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ABSTRACT

Vein localization and catheter insertion constitute the first and perhaps most important phase of many medical
procedures. Currently, catheterization is performed manually by trained personnel. This process can prove
problematic, however, depending upon various physiological factors of the patient. We present in this paper
initial work for localizing surface veins via near-infrared (NIR) imaging and structured light ranging. The
eventual goal of the system is to serve as the guidance for a fully automatic (i.e., robotic) catheterization device.
Our proposed system is based upon near-infrared (NIR) imaging, which has previously been shown effective in
enhancing the visibility of surface veins. We locate the vein regions in the 2D NIR images using standard image
processing techniques. We employ a NIR line-generating LED module to implement structured light ranging
and construct a 3D topographic map of the arm surface. The located veins are mapped to the arm surface
to provide a camera-registered representation of the arm and veins. We describe the techniques in detail and
provide example imagery and 3D surface renderings.
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1. DESCRIPTION OF PURPOSE

Development of technologies that enable automated insertion of needles and catheters will clearly play a vital
role in the operating room of the future. One vision for future operating rooms is a clean room environment
void of any humans beyond the patient. Subsequently, future operating environments will require remote and
autonomous insertion of intravenous (IV) catheters in a patient without the assistance of a nurse. To reach our
goal, we focus our work on finding the best way to reproduce the two main actions of this medical procedure
with a robot:

1. Localizing the best target subcutaneous vein. The “golden rule” in nursing for IVs is to use the largest
vein and the smallest gauge catheter possible. Image processing algorithms combined with an illumination
and camera acquisition system using the absorption/reflection properties of light in tissues will allow us to
choose the target vein.

2. Computing the path for the needle that has to enter the skin with at a specific angle. By obtaining a 3D
model of the surface of the skin and adding to this model a mapping of the target veins, we will be able
to guide the needle into the vein. This path will be computed only if we know the position of the patient
compared to the position of the robot in a 3D space.
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2. METHODS AND SYSTEM

2.1. Methods

Previous research has been completed to characterize the propagation of light in tissue as a function of
wavelength [1]. A good example of this light interaction is apparent from viewing through the skin where red
blood appears blue [2]. In the near-infrared part of the light spectrum, the light penetrates deeper into the tissue
and is less sensitive to the pigmentation of the skin. To use the non-invasive characteristics of NIR light, we have
designed a ring of NIR light emitting diodes (LED) with seven different wavelengths to illuminate the scene.
This lighting system allows us to detect and separate veins from other tissues.

For the 3D reconstruction process, we use active optical triangulation, a well known method for acquiring
range data [3]. This method is based on the combination of a structured light laser source and a camera. After
calibration of the system, the depth of each point of the laser line is triangulated and the 3D points are calculated
from a 2D projection. These points are then gathered into a 3D point cloud corresponding to the surface of the
skin.

Combining the 3D and 2D information, we will compute the 3D position of the target vein and determine an
optimum path for the needle.

2.2. Experimental setup

Our acquisition system (Figure 4) is composed of a NIR video camera with a 740nm long-pass interferometric
filter, a NIR multi-wavelength ring of LEDs and a NIR line-generating laser module.

(a) Picture of the acquisition system (b) Schematic of the acquisition system

Figure 1. Picture and schematic of the acquisition system including a NIR sensitive camera, a NIR interferometric filter,
a NIR multi-wavelength ring of LEDs and a NIR line-generating laser module. The diffuser has been removed from the
setup (a) to show the ring of LEDs.

We have selected a Mutech Phoenix PC-1280/M Monochrome Camera with 8 or 10 bit pixel formats sup-
porting both VGA and SXGA resolutions running respectively at 60 and 15 frames per second (fps). Our choice
was based on the appropriate spectral response of the CMOS sensor in the NIR range of light (Figure 2), its
compactness and the communication protocol allowing both video signal transfer and hardware configuration.
The camera is connected and controlled by an IBM compatible personal computer (PC) via a USB 2.0 connec-
tion. The video resolution has been set to 640× 480 (VGA) at 60 fps taking into account:

• the processing speed needed: A nurse is able to take a decision based upon the unpredictable movements of
patients, so we need to have the same possibility of reaction. Considering that the human eye transmits at least
20 images per second to analyze the movement in a scene, we set the lower processing time limit at 25 frames
per second. This speed will be the minium allowed to take a decision on the real time needle path computation
with our image processing algorithms. In this paper we present a two steps analysis of the scene by switching



between the two light sources (laser line generator / ring of LEDs). So, of these 60 frames, half of them are used
for the 3D reconstruction (3.2) and half for the localization of the target veins (4).

