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Overview

Vortex pinning
- controlled variations in the angular dependence of Jc

Thickness dependence of Jc
- role of meandering GBs

Study of PVD-BaF2 YBCO and comparison to MOD reveals 
the common characteristics of ex-situ processes

WDG enables this kind of study by broad expertise in different
processing and coordinated effort
Flexibility of PVD-BaF2 technique enables study of a broader range
of thickness
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ORNL ex-situ PVD-BaF2 Process

precursors deposited by e-beam evaporation (Y, BaF2, Cu sources)
- arbitrary thickness in range 30 nm – 3 µm

ex-situ conversion in flowing gases at 1.0 atm total pressure

alternative processes developed to modify microstructure and
properties
- “baseline” (conversion at ~ 1 Å/s)
- “fast” (5-15 Å/s)
- Y-rich compositions for enhanced pinning (H||c)
- “alternative” processes (pinning modification)

Ic values on RABiTS are comparable to AMSC-MOD YBCO
- best values ~ 400 A/cm at 77 K, sf.
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FY2004: Fast-processed Films Exhibit Strong Flux Pinning,
Reduced Field-angle Anisotropy Jc

max / Jc
min

YBCO: 0.7 µm         

sample             Jc(0)    ratio
(MA/cm2)       

standard             1.6       2.6
fast                     2.3       1.9
fast-doped          2.5       1.5

electronic (γ = 5)             2.6

Jc
max / Jc

min

pinning is enhanced in orientations away from (a,b)—no peak along c
Y-doping (Y-rich precursors) further enhances Jc, pinning
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FY2005: Y-doping Increases Jc(H||c), Jc(sf)—Reduces Jc(H||ab)

0

0.1

0.2

0.3

-30 0 30 60 90 120

standard FAST
Y-rich (0.7 um)
Y-rich (1.0 um)
Y-rich (1.1 um)
Y-rich (1.7 um)

J c / 
J c(s

f)

H field angle (deg)

(a,b)(c) 77 K, H= 1 T

• effects become stronger with increasing film thickness
• similar to MOD processed films: nanodot doping, HTOA

PVD-BaF2 YBCO on ORNL and AMSC RABiTS

reversed anisotropy
Jc(H||c) > Jc(H||ab)
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Opposite Effects May Be Induced by Process Modifications
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• faster Jc drop-off for H||c, enhanced pinning for H||(ab)
• large (ab) peak is similar to baseline MOD films

1.0 µm PVD-BaF2 YBCO on ORNL and AMSC RABiTS

standard, fast

alternative processes
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TEM Reveals Different Defect Structures of Y-doped vis-à-vis
Alternative-processed PVD-BaF2 YBCO Films

• Y-rich precipitates
• short planar intergrowths terminated

with strain fields ⊥ substrate

• reduced density of Y-rich precipitates
• extended planar intergrowths

(medium density)

Y-doped—reversed anisotropy alternative process—large (ab) peak
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Jc trends in Y-rich PVD-BaF2 YBCO on RABiTS

• Jc(H||ab) drops while Jc(H||c) is enhanced—as in MOD YBCO
• note reversed anisotropy for H < 3.5 T

0.01

0.1

1

0 1 2 3 4 5 6 7

J c a
t 7

5.
5 

K
 (M

A/
cm

2 )

magnetic field µ
0
H (T)

ORNL PVD-BaF2 YBCO, LANL measurement (75.5 K)

H||(ab)

H||c

alternative process

Leonardo Civale
Boris Maiorov

AMSC RABiTS

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY



Jc trends in Y-rich PVD-BaF2 YBCO on RABiTS

• Jc(H||ab) drops while Jc(H||c) is enhanced—as in MOD YBCO
• note reversed anisotropy for H < 3.5 T
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Strong pinning for H||c resembling effects from correlated defects
is not prevented by laminar growth mode in ex situ YBCO
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Summary: Pinning

