is useful to
write down the solution for the velocity field, including
surface tension, for discussion later in part 2. A major result
from the dimensional analysis is that fluid acceleration
through a given spine channel is negligible. In this case, the
solution for the flow in the film in global variables is given
by

= -ex? 2
W= -alagu,y—y /2) (19)

and

w = (1-¢28 Xay=y212), (20)
(1-€32 Jny >

where the film thickness, A, is yet to be determined. The
velocity normal to the film surface may be obtained from
the continuity equation (Equation 3). For negligible sur-
face tension, note that u = 0 and

w= ﬁy—y:fi-k ole' ca),

which, to leading order, is the same as in Conlisk (1992) for the
smooth tube, The solutions (Equations 19 and 20) do not satisfy
any boundary conditions on the spines, and the influence of sur-
face tension is proportional to AeCa®. The effect of surface ten-
sion in the local region between the spines is discussed in part 2,
Inthe nextsection, the heat and mass transfer problems on the
global length and velocity scales are formulated for the case where
the influence of surface tension is negligible to leading order.

HEAT AND MASS TRANSFER PROBLEMS

In this section the heat and mass transfer problems are
formulated for the situation where surface tension effects
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are negligible. In this case, to leading order, the formulation
of the problems in global variables is the same as for the
smooth tube; this is essentially a shorter version of the
presentation by Conlisk (1992) and, since the smooth-tube
problem will form the core of the spiny tube model, it is
repeated here for clarity and completeness.

Mass Transfer

The film-side mass transfer problem has been formu-
lated in previous work; in what follows the authors give a
brief development of the problem to motivate the inclusion
of the coolant-side flow and heat transfer. Let wy denote the
mass fraction of water in the mixture, Then, with 1 =y/h(z),
and defining

hof S Y 11115 @1

ﬂ = ]
Wy sin = QunuLr

and near the interface, 7 = (1 -n}fﬁ”i; then, in terms
of £2 we have, to the leading order,

a2 0 pIQ| I
v, gl ng—g‘—# —=, (22)
31'1 - Eh] _ dn

n=0
where # is an overall mass transfer driving parameter and
is defined by

B = “""'As;n_"t:"ﬂm.xl (23)
ASin

and @ is a scaling conslant defined by the ratio of the

water density to the solution density in the bulk. In this

problem, & is small and often much less than 8. At the lig-

uid-vapar interface,

+ Ll . -
5 A= = whm (1 +0(B) atn = 0. (24)

Equation 22 balances for & — 0, however, the boundary
condition a1 i = 0 does not. The conclusion that must be
reached is that since B and 8 are both small, then

RS L (25)

that is, the lack of an O{1) mass fraction difference and
the fact that & is small limits the amount of vapor that may
be absorbed at the interface. Thus, to leading order, we
may take & = 1. This result, which follows from simple
scaling arguments, has been assumed @ priori in previous
work based on physical considerations (Grossman [1983]
and others). It is interesting to note that the physical con-
cept of a rapidly varying mass fraction near the liquid-
vapor interface occurring at large values of ReSc merging
into a-regime where the mass fraction is essentially con-
stant is mentioned in the treatise of Levich (1962, p. 57
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fol.), so the present formulation in terms of a singular per-
turbation problem is well founded.

The solution to this problem subject to the initial condi-
tion @=0at z=0and £ =0 at 7 — = has been given previ-
ously and the result is

Q = {2/} [} maoe ™ P e (-0, 26)

where m,o is defined by m,= 828y + ... and is the
leading order nonzero term in the absorbed flux. The lead-
ing order film thickness variation is defined by

. dh)
mgd = ‘_dq.:. ':2?}

where h = 1 + 828k, + ... is written in light of the dis-

cussion above. The average value of the mass fraction is
required and the result is

Q,,, = 8] 0di = 208", (28)

Heat Transfer
The energy equation in the present problem is given by

a8 _ .-e_acprwgf. (29)
an’” <
where 0 is the dimensionless temperature, defined by
8 = T Tilh'n :
T.'Fm ol TWJI

where Tg;, and Ty, are the film surface and wall temper-
atures, respectively, at the inlet to the tube. The boundary
conditions are givenby 8 =8 atn=0,0=0mz=0. At
the interface, we have, to leading order,

00 .
Jags = —eRePrd'Bmuo at 1. (30)

In Equation 30, Ja = ¢, ATlh,, is the Jakob number, AT =
Tgin — Twins and kg, 1s the heat of absorption. Note that
the assumption of a constant wall temperature has not
been invoked.

As noted, in the region between the spine rows, on the
global scale, ERePr << | and in this case the convective
terms in the energy equation are small away from the
entrance. Moreover, even when eRePr - 1, because of the
slow growth in the {ilm thickness due to the high liquid-side
mass transfer resistance, the temperature distribution
becomes essentially conduction-dominated soon  after
entering the tube (Conlisk [1992], Figures 2 through 5). In
this case, write

B(M, z) = (B;-0,, )N + 6, (31)
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where By is the film surface temperature and By is the
wall temperature on the solution side, both of which are
unknown. It is interesting to note that Patnaik et al. (1993)
employ this distribution for the temperature, although a
numerical solution must be calculated for the average
mass fraction across the film. For the conduction-domi-
nated temperature problem, a closed-form solution for the
absorbed flux may be found. Before this solution is dis-
cussed, we discuss the conditions at the interface.