• the maximum size of eventual artifact : The size of the smallest viewable element is inversely proportional
to the resolution of the picture for a given scene. By using a lower resolution we want to limit the presence of
artifacts in the images like for example the detection of capillary or perturbations caused by hairs (i.e., unwanted
light reflection of the laser lines, high absorption of NIR light comparable to the veins).

The optical system is composed of a 25mm lens with a NIR interferometric filter on it. In our setup the NIR
filter is used as a high pass filter; combined with the spectral response of the camera we obtain a band pass filter
which allows a sensitivity in the spectral range going from 740nm to 960nm.

Figure 2. Sensor Spectrum Response (Without IR filter) and limits of the spectral range used in our experiment.

The lighting source is composed of 56 LEDs mounted on a ring with eight LEDs for each of the seven
wavelengths (740, 770, 810, 840, 880, 910 and 950nm). Each LED has a power dissipation around 30mW. The
position of the LEDs on the ring has been determined to get a uniform illumination of the scene even by switching
or combining the different wavelengths. In addition we have placed a diffuser in front of the LEDs to increase this
uniformity. A wide range of NIR LEDs has been used to enhance the contrast between the veins and the skin.
Past studies on the propagation of light in biological tissues examined the relations between the nature of tissue
and the absorption of light (blood [2], water [4], skin [5], fat [6]). Through this research we are investigating
wavelength and wavelength combinations that will provide optimum contrast between near-surface veins and
tissue. With a Measurement Computing PMD-1024HLS which is a 24-line digital I/O module connected to the
computer, we can select a wavelength or a combination of wavelengths used to illuminate the scene.

We use a 19-line generating beam splitter mounted on a 785nm laser diode to generate the structured light
source needed to create the 3D triangulation system. With the 19-line generator, we plan to cover a surface up
to eight square inches, therefore providing flexibility and control of the robotic catheter insertion system.

3. CALIBRATION AND 3D RECONSTRUCTION

3.1. Acquisition System Calibration
In computer vision, the calibration of an optical system is used to determine the intrinsic and extrinsic

parameters of a camera [7]. These parameters correspond to the mathematical relations between the 3D space of
reference and the 2D perception of the scene. With the resulting equations, we are able to correct the distortion
of the picture and to compute the metric value of a pixel. Different methods of calibration already exist and many
tend to use the same process [7, 8]; we used the method describe in [9] for our application. The calibration is
made when the position of the laser compared to the camera and the focal plane of the optical system have been
fixed. The method consists of taking pictures of different orientations of a planar checkboard pattern considered



as a metric reference for our system. Notice that we have to illuminate the scene with the NIR lighting source
due to the presence of the interferometric filter. The analysis of the position of all the square corners in a set of
six to ten pictures give us the intrinsic parameters of the camera: focal length, principal point, skew coefficient,
radial and tangential distortions. The Figure 3 presents an example of the correction result obtained with these
parameters.

(a) Distorted image of the pattern (b) Undistorted image

Figure 3. Distorsion correction example

In addition to the distortion correction, this method offers the possibility to calculate the metric coordinates
of a pixel depending on the position of the image plane along the optical axis (Z axis in Figure 4). Placing the
checkboard pattern at two or more planes perpendicular to the optical axis while visualizing the projection of
the laser stripes on the pattern, we are able to determine a relation between the dimensions of the pattern and
the position of the laser lines. In addition, by combining these multi-level relations we are able to compute the
linear equations of the laser lines for a given value of y (Figure 4(b)). Assuming that after correction of the
distortions, all the lasers lines projected on a plane perpendicular to the optical axis are parallels independently
to the projection plane and are projected orthogonally to the X axis by setup, we are able to define the position
of each pixel of the laser stripe lines in the 3D baseline by a linear equation where the only variable is the x
coordinate of the same pixel in the 2D image because y is a constant due to the orthogonality of the laser lines
with X.