Angular dependence of Jc in ex-situ PVD-BaF2 films is influenced by the
laminar microstructure—similar to MOD YBCO
- planar intergrowths along (ab) direction
- nano-scale precipitates

Variations in Jc(θ) are enabled by process modifications and Y doping
• Y-rich precipitates:

- enhance pinning for H||c and related ⊥ orientations
- reduce (ab) pinning by interruption or lowering planar defect density

• process modifications can restore pinning along (ab) by increasing the
length and density of Cu-rich planar defects (124 phase)

Potential for engineering of Jc(θ) has been demonstrated

Comparison between MOD and PVD-BaF2 processes within the WDG
identifies general trends, accelerates path towards optimization
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Thickness dependence of Thickness dependence of JJcc

role of meandering role of meandering GBsGBs



Background and Motivation

meandering results from laminar growth mode of BaF2 ex-situ films

fast lateral growth leads to complete or partial GB overgrowth
- possibly mediated by transient liquid phase(s)

GB overgrowth depends on the YBCO (precursor) thickness:
- thin films (< 0.5 µm) → YBCO GBs in registry with RABITS GBs
- thick films ( > 2 µm) → disconnect between YBCO and substrate GBs
- intermediate (1 µm) → meandering / tilted GBs

What is the role of GB meandering on the thickness dependence of Jc?

Does GB meandering contribute to high Jc in 1 µm ex-situ YBCO?
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Strongest Parameter Controlling Meandering is YBCO Thickness
• no significant dependence on ex-situ conversion rate

fast process (10 Å/s) baseline process (1 Å/s)

40 µm

0.7 µm

2 - 3° 8 - 10°4 - 5° > 10°6 - 8°5 - 6°3 - 4°

0.5 µm 1.0 µm

50 µm 50 µm
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Jc as a Function of Thickness Shows Different Behavior
Depending on Thickness Range

• constant Jc in the range 0.5-1.5 µm
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Jc as a Function of Thickness Shows Different Behavior
Depending on Thickness Range

• constant Jc in the range 0.5-1.5 µmIs flattening of Jc with thickness due to the meandering effect?
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Intra-grain Jc(G) Provides a Reference Point for Evaluating
Role of Meandering as a Function of Film Thickness
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magnetometer technique developed at ICMAB, Spain
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Intra-grain Jc(G) Provides a Reference Point for Evaluating
Role of Meandering as a Function of Film Thickness

1

10

0 0.5 1 1.5 2

Jc(G) ORNL RABiTS baseline
Jc(G) AMSC RABiTS fast
Jc YSZ-xtal baseline
Jc YSZ-xtal fast (transport)
STO / PLD Foltyn (2003)

J c a
t 7

7 
K

 (M
A

/c
m

2 )

YBCO layer thickness (µm)

2

3

5

7

intra-grain J
c
(G)

1/d1/2

Remarkable agreement in Jc magnitude and trend
with PLD YBCO on SrTiO3 crystal substrates
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Jc(G) of PVD-BaF2 ex-situ YBCO on RABiTS determined by a
magnetometer technique developed at ICMAB, Spain



Based on assumed scaling of Jc(GB) to Jc(G) for straight GBs,
the role of meandering may be quantified

AMSC RABiTS

1/d1/2
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Based on assumed scaling of Jc(GB) to Jc(G) for straight GBs,
the role of meandering may be quantified

GB meandering enhances Jc ~1.5x in the range 1-1.5 µm
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Summary: thickness dependence

intra-grain and inter-grain Jc’s for PVD-BaF2 YBCO on RABiTS compared
as a function of thickness

magnitude and thickness dependence of the intra-grain Jc(G) agrees with
reported data for PLD YBCO on STO crystal substrates

results support hypothesis that GB meandering can substantially (~1.5x)
enhance Jc in 1.0-1.5 um thick PVD-BaF2 ex-situ YBCO.
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