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Project goal:
Development of ex-situ PVD-BaF2 processes for coated conductor
applications
- thick YBCO coatings (several µm) with Ic ≅ 1000 A/cm at 77 K (FY2010)
- technological know-how for small sample → reel-to-reel processing

• Base program research in support of:
- Coated Conductor Development Roadmap
- Wire Development Group
- CRADAs
- Core RABiTS substrate and buffer development

• Activities concentrate on:
- e-beam deposition of precursor films (stationary and reel-to-reel)
- Pulsed Electron Deposition as alternative precursor source
- improving Ic performance of thick YBCO coatings on RABiTS
- improving flux pinning (guided by WDG objectives)
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Significant results towards FY2005 goals include:

improved understanding of the role of precursor preparation history in
enabling fast conversion into high-Jc YBCO

record high Jc ≅ 3.5-4 MA/cm2 (77 K) on RABiTS in thin (0.12 µm) YBCO

identification of dominant pinning mechanism and defects in PVD-BaF2
ex-situ films

installation and implementation of a low-pressure reel-to-reel furnace
- achieved high-Jc values from e-beam precursors (1-2 µm)

identification of different conversion behavior from e-beam vs. PED
precursors
- impetus for program redirection in FY2006
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Presentation outline

Ron Feenstra Development of high-Ic ex-situ YBCO conductors

Dominic Lee Reel-to-reel low pressure furnace processing

Hans Christen Pulsed Electron Deposition of BaF2 precursors
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Research Integration
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Overview
improving the thickness dependence of Jc (review)

role of intermediate, low-T precursor anneal
- enabling high Jc in fast-converted films
- quenching studies
- techniques used: FIB-SEM, XPS, RAMAN (with ion milling)

vortex pinning
- general characteristics for H||c
- temperature dependence of Jc(H)

precursors deposited by e-beam evaporation (Y, BaF2, Cu sources)
- arbitrary thickness in range 30 nm – 3 µm

ex-situ conversion in flowing gases at 1.0 atm total pressure
- rates up to 14 Å/s demonstrated
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FY04: A fast conversion process was developed
for PVD-BaF2 precursors

New processing scheme ties together precursor preparation history
and the ex-situ conversion
• insertion of low-T oxidation/modification anneal (400ºC)
• “aggressive” conversion conditions (gas flow, T, p(H2O))

standard 1 atm & low-pressure conversion systems
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FY2004: Ic of fast processed films increases linearly
with the YBCO thickness (d < 1.5 µm)

best Ic ≅ 400 A/cm for 1.7 µm Y-doped YBCO
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Processing iterations have reduced Jc fall-off
with YBCO thickness

Baseline process → Improved baseline process → Fast process
(FY2002)                        (FY2003)                  (FY2004)
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Structural changes enabling improved performance of
thick YBCO have been identified by TEM

silver Top• Terry Holesinger (LANL)

• bimodal structure in thick films
(baseline process)
- large, well formed YBCO grains in bottom half

of film
- smaller, faulted YBCO grains in the top half

different growth modes through thickness

process iterations have enabled elimination
or modification of the bimodal structure
→ improved Jc performance

Holesinger et al., JMR 20, p.1216-1233 (2005)
Bottom

Ba-Cu-O layer
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Fast-processed film (1.25 µm) exhibits uniform
through-thickness microstructure

• non “bimodal”—no intercalated second phase layers
• porosity is present
• uniform distribution of planar defects and small secondary phases
• increased similarity with MOD ex-situ YBCO films 

CeO2

YSZ

Y2O3

YBCO

HAADF STEM

Ni W Substrate
(AMSC RABiTS)

Silver

Terry Holesinger

1.25 µm YBCO on RABiTS Ic= 340 A/cm
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Low-temperature pre-anneal is essential for successful
application of FAST conversion process

in-situ XRD monitors conversion in real time (low-pressure system)
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Insertion of low-T modification anneal resembles the
calcination anneal in MOD BaF2 processing

precursor  
deposition  

ex situ  
conversion  

precursor
modification

anneal

• modification anneal is expected to increase the oxidation level,
induce structural development on the nano-scale
- FY2004: benefits of these changes were speculated

