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Abstract—T his paper describesthe application of a new proba-
bilistic shape and appearance model (PSAM) algorithm to thetask
of detecting polycystickidney disease (PK D) in X-ray computed to-
mography images of laboratory mice. The genetically engineered
PK D mouseisavaluableanimal model that can be used to develop
new treatments for kidney-related problemsin humans. PSAM is
a statistical-based deformable model that improves upon existing
point distribution modelsfor boundary-based object segmentation.
Thisnew defor mable model algorithm findsthe optimal boundary
position using an objective function that has several unique char-
acteristics. Most importantly, the objective function includes both
global shape and local gray-level characteristics, so optimization
occur s with respect to both pieces of information simultaneously.
PSAM is employed to segment the mouse kidneys and then tex-
ture measurements are applied within kidney boundaries to de-
tect PKD. The challenges associated with the segmentation non-
rigid organs along with the availability of a priori information led
to the choice of a trainable, deformable model for this applica-
tion. In 103 kidney imagesthat were analyzed as part of a preclin-
ical animal study, the mouse kidneys and spine were segmented
with an average error of 2.4 pixels per boundary point. In all 103
cases, the kidneys were successfully segmented at a level where
PK D could be detected using mean-of-local-variance texture mea-
surements within the located boundary.

I ndex Terms—Defor mable models, screening, segmentation, sta-
tistical shape models.

I. INTRODUCTION: MEDICAL IMAGING AND DEFORMABLE
MODELS

HE Oak Ridge National Laboratory (ORNL), Oak Ridge,
TN, has a Mammalian Genetics Research Facility that
houses more than 70000 mice representing about 400 mutant
lines. Mutagenesis experiments are performed on the mice, and
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it is important to then determine the physical manifestations
(phenotypes) of these induced mutations. These phenotypes are
often difficult to find, especially when only a few researchers
are avalable to screen a large number of mice. A large
percentage of these phenotypes are expressed as internal ab-
normalities that cannot be seen without sacrificing the animal.
Examples of these phenotypes include skeletal deformities
(e.g., scaliosis) and deformed or diseased organs [e.g., poly-
cystic kidney disease (PKD)]. In support of this phenotyping
research, an X-ray micro-computed tomography (CT) system
(the MicroCAT) was developed that can acquire CT data sets
with aresolution as high as 50 microns [1]. MicroCAT system
generates large volumetric data sets of the mouse anatomy
that must be analyzed to determine if a particular phenotype
is present in a given subject. To perform phenotypic screening
on large numbers of mice, an automated approach is needed to
identify potential anatomic mutations within the animals.

This paper describesthe application of anew statistical-based
deformable model algorithm to the segmentation of kidneysin
X-ray CT images of laboratory mice. This segmentation algo-
rithm has been developed as the crucial first step in a process
to automatically screen mice for genetically-induced PKD.
Once the segmentation is complete, mean-of-local-variance
(MOLV) texture measurements are applied within detected
kidney boundaries to discern the presence of PKD. This new
algorithm is called probabilistic shape and appearance model
(PSAM) and has its roots in the active shape model (ASM)
algorithm developed by Cootes, et al. [2]. ASM was chosen as
an appropriate starting point for the development of a segmen-
tation algorithm for this application because of its applicability
to segmentation problems with the following characteristics:

« shapeisaprimary characteristic that describes the object;

* images contain complex backgrounds;

« objects have faint, obscured, or partially missing object
boundaries;

« there exists available a priori information on object ap-
pearance.

ASM incorporatesapriori information extracted from atraining
set to build agray-level model (GLM) and aglobal shape model
(GSM). These models are used during an iterative contour de-
formation processthat adjusts the position and shape of the con-
tour to match the boundary of the object within the image. Al-
though ASM is an excellent starting point for the motivating
application, it has a shortcoming in a key area: global shape
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and gray-level information are treated independently during op-
timization of the boundary position. This shortcoming limits
ASM’srobustness and accuracy in some applications, including
the kidney screening application presented here. A set of kidney
cross-sectional imagesfrom 12 different miceisshowninFig. 1.
These images were acquired using the MicroCAT X-ray CT
system at a 200 um pixel resolution. The mice were given in-
traperitoneal injections of 200 pl of iodinated contrast medium
(Conray 400) 23-25 min prior to CT scanning. Note the vari-
ability in shape, density, pose, and contrast of the kidneys (rel-
ative to their backgrounds) among the 12 images. Also note
the varying complexities in the background structure. In partic-
ular, note the faint boundaries around many of the kidneys (e.g.,
second row, middle image).