Interface Conditions

As mentioned, to close the problem for the calculation
of the absorbed mass flux, m.0, equilibrium will be
assumed at the interface, and the temperature and mass
fraction are assumed to be related linearly, In dimensionless
form,

C\AT
ﬂS = —&"’—ﬂj'ﬁﬂ. H'E}
where
CiTp. + Ca—t0
B- = ] Wl'.l'! = AHULI_ {33}

Aw

Here € and € are constants obtained by curve-fitting experi-
mental data in the mass fraction range of interest. Note that the
parameter [} is a measure of how far the wall temperature is away
from equilibrium in the bulk. The determination of the scale fac-
tors @y g, and T, is as described in Conlisk (1992) and relies on
dwefactthm.nearr?mint:t.rhmisaﬂmmalbwmﬁuy layer
developing near the interfuce and (Conlisk 1992)

. Ta o+ 8, (34)
where Le = Pr/Sc is the Lewis number and 8 is the dimen-
sionless bulk temperature. To determine the interface mass
fraction at the entrance to the tube, we use the definition of £
and Equations 32 and 34. Using the definition of B, assum-
ing the bulk properties are constant, the equation for Wy g 18
given by

"
O 4 sin = {1+ mAﬂU.E.K + ﬂ'ﬂ
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Le hubl

-G =~ ClTaurnin = Twin VO pgin

iC
4 (35)
172
b
* O puint Bo- Cl———="00, 5
.

“CilTyypin = Twin) = 04

where B, = BAwm,

SUMMARY AND CONCLUSIONS

The geometry of the spiny tube is complicated; more-
Over, the solution to the absorption problem requires the
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simultaneous solution of the velocity field and the temper-
ature and mass fraction over the entire tube. The problem
near the spines is, in general, fully three-dimensional,
Consequently, rational approximation 1o the full problem
has been sought by evaluarion of the various physical
effects through analysis of the magnitude of the relevant
dimensionless parameters of the flow and heat and mass
transfer problems. In particular, it has been shown that in
the absence of surface tension effects at flow rates typical
of application, the governing equations for the velocity
field may be reduced to the Nusselt type in the bulk of the
film; that is, only the boundary conditions on the veloeity
field at the tube wall and at the interface need be satisfied.
The magnitude of the dimensionless parameters for heat
transfer indicate that a good approximation may be
obtained by a simple conduction-dominated profile.
Finally, the mass transfer problem may be reduced to the
smooth-tube case, where mass transfer takes place only
near the liquid-vapor interface.

The results of the dimensional analysis have thus indi-
cated that since the vast majority of the tube is not covered
by spines, a spine-finned tube model may be developed
using the smooth-tube solutions for the fluid flow, lemper-
ature, and mass fraction along with consideration of the
mass absorbed hetween the spines. The physical model for
the spiny tube is developed in part 2.
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NOMENCLATURE

H = mass transfer driving parameter (Equation 23)
Ca = oglul,

€p = specific heat

Dyp = mass diffusion coefficient

Fr = Froude number

g = acceleration due to gravity

h = dimensionless film thickness = h"/h,"
h* = dimensional film thickness

hy" = dimensional film thickness at the inlet
hy =h=1+8"28n+...

hapy = heat of absorption

Ja = Jakob number = ¢, ATih,,

k = thermal conductivity

L = tube length

Le = Lewis number = Pr/Sc

Ly = spine spacing in the azimuthal direction
L, = spine pitch plus spine length (Figure 1)
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= Ma Iplly, dimensionless absorbed mass flux

" =
o
Ma = dimensional absorbed mass flux
myn = scaled absorbed mass flux
P = dimensionless pressure

Fr = Prandtl number = pey/k

. = defined by Equation 11

Ry = radius of curvature with respect to the vapor
R, = radius of curvature with respect to the liquid
Re = Reynolds number = Uphy"/v

S¢ = Schmidt number = VD p
Taypkin= bulk temperature at the inlet
Tsin = film surface temperature at the inlet

Tip = lemperature at the spine wall

Twin = wall temperature at the inlet

AT = Tsin = Twin

i = dimensionless fluid velocity in the x direction
Uy = ghy"*tv, velocity scale

v = dimensionless fluid velocity in the y direction
¥p =v= E:p”ﬂ +. e

w = dimensionless velocity in the z direction

x = dimensionless coordinate in the spanwise
direction

x = dimensional coordinate in the spanwise
direction

¥ = dimensionless coordinate normal to wall

¥ = dimensional coordinate normal to wall

z = dimensionless coordinate in the axial direction
z' = dimensional coordinate in the axial direction
Greek Symbols

o = p,/p in the bulk

B = defined in Equation 33

Po = paw

] = l/eReSc

Aw = W5~ OuBULK

£ = hy'/L

€y = hylL,

A = LJL,

n = ylh

H = mixture dynamic viscosily

v = mixture kKinematic viscosity

p = mixture density

Py = density of water

dy = surface tension

(2] = (T =Ty VAT

By = (Tg = Ty, AT

B¢ = dimensionless film surface temperature

By = dimensionless wall lemperature

120

)y mass fraction of species A

film surface mass fraction at the inlet

i

B4 Gin
Wy gy k= mass fraction in the bulk, constant
0 = scaled mass fraction (Equation 3)
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QUESTIONS AND COMMENTS

G. Grossman, Senior Development Staff Member,
Lockheed Martin Encrgy Rescarch, Oak Ridge, Tenn.:
The analysis nssumes a developing concentration bound-
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ary layer but no thermal boundary layer; imstead it
a linear temperature profile across the film. Should
not be a developing thermal boundary layer also?

A. Terrence Conlisk: There is a developing th
boundary layer but, because of the fact that the film
ness is plmost constant, the length of this devel
region is very short, about 1% of the tube. This is
firmed by a complete numerical computation of the
tion for the temperature as described in my

concerning the smooth tube problem (published in A
J. 1992, vol. 38, no. 11, p. 1716). This 1s referred
part | of this work.
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