In FY2005, a new line of research was initiated to elucidate the role
of precursor characteristics on the ex-situ conversion process
- research is leveraged by external collaborations:

Albany NanoTech, Univ. of Tennessee, ANL

New angle towards better understanding / control of thick film conversion

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY



45 nm
pre-annealed

as-deposited

Cu1+

Cu2+

signature of CuO

XPS confirms increased Cu 
oxidation level in

pre-annealed precursor
(500ºC, 1 atm. O2)

Claudia Cantoni
Yifei Zhang

TEM shows structural 
development on nano-scale

• as-deposited precursor is 
amorphous

Difficult to analyze!
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Strategy for characterizing effects of low-T pre-anneal:
Track phase development into early nucleation of YBCO

side-by-side processing / quenching of as-grown and pre-annealed precursors
- as-grown precursor (“bad genes”) → poor YBCO performance
- pre-annealed precursor (“good genes”) → high Ic YBCO

characterization performed by FIB-SEM, XPS, ion backscattering, RAMAN, …
- establish which technique provides relevant information most efficiently
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FIB-SEM visualizes different microstructures
depending on precursor pretreatment

• precursors for 1 µm YBCO (ORNL RABiTS)
• samples quenched from 780ºC (at the end of the ramp; tann= 0)

granular microstructure granular, layered microstructure

Comparison of FIB Microstructures at 50 kX

Buffer layers

Ni-W

precursor

Pt

Pre-annealed precursor As deposited precursor 1 µm1 µm
Manisha Rane
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XPS elemental depth profiles show a layered segregation in
as-deposited precursor after ramp to conversion temperature

Elemental depth profile of CNW-1
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• layered segregation may interfere with homogeneous conversion

Cu-BaF2 demixing
homogeneous (slight BaF2
enrichment below surface) 
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Conversion rate of e-beam BaF2 precursors exhibits minor
dependence on the precursor thickness

• constant precursor preparation history, FAST conversion conditions
• low-pressure conversion system with real-time XRD

poor c-axis YBCO growth, low Ic of 2 µm film suggest precursor origin
- similar to problems in fast conversion of 1 µm thick as-grown precursors
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Raman spectroscopy at different levels in quenched 2 µm thick
precursors reveals history-dependent reaction paths 

• quenched after 4 min. into the conversion anneal at 780ºC
• reduced “202” (intermediary phase) development in as-grown precursor

Vic Maroni
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Subtraction of the “202” spectrum provides evidence for
varying amounts of Cu2O, CuO at different depths into the film

CuO
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*Note: the series of negative-going
blips are due to over-compensated
“202” bands 

• reduced amount of O
near substrate interface
may reduce YBCO
nucleation probability

• possible cause of large
grains in bottom part of
thick films
(“bimodal” structure)
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By contrast, pre-annealed 1 µm thick precursors appear
adequately oxidized prior to YBCO nucleation
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• kinetics of precursor (Cu)
oxidation introduce a
thickness dependence
in the processing

opportunities for
improvement

Vic Maroni

(these precursors convert well → high Ic)
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Sudden drop in Ic for d > 1.7 µm appears to result from
inadequate precursor conditioning
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Sudden drop in Ic for d > 1.7 µm appears to result from
inadequate precursor conditioning

• FY05:  improved performance at 2 µm achieved from “Edisonian” approach
• FY06:  Ic > 400 A/cm expected from implementation of characterization feedback

processing focus will be on thicknesses of 1.5-2 µm
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Vortex pinning in PVDVortex pinning in PVD--BaFBaF22 exex--situsitu filmsfilms
general characteristicsgeneral characteristics

power law dependence Jc ∝ H-α in intermediate H || c fields

scaling of low-temperature Jc in applied fields of several Tesla
to Jc(sf) at 77 K
- rotating machinery applications (T= 40 K)
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Jc(H,T) exhibits many features characteristic of pinning by 
strong, sparse defects (Y2O3, Y2Cu2O5, nano-pores,…)