Before describing the detail s of the new PSAM algorithm and
its application to this problem, it is appropriate to highlight re-
cent developments in statistical-based deformable models that
are variationson ASM. Wang, et al. [3] have developed a prob-
abilistic based optimization scheme that uses Cootes' point dis-
tribution model and integrates Canny-edge information into the
maximum a posteriori (MAP) objective function as the under-
lying image attraction force. Kervrann, et al. [4] have devel oped
similar probabilistic techniques, but include Markov modeling
on the local scale to promote boundary smoothness. Both of
these ASM adaptations rely on edge information in the target
image as the external attraction force, rather than the gray-level
gradients proposed by Cootes. Duta, et al. [5] have also refined
the ASM technique in terms of the image attraction force as
well as the optimization approach to fit the boundary to the un-
derlying image data. Consideration of boundary-point outliers
is an important consideration in their work. Gleason, et al. [6]
have improved upon the original ASM by including more com-
prehensive gray-level information from theimage (raw intensity
plus profile gradients) and have added constraints to the shape
model to improve convergence. Even with the considerable re-
search that has been performed, none of theresulting approaches
address the key ASM shortcoming outlined previously of inde-
pendent opti mization with respect to gray-level and shapeinfor-
mation.

Another algorithm that is an extension of the idea behind
ASM is the active appearance model (AAM) [7]. In ASM the
boundary of the object ismodeled using aset of landmark points
(LPs) that define the exterior boundary of the structure, while
AAM models the entire object appearance as a collection of
gray-level values. It turns out that AAM is not applicable to
the problem of PKD screening, because PKD causes signifi-
cant changes in the internal kidney appearance. As a result, it
makes sense to only model the part of the kidney where the rel-
ative intensity characteristics are more consistent, that is, the
boundary. For thisreason, anew PDM technique was devel oped
that takes advantage of the modeling approach of ASM, but im-
proves upon that technique with a new boundary optimization
approach.

Il. SHAPE AND GRAY-LEVEL OBJECTIVE FUNCTION

This section outlines the theoretical development of the
PSAM segmentation agorithm. First, we will define the
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Fig. 1. X-ray CT abdominal cross-sections of 12 different mice. The white
structure at the top of each imageisthe spinal column. Thetwo elliptical shaped
structures to the lower-left and right of the spinal column are the kidneys. The
black spotsin the abdomen are air pockets and the distributed white abdominal
structure (especialy in the first five images) is excess contrast agent.

boundary we are searching for as an (z, y) coordinate matrix,
Sy, of size Nx 2, where N is the number of LPs needed to
represent the boundary. Each row of Sy corresponds to the
(2, y) coordinate of a boundary or LP asfollows:

1 Y1
Su=|" .y2 )
IN YN
where the V LPs are defined by the coordinate pairs
(zj,9),5=1,...N. @

The subscript » is used to foreshadow the relationship of the
boundary with acombined shape-pose parameter vector, v, to be
described later. Defining the boundary this way accommodates
some flexibility in how the boundary is represented. The points
in Sy aretypically LPsthat liedirectly on the boundary (as used
in ASM), but in addition, other (x, y) coordinate|ocations could
be included that, for example, lie in image regions that are on
the interior or exterior of the object boundary.

Next, wewill define afeature vector matrix, G. Inthisformu-
lation, the feature vectors (rows of G) contain features extracted
from the neighborhood of each L P on the boundary. If thelength
of each feature vector is m, then the size of G will be N x m.
These feature vectors may contain any image information that
isrelevant to the given application, such as gray-level intensities
in the neighborhood of each pixel, local texture measurements,
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or gray-level gradient information (asusedin ASM and PSAM).
We can write G as

9
G=|" 3
aN
where
9; = h(f(zj,9;)),5=1,...,N. 4

In (4), f istheimage, and & is a neighborhood operator that
samplestheimagein the neighborhood of (z;, y;) and organizes
these samplesinto the feature vector, g;. Now that we have de-
fined our parameters, we can formulate the probabilistic objec-
tive function.

In the PSAM boundary-finding application, the goa is to
maximize the a posteriori probability of the boundary Sy, given
the measured image featuresin G. Using the compound version
of Bayesrule [8], we can write the a posteriori probability ex-
pression for the boundary, Sy, given a collection of feature vec-
tors, G, as

p(G|S'v)P(S'v)
p(G)

where P(Sy) is the prior probability of a boundary instance,
Sv; p(G|Sy) istheconditiona density of G given the boundary
instance, Sy; and p(G) is the prior probability density for G

The goal is then to optimize (5) by searching over all possible
values of Sy to find the one, Sy, that corresponds to the MAP
value as given by

P(Sv|G) = ®)

(6)

P(S|G) = argg™ {W} |

p(G)

Finding Sy, can be further simplified by writing the objective
function [we will now call it J(Sy)] can be written as

J(Sv)

where we have dropped the term —n p(G) since it is indepen-
dent of Sy and is therefore a constant.