(a) Orthonormal basis (b) Laser lines representation: Zmax and Zmin are
respectively the maximum and minimum heights
of the observed object.

Figure 4. Calculation of the laser line equations after calibration of the system



3.2. 3D Reconstruction

The 3D reconstruction process uses active optical triangulation by combining a camera and a laser stripe line
generator [3]. The geometry of the laser triangulation is shown in Figure (5). The camera is aligned along the

Figure 5. Principle of 3D reconstruction with active optical triangulation

Z axis and the laser line generator is positionned at a distance b from the camera with the angle θ relative to
the X axis. Assuming that the considered laser point coordinates (x, y, z) in the 3D baseline has a projection
(u, v) on the image plane, the similar triangles equations give the mathematical relation between the measured
quantities (u, v, θ) and the coordinates (x, y, z):

[x, y, z] =
b

f. cot θ − u
[u, v, f ]. (1)

The calculation of the equation of each of the stripe lines during the calibration process depend on the
triangulation equation above. Because the position of the laser compared to the camera is fixed, the equation
are calculated only one time. The second part of the 3D reconstruction process depends on the detection of
the center of the laser stripe lines. The reflection of the laser light on the surface of the skin is comparable to
a blurry Gaussian signal. To detect with accuracy the position of the center of the laser line, we have tested
three subpixel peak detection algorithms: Blais and Rioux [10], Forest [11] and the center of mass. In each
case a pre-processing slicing filter was used to remove the additional lines generated by the laser diode and to
remove additive noise from the picture (Figure 6(a)). In almost all the tests, the best results were obtained with
the Forest algorithm with a 6th order filter (Figure 6(b)). A classification of each of the center line pixels is
performed to associate them with one of the nineteen laser lines, considering the possibility of missing points in
the 3D point cloud. Due to the approximate local linearity of the skin surface we fill the holes in our 3D mesh by
linear interpolation based on the direct neighborhood of the missing points. The resulting association pixel-line
number will determine the linear equation used for the 3D reconstruction (Figure 6(c)).

The 3D modeling of the scene is computed in real time at 30 frames per second. The complete mesh of the
scene is generated during this period of time but for visualization only. In reality the interesting information
we want to extract concerns the venous area. Indeed, we plan to use the 3D position of the vein for a robotic
catheterization and a robot need only the parametric curve of the path to be able to stick the vein. So we only
need to compute the 3D model of the surface of the skin around the target veins. Usually in a picture, the ratio
veins/skin is about 30% in maximum which implies a processing time divided at least by three if we generate
the 3D mesh in the area of interest.



(a) Slicing pre processing result: the upper half part
presents the raw image and the ower half part the proc-
cesing result

(b) Stripe line peak detection. Notice the presence of a
hole in the lower right part wich will be corrected during
the 3D mesh generation.

(c) 3D reconstruction with laser tripe lines texture mapped on it

Figure 6. 3D reconstruction steps and perspectives visualisations

4. VEIN DETECTION AND NEEDLE PATH CALCULATION

The next step of our work consists of finding the optimum vein for catheterization. Assuming that we have to
use the largest vein and the smallest gauge catheter possible, we have implemented image processing algorithms
to find the largest vein in the scene compared to the size of a needle.

We previously explained why our NIR light source creates a contrast enhancement between skin and veins
regardless the color of the skin. Due to these absorption-reflection phenomena, we have a NIR image with light
and dark areas corresponding respectively to the skin and to the veins (and hairs). We present in Figure (7(a))
an example of an unprocessed image of a wrist acquired with our vision system. Despite the uniformity of our
lighting source one may notice a difference of illumination and contrast between the middle and the borders of
the picture. This characteristic is due to the topography of the surface of the skin. Indeed the incidence angles
between the rays of light and the surface of the skin condition the quantity of light reflected to the camera.
This difference of illumination is considered as a leak of energy due to the high scattering medium observed. A
compensation of this loss is made by acquiring the reflected light from a uniform white lambertian surface which
is still bright in the NIR range and use it as a reference for the illumination correction [12] and of course enhance
the contrast in the dark areas. Assuming that Iinit(x, y) is the initial image (Figure 7(a)), Iillum(x, y) is the
illumination reference image (Figure 7(b)) and Iresult(x, y) is the resulting image (Figure 7(c)), the illumination



correction given by the equation 2 is presented figure 7:

Iresult(x, y) =
Iinit(x, y)
Iillum(x, y)

× C. (2)

where C is a scaling coefficient dynamically determined to restore the eight bits coding of the grey pixel
values.