• magnetization study in thickness range 34 nm – 1.4 µm (Jc > 2 MA/cm2 at 77 K)   • magnetization study in thickness range 34 nm – 1.4 µm (Jc > 2 MA/cm2 at 77 K)   
• power law Jc ~ H−α with α = 0.57−0.69 for all thicknesses and T = 5 − 65 K
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AMSC RABiTS

• magnetization study in thickness range 34 nm – 1.4 µm (Jc > 2 MA/cm2 at 77 K)   
• power law Jc ~ H−α with α = 0.57−0.69 for all thicknesses and T = 5 − 65 K
• compares well with theoretical value α = 5/8 for pinning by strong, sparse defects

[Ovchinnikov and Ivlev (PRB, 1991) and van der Beek et al (PRB, 2002)]
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500 nm

15 nm

45 nm

30 nm

Xueyan Song

Y2O3 precipitates in
2.0 µm PVD BaF2 ex-situ YBCO on IBAD-YSZ

500 nm

0.12 µm YBCO on RABiTS Jc(77K)= 3.5-4 MA/cm2
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BaO

½Y2O3
CuOx

•
Ba2YCu3O6+x

BaY2CuO5
•

•

Phase Relationships of the BaO-½Y2O3-CuO system
in ex-situ films confirm origin of Y2O3 precipitates

• • ••
•

film

bulk

1
2

3
4

5
6

• Different phase relations
in the vicinity of Y-213
for bulk and film (ex-situ)

• BaY2CuO5 does not exist  
in film; X-ray pattern
shows Y2O3, Ba2YCu3O6+x,
and BaY2O4.

• Ba2YCu3O6+x is
compatible with Y2O3 
Y2Cu2O5, BaY2O4, CuO, 
BaCuO2 etc., but not with 
BaY2CuO5 (211-phase)

  Winnie Wong-Ng
Igor Levin
Larry Cook OAK RIDGE NATIONAL LABORATORY
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Operating range of rotating machinery (motors) involves
H fields of 2-3 T—need low T for adequate Ic

• YBCO films with variable preparation history, angular dependence of Jc
• irreversibility field variations at 77 K—correlate with Tc (89-94 K)
• low T performance does not track Hirr(77 K) variations
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Low-temperature, in-field performance scales with Jc(sf) at 77 K
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• Jc(H||c = 2T) at 30-40 K ≅ Jc(sf, 77 K)
• proportionality constant increases with decreasing power law exponent α

variation at 77 K
due to Hirr
variations

reduced dependence
on Hirr
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Summary (FY2005 Results)

Jc dependence on YBCO thickness is processing dependent
- process iterations have reduced the Jc drop-off with thickness

precursor preparation history has a strong effect on Ic performance
- layered phase separation and reduced Y2Cu2O5 formation are undesirable
- intermediate low T pre-anneal (300-500ºC) improves Cu oxidation

conversion rate is ~ thickness independent in range 0.2-2 µm
- kinetic effects associated with O transport play a role in early YBCO nucleation

FIB-SEM and Raman spectroscopy (with ion milling) identified as
efficient techniques towards process optimization
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Summary (FY2005 Results)

Performance improvements:
- Jc= 3.5-4 MA/cm2 (77 K) in 0.12 µm YBCO on RABiTS (AMSC)
- Ic = 300 A/cm in 1.0 µm Y-doped YBCO on RABiTS
- Ic = 370 A/cm in 1.4 µm Y-doped YBCO on RABiTS
- Ic of fast-processed 2 µm films has been increased from 200 → 330 A/cm
- Ic > 400 A/cm appears feasible with tuning of precursor-conversion processing

Flux pinning:
- thickness and temperature independent power law Jc ∝ H-α exponent α is

consistent with pinning by strong, sparse defects (α = 5/8)
- TEM → nano-scale secondary phase inclusions, voids
- Jc in application regime for rotating machinery (2-3T, 30-40 K) scales with

self-field Jc at 77 K, not improved by increases in Hirr
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Why use low pressure for precursor conversion?