Depending on the application at hand, the term lu p(G|Sy)
may be difficult to calculate. If independence is assumed be-
tween the feature vectors in G, and if it is also assumed that
each feature vector, g;, is dependent only on it corresponding
location, (z;,y;) (i.e., jth row of Sy), then the conditional den-
sity of G given Sy can be rewritten as [8]

Hp .q]|S”717 vj r;

Plugging this expression back into (7), we can write

= Inp(G|Sy) + In P(Sy) )

N
p(G|Sy) = = [I»g)les.u). @
j=1

N
J(Sy) = Zlnp(gﬁswjyl ,Su,,) + In P(Sy)

7j=1

Zln

j=1

p(g;l7j,y;) +1n P(Sy). )

N

It isuseful to note that the first term isthe “ data-driven” term of
the objectivefunctionin that it depends on image characteristics
(external energy term), while the second term is“model-driven”
in that it depends on prior distributions of boundary shape and
location (internal energy term).

Note how this formulation can accommodate several impor-
tant goals. First, this objective function allows simultaneous op-
timization with respect to image-derived gray-scale information
(first term) and shape information (second term). Second, be-
cause this objective function is based on a probabilistic frame-
work, we can interpret its value as a measure of how well the
final boundary fits the distribution approximated by those con-
tained in the training set. This measure can be broken down
into two pieces: 1) the first term measures how well the final
gray-level information matches that which was extracted from
thetraining data, and 2) the second term measures how well the
overall shape and location of the boundary matches that which
was extracted from the training set.

Optimizing J(Sy) over al possible boundary vectors, Sy,
can be a daunting task for several reasons. First, depending on
the number of LPs used to represent the boundary, Sy could
be avery large matrix, and finding the maximum of .J with re-
spect to each of the 2V elements of Sy, can be computationally
demanding. Applying principal component analysis (PCA) and
then using only the significant modes of variation reduces the
dimensionality of Sy to resolvethis problem. The boundary Sy
can be approximated in the PCA subspace as a vector, v, with
fewer dimensions. As detailed in [9], » is constructed to be a
combination of the boundary coordinates in PCA subspace, b,
and the pose of the boundary, z, relative to the mean shape cal-
culated during the shape training process (see next section) as

follows:
{b}
v =
z

wherez = [s 0 T, TU]T. Here, s is scale, 6 is rotation,
and T,,, T, are the z- and y-translations required to align the
boundary with the mean shape. Also, we define the length of
the PCA shape vector, b, to be t,, the length of z is 4, and the
overal length of v isthent = ¢, + 4.

Hence, optimizing the objective function in the PCA sub-
space with respect to the more compact vector, v, isasimpler
task. If we substitute the new boundary representation, v, into
(7), the objective function then takes the form

(10)

J(v) = lnp(Glv) + In P(v) (12)
where
Inp(Glv) Zlnp gjla(v);,r(v);)
J=1
N
Z p(g;lz5,y;) (12
and ¢(v), r(v) are functions that map v from the PCA subspace

back into the = and y image-coordinates, respectively.
To use this objective function in practice, we must know all
of theindividual conditional probability densities, p(g,|z;,y;),



j = 1,...,N. In the PSAM approach, these conditional
densities can be straightforwardly measured from the training
data as described later. Finally, the prior probability of the PCA
boundary vector, P(v), must aso be known. Once again, this
can be estimated from the training data.

A. Shape Model Training

Although it was convenient to represent the boundary as a
matrix, Sy, during the compound Bayesian description of the
objective function, it is simpler for implementation to represent
the entire collection of (z, y) coordinates as a vector, p. Let the
manually selected boundary for the ith image in an M-image
training set be represented by a collection of LPs, p,,..;,,.

Yin ]7
LM (13)

= ['ril Li, Tiny Yiy  Yio

1=1

ptraini

where the N LPs that make up the boundary for the ith sample
are defined by the coordinate pairs

($i17y’ij)7j:17"'7N' (14)

These training boundaries are manually delineated by a qual-
ified person that understands the characteristics of the object
within the scene that must be segmented and recognized.

Prior to building the shape model, the alignment of the sets
of LPs to a common coordinate frame is done via Procrustes
analysis [10] to form the aligned sets of LPs

Jin ]
i=1,.... M.

Pirain, = Tiny Yir  Yis

(15)

Using this training data set of aligned LPs, p,,;,., We can
straightforwardly create a GSM based on v by applying PCA
as described in [9].