(a) Acquisition of a wrist before the
image processing

(b) Grayscale picture of the illumi-
nation of a white sheet of paper

(c) Result of the illumination correc-
tion of the scene

Figure 7. Illumination correction process

Recall that the detection of the veins by the human eye is made by finding the transitions between light
and dark areas. This method is quite similar to the one we used to detect the center of the laser stripe lines in
3.2. But in this case we have to detect the position of minima instead of maxima in a picture with an unknown
number of veins and with significant noise. Assuming that the lighting source and the illumination correction
allow a good contrast enhancement, we use a basic grayscale simplification of the image with a median filter [13]
to reduce the influence of the additional noise and increase the impression of transition between two groups of
gray level pixels. After simplification, we use a combination of a 2nd and 6th order filter to detect the minima
in the rows and the columns of the picture. In figure 8(b) we present the result of the local minima detection
for the black marked row in figure 8(a). A black cross was added to locate the position of each mimina in the
picture .

(a) NIR image of veins before the
image processing

(b) Detection of the center point of the veins for the row selected in
Figure 8(a)

Figure 8. Veins detection principle



Figure 9 shows our process on an image starting with the acquisition of the subcutaneous veins with our NIR
system. After illumination correction and grayscale simplification (Figure 9(b)) we apply the vein detector for
each row and each column of the picture (Figure 9(c)). At the same time, we are gathering information about
the pixel detected and its neighborhood like the local width of the vein or topographic data and compiling a
blob coloring [14]. During this process we will detect other elements considered as veins (eg., hairs, artefact
detection,...). In a final step we will use the gathered information and the rule of the nurses to select only the
path with the most linear part and the largest veins (Figure 9(d)).

(a) NIR picture of the
veins

(b) Grayscale simplifica-
tion of picture (a)

(c) Detection of the main
axis

(d) Selection of the main
veins

Figure 9. 4 steps needed to find the best possible target veins in the picture.

The next phase is the combination of the 3D information obtained in 3.2 and the 2D localization of the target
veins. We present in figure 10 a complete example of the mapping of the target veins on the 3D model of a
forearm.

(a) NIR picture of a fore-
arm

(b) Laser stripe lines ac-
quisition of the same area

(c) Final result of the 3D mapping of the veins

Figure 10. Mapping of the detected vein on a 3D model of a forearm

With these results we are able to compute a 3D path for the robot which is characterized by three points:
(1) guide the needle to the surface of the skin, (2) give a correct inclination to the needle according to the angle
of penetration required, and (3) give a correct orientation based on the main axis of the vein.

5. CONCLUSION AND FUTURE WORK

In this paper, we present how NIR imaging can be used to find vessels under the skin and show how combined
with image processing algorithms it is possible to get 3D information about the subcutaneous veins. Finally, we
demonstrate the efficiency of a non-invasive and easy to use technique and we also present a possible application
of our work by automatically guiding a catheter to administer an IV. In a next phase of this project we are



going to improve the efficiency of our device. With our lighting system, we encountered some difficulties in the
creation of contrast to enhance or detect veins under certain conditions. The increase of power dissipation of the
LEDs and the adjunction of polarizer filters will allow better control of the illumination of the scene and a better
study of the tissue reflection and absorption properties. In addition new image processing algorithms will be
implemented to solve this problem with a different approach [15]. Information missing in our 3D model concerns
the depth of the veins. Because the propagation of light in tissue follows the radiative transport equation [16] it
will be possible to find a relation between the quantity of light absorbed by a vein and its surrounding tissues
and its depth. With these improvements we plan to compute the exact 3D position of subcutaneous veins instead
of their location compared to the surface of the skin.
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