• By simply eliminating the “carrier” gas (e.g., N2):
• Total pressure is decreased, and mean free paths are increased.

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

• Some expected consequences of lower pressure are:
• Flow is more molecular & nozzle jetting is reduced  (more uniform)
• Diffusivities in gas are increased  (more rapid)
• Total gas consumption is reduced  (more efficient)
• Total energy consumption is reduced  (more efficient) 

Because low-pressure conditions facilitate more 
rapid, uniform, and efficient precursor conversion.

* LP work also performed at MIT, BNL, 
CRIEPI (Japan), etc.
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A R2R low pressure conversion system was
developed to examine the efficacy of this approach

• Need to determine if benefits seen in small idealized unit can be 
replicated in larger system, as well as issues involved in scale-up.

• Design of R2R system 
based on lessons learned 
from our R2R atm and 
stationary low pressure systems:

• 4-zone, 2-meter 
furnace.

• Turbo pumps on 
either end.

• Single gas 
injection tube 
along length.

• Pbase ~ 1 x 10-6 Torr
• Ptotal < 1 Torr

(O2 and H2O).
• Aggressiveness 

increased by 
higher T,
higher PH2O
lower PTotal.Turbo

pump
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Gp sensitivity to PH2O is higher in the R2R furnace
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Samples converted in the stationary low pressure 
unit exhibited strong ramp rate dependency 
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• This dependency has also been reported for MOD 
precursors at various pressure ranges by MIT.
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Different ramp rate dependencies are found for 
different 
precursors  

R2R E-B
precursor 1 µm           
Ic:

2 µm   

131 A/cm (745°C, 107°C/min, 5.7 Å/s, 38 min)
140 A/cm (745°C, 142°C/min, 5.7 Å/s, 38 min)
148 A/cm (780°C, 107°C/min, 7.6 Å/s, 28 min)

200 A/cm.
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Excellent transverse homogeneity is seen in 1 cm-
wide films processed in R2R low pressure furnace
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ABC

• Non-uniform Ic across the width of 
samples processed in our R2R 
atmospheric furnace (>1.5 atm).

Sample  Full 1 cm A B C

Ic/cm (A/cm) 110.0 111.4 95.1 88.6
A 27% variation across tape

R2R atmospheric
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0246810
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ity
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R2R Low Pressure
107°C/min, 745°C, 5.7Å/s

BaF2(111)

YBCO(006)

Excellent YBCO(006) uniformity 
with only 3.9% S.D.

T Ramp Gp Ic/cm (A/cm) Variations
(°C) (°C/min) (Å/s) 1-cm A B C

745 107 5.7 130.9 123.8 124.6 123.0 1.3%
745 142 5.7 139.6 142.3 139.2 138.0 3.1%
780 107 7.6 147.8 147.5 150.6 148.0 2.1%



4.7% div.  Max = 131.5 A/cm
Min = 125.5 A/cm
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(111)

1 µm YBCO

Inlet
side

Excellent YBCO XRD uniformity with 5.3% S.D.

• A 5.5 cm 1 µm sample was welded 
crosswise to examine transverse 
characteristic of conversion.

• Sample was converted at 5.7 Å/s.
Turbo
pump

Same excellent transverse homogeneity is 
found for even “wider” tape
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Gp ~ 5.7 Å/s
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E-beam precursors deposited under 
different conditions can exhibit 

different nucleation and growth behaviors.

… However, subtle variations 
can have consequences on 

precursor convertibility.

No pre-
anneal

Pre-
anneal

< 1 A/cm

0 A/cm

Different deposition PO2

• With better deposition control and pre-
anneal, R2R E-B precursors can tolerate 
aggressive conversion conditions …



Summary 

• Fast growth rate E-B precursors have been obtained using our R2R 
deposition system.

• A low pressure R2R conversion system has been put in operation. 
For 1 µm YBCO, Ic/cm as high as 148 A at Gp of 7.6 A/s,

2 µm YBCO, Ic/cm as high as 200 A at Gp of 5.7 A/s.
Performance comparable to stationary low pressure system.

• Excellent homogeneity was found for samples converted in this 
system:    < 5% Ic variation in transverse direction for 5.5 cm tape.

• Significant variations in conversion characteristics are exhibited by 
different precursors.
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In FY04, Pulsed Electron Deposition (PED) was added as a 
potentially simpler ex-situ precursor deposition technique

Advantages of PED:
• Single target run-to-run stoichiometry 

control
• Materials utilization, instrument cost 
• Scalability (multiple sources, cost-

effective)
• Flexibility (RE-substitutions, etc.)

Three-fold motivation for ORNL:
• Explore a commercial approach to 

precursor deposition
• Develop an in-house source of 

precursors for program needs
• Gain an understanding of the PED 

process
Neocera prototype (2004) integrated 
with ORNL’s R2R tape handling

OAK RIDGE NATIONAL LABORATORY
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In FY04, we obtained encouraging results on 
reel-to-reel PED precursors

At slow conversion rates 
(~ 1Å/s):

• Jc = 1.6 MA/cm2

for 0.72 µm YBCO
• Ic = 159 A 

for 1.3 µm YBCO

Conversion rates of 7.7 Å/s 
demonstrated (Ic = 98 A for 
1 µm YBCO)
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Jc = 0.97 MA/cm2

Gp = 7.7 Å/s

In FY05, we observed an 
unexpectedly high 
sensitivity to buffer-layer 
characteristics.
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An “incubation time” (5-15 min) is typical for PED 
precursors, but not for e-beam precursors
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Why are PED results highly sensitive to buffer 
layer characteristics? 

• Incubation:
Does buffer B not tolerate incubation?

• PED particulates (SEM):
Does buffer B suffer damage during PED process?
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Why are PED results highly sensitive to buffer 
layer characteristics?

Test structures:

Ic = 46 A/cmIc < 1A/cm

1000 nm PED precursor
1000 nm PED precursor

OAK RIDGE NATIONAL LABORATORY
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RABiTS

Buffer B
100 nm e-beam precursor

RABiTS

Buffer B



5 nm

Before conversion

CeO2

Precursor

No detectable damage at PED precursor / CeO2 interface

RABiTS
Buffer B

100 nm e-beam precursor

1000 nm PED precursor

RABiTS
Buffer B

1000 nm PED precursor

After conversion (Ic = 46 A)

CeO2

YBCO
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CeO2

YBCO

After conversion (Ic < 1A)
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Also: no visible interface between 
converted e-beam and PED YBCO
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Incubation time remains even with e-beam “seed” layer

Incubation is not related to nucleation, 
but possibly to diffusion

46-A/cm sample shows same 
incubation time as <1-A/cm sample;

therefore, the incubation time does not 
appear to be the dominating factor 
leading to <1A/cm

PED precursor crystallizes well on e-
beam “seed” layer

therefore: poor crystallization of PED 
precursor (without “seed”) appears 
related to poor nucleation

RABiTS
Buffer B

1000 nm e-beam precursor



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

A closer look at PED energetics
An ion probe can be used to measure the energy of impinging species:
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of the deposition rate:

Monitors the combined effect of 
target wear and source performance



A closer look at PED energetics
An ion probe can be used to measure the energy of impinging species:
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Velocities ≈ 104 m/s
energies 10 – 80 eV

• High energy of incident species
Comparison: in pulsed laser
deposition, re-sputtering and poor 
crystallization are often observed at 
these energies. 

• Reduction of energy requires
• increased background gas pressure 

(impossible in PED)
or

• increased target-substrate distance
(results in deviation from 
stoichiometry for PED)

• There is no easy way to address this 
issue.
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Summary of PED results
• PED: Sensitive to buffer characteristics

• “Incubation time” during conversion of PED precursors
Possibly related to diffusion

• E-beam “seed” layer improves crystallization of PED 
precursors

Poor crystallization of PED precursor (on some CeO2 layers) seems 
related to nucleation 

• No TEM-detectable damage to the CeO2 layer from PED 
process

• PED: impinging species have high kinetic energies 
(10 – 80 eV)

Can’t use pressure or distance to reduce these energies
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FY2005 Performance (Scoring Criterion)

Performed magnetometry Jc study in the 
thickness range 30 nm to 1.5 µm for ex-situ
YBCO on RABiTS
- observed maximum in Jc for thicknesses 
between 0.1-0.2 µm with record high Jc value of 
3.5-4 MA/cm2 (77 K)

improved performance of 1-1.5 µm thick films 
on RABiTS by Y-doping
- Ic = 300 A/cm in 1.0 µm YBCO
- Ic = 370 A/cm in 1.4 µm YBCO

improved performance of 2 µm YBCO from 200 
→ 330 A/cm

Study and improve the
thickness dependence
of Jc in PVD-BaF2 
ex-situ films on 
RABiTS

High-Ic ex-situ YBCO conductors
Plan: Performance:
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FY2005 Performance (Scoring Criterion)

Added objective:
Elucidate role of
precursor preparation
history on the ex-situ
conversion process

Performed quenching study of YBCO    
nucleation during temperature ramp and early 
parts of the ex-situ conversion anneal

Initiated external collaborations to enable 
characterization with a variety of techniques

Identified perturbing effects on the growth during 
fast conversion of thick as-grown precursors:

- layered phase separation (Cu ↔ BaF2)
-incomplete Cu oxidation

Observed minor dependence of conversion rate 
on precursor thickness

High-Ic ex-situ YBCO conductors (continued)
Plan: Performance:
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FY2005 Performance (Scoring Criterion)

Study and improve
flux pinning properties
of PVD-BaF2 ex-situ
YBCO

Performed study as a function of YBCO 
thickness and temperature

Identified general characteristics for pinning with 
H||c:

- constant Jc∝ H-α power law exponent α with 
values of ~ 0.6, consistent with pinning by 
strong, sparse defects
- scaling between self-field Jc at 77 K and in-
field performance at reduced T (30-40 K)

Achieved improvements in pinning for H||c and 
H||(ab) by processing modifications and Y-
doping (WDG presentation)

Plan to study RE-BCO was deferred to FY2006 
in lieu of expanded compositional studies in the 
YBCO system

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

High-Ic ex-situ YBCO conductors (continued)
Plan: Performance:



FY2005 Performance (Scoring Criterion)

Obtain precursors that 
can tolerate fast Gp.

Combined deposition control with pre-anneal 
treatment.
Increased Gp with high Ic.

R2R e-beam precursor deposition
Plan: Performance:
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FY2005 Performance (Scoring Criterion)

Develop a R2R low-
pressure furnace

R2R low pressure furnace was put in operation 
(~1500x reduction in gas
consumption compared to our R2R atm).

Develop a R2R low-pressure furnace
Plan: Performance:

Process ex-situ 
precursors with high Ic
and Gp.

For 1 mm YBCO, 150 A/cm at Gp = 7.6 Å/s
For 2 mm YBCO, 200 A/cm at Gp = 5.7 Å/s
(previous R2R Gp from 0.7 to 1.5 Å/s).

Demonstrate 
improvement in YBCO 
homogeneity.

Excellent transverse Ic homogeneity was found:
Ic/cm variation ~ 2 to 3 % for 1 cm-wide

< 5% for 5.5 cm-wide
(Previous R2R: Ic/cm variation of up to 27%).
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FY2005 Performance (Scoring Criterion)

PED vs. e-beam: Significant differences in 
conversion characteristics observed. 

Sensitivity in YBCO nucleation to buffer 
condition.

Substantial incubation period 
- regardless of buffer condition, 
- also observed in samples with an e-beam 

evaporated precursor seed

Measured high energies of deposited species, 
which may result in damage to certain types of 
CeO2 surfaces.

Further develop R2R 
PED as a routine 
precursor deposition 
tool.

PED precursor development
Plan: Performance:

Optimize precursor to 
enable fast Gp with 
high Ic.
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Ex-situ YBCO Strategic Research: 
Taking Stock 

The ex-situ processing approach has historically been 
instrumental at ORNL 

– In demonstrating feasibility of ex-situ conversion as a YBCO 
method.

– In demonstrating that high Ic RABiTS-based 2G wires can be 
obtained in reel-to-reel processed lengths.

– As a method to qualify alternative RABiTS architectures.

– And ORNL’s CRADA partners (past and present) selected the 
R2R conversion approach and have used ORNL’s facilities.
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Ex-situ precursors are useful for strategic research
• US companies have made tremendous progress; 

reel-to-reel processed, world-class 2G wires in long lengths were 
announced at this peer review.

• In particular, 4 cm-wide long-length 2G wires processed into 4-mm wide 
tapes with high uniform Ic have been obtained using an  ex-situ approach 
(MOD precursor) by American Superconductor.

• Ex-situ films can be made thicker and with high Ic.

• We no longer need to pursue other YBCO growth methods as an 
alternative to processes being pursued by industry. 

• PVD precursors are a flexible research tool, with processing and
microstructural features that may be compared to MOD such that 
progress can be accelerated.

• Resources are required by new and expanded strategic CRADA 
commitments.

These factors prompted us to reprioritize our 
new and existing strategic research portfolio.
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FY2006 Plans (Scoring Criterion)

R2R PED:
Motivated by PED’s potential as low-cost alternative to MOD. 
Pursued as in-house source of precursor material.
Discovered an unexpected sensitivity of nucleation to buffer condition
Stop work.

R2R e-beam evaporation:
R2R e-beam evaporation is no longer essential to the ORNL mission.

We plan to substantially reduce our effort to a level that is
consistent with our ongoing commitments.

R2R e-beam evaporation Stop work.
Stationary:  Focused efforts in support of WDG and CRADA
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FY2006 Plans (Scoring Criterion)

High-Ic ex-situ YBCO conductors:
Implement results from continued precursor studies to improve Ic in 
2 µm thick YBCO on RABiTS to values > 500 A/cm (77 K, sf)
- processing focus will shift from 1 → 1.5-2 µm

Study effects from additions to YBCO to improve transport properties 
of 1.5-2 µm thick films using a 4th evaporation source

Perform exploratory studies on alternative RE-BCO film growth
- compare difficulty of processing with YBCO 
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Research Integration (scoring criterion) (1 of 2)

• Wire Development Group (AMSC, UW, LANL, ANL, ORNL)
- vortex pinning, current limiting mechanisms, characterization

• American Superconductor Corporation
- Conductor fabrication (CRADA)

• Neocera, Inc.
- Pulsed Electron Deposition: Source development

• University of Tennessee
- PVD-BaF2 ex-situ process, Jc characterization, pinning studies

• Albany NanoTech
- multi-technique characterization of quenched precursors

• NIST-Gaithersburg
- phase relations of BaF2 ex-situ process

• NIST-Boulder
- mechanical properties of thick YBCO-RABiTS conductors
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Research Integration (scoring criterion) (2 of 2)

• ANL
- Raman studies of quenched precursors

• BNL
- information exchange, site visit

• ICMAB, Barcelona, Spain
- magnetometry of high-Jc films on RABiTS

• Univ. Cambridge, UK
- GB studies

• Embry-Riddle Aeronautical University
- PED precursor characterization

• 15 peer reviewed scientific publications 
• National and international conference contributions
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Available quality of coated conductors enables and necessitates 
conductor research with industry:

• Multi-filamentary HTS fabrication and characterization
• Stabilizer geometry suitable for low ac loss applications
• Low aspect-ratio 2G wires for fully transposed reduced ac 

loss cables and coils
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	Also: no visible interface between converted e-beam and PED YBCO