B. Gray-Level Model Training

Recdl that g; is a vector of image gray-level values in the
neighborhood of the jth LP. For this algorithm we assume that
the values of g liealong alinear profile that passes through the
jth LP and is normal to the current boundary estimate. We can
write the raw pixel intensity elements of the normal profile as

9ir =f <33j — (% —k+ 1> cos aj,

Yj — (% - k+1) sinaj>

k=1,...,Nyjandj=1,...,N (16)
where NN, is the number of gray-level samplesin each profile,
and «; isthe angle of the profile through the jth LP normal to
the boundary. For this application, the elements of the vector g;
are not the raw image intensity values, but the gradient along
the profile to make the values independent of global intensity.
Once we have extracted the gray level gradient profile vectors
for each LP on the boundary for all M images in the training
set, we can (similar to the GSM) create a GLM using PCA as
described in detail in [9].
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C. Objective Function Parameterization and Optimization

Once the formulation of the GSM and GLM is complete, all
of therequired information isavail ableto parameterize and opti-
mize the objective function in (11). We can rewrite (11) asfunc-
tions of J; and J, as follows:

J(v) = Ji(v) + Jo(v)

where J;(v) = In P(v) and J2(v) = Inp(G|v). For parame-
terization purposes, the distributions of both the shape vectors
(Ptrqin,) @ndthegray-level vectorsfor each LP(g;) areassumed
to be Gaussian asin [6] and [9]. Gradient descent was chosen to
optimize the objective function. The gradient can be written as

VJ(w) = VJi(v) + J2(v).

17)

(18)

Because we assume Gaussian distributions for both the GSM
and GLM, the gradient of each term can be calculated. The gra-
dient of the shape term is given by
0 2(vy,, — U,
I Ul

Oup, o2

(19)

where o2 is the variance of v,, as measured from the training
set.

The gray-level model term is more complex. The gradient of
Jo is given by

_J2

oo (20)

0 .
= ZZg] K, %gj('u).
Note that g, the profile with the mean subtracted (see (21), is
being written as g;(v) to indicate that it is a function of », the
PCA-based boundary. The partial derivativetermin (20) isgiven
by

%gj (v) = E (21)

0
(g;(v) = 5093 (v)
where g; isthe mean gray-level profile through the jth LP. The
partial derivative of g; depends, of course, on how the gray-level
profiles are defined during training, as well as on the operator,
h(g;). The profile samples here are calculated as edge profiles

based on a first-forward difference gradient

1(Qj, (v), Rj, (v)) = 1(Qjy,, (v), R, (),
k=1,...,N,

9;) =

G, ('U) v
(22)
Here, @, and R; are vectorsthat contain the values of the (z, y)

coordinate locations of the samples along the jth normal profile
and are defined as [see (16)]

Qj, = — (% —k+ 1> Cos o

k=1,...,N, 23)
le\- =y; — <w —k+ 1) sinaj
k=1,...,N,. (24)

where «; is the angle of the jth profile. Also note thet I is the
image under test and that (¢;, ;) is the pose-corrected coordi-
nate pair indicating the location of the jth LP within theimage.
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The profileisaso normalized by the sum of the absolute values
of the profile elements, Eﬁzl |9;.. 1. The expression for the
profilein this caseis

I(ij ) R]k) - I(QjA-+1 ) Rjk+1>

N )
Z |I(Qjm ) ij ) - I(Qjer1 ) ij+1 )|

m=1

gji(v) =

(25)

Thegradient of thenormalized profilein (25) resultsin alengthy
but straightforwardly implemented result. The final expression
still requires oneto calculate the gradient of theimage along the
profile points—that is, (9/0v,)I(Q;, , R;,)-

Applying the chain rule, we can write this partial derivative
as follows:
0] 0]

—I—R;, (26
8R]I\ Jk ( )

7] 0

0
%I(ijRjk) = a0, Lou,

We do not have an analytical form of theimage, I, so we calcu-
lateitspartial derivativesviaafinite-difference operation. Also,
we can write the partials of @; and R; asfollows:

17 g
B0, Qik =, %
(Ny—1) . 9
+ <gT —k+1 Slnajmaj (27)
0 g

Do, = g,
(N, — 1) 9
- <5’T —k+1)cosajza;. (29

The partials of z; and y; (the scaled and rotated coordinates of
the jth LP) and «; (the angle of the jth profile) have a straight-
forward analytic solution. This completes the calculation of the
gradient termsin the objectivefunction, .J. Gradient descent can
now be used to optimize the objective function to find the best
boundary position and shape.

One important item to note about this formulation isthe very
small number of parameters that must be tuned for a given ap-
plication. The length of the gray-level profiles, N, and the
step-size used during the gradient descent optimization are the
only two parameters that may need to be adjusted. This may
be compared to the ASM implementation where up to five dif-
ferent parameters are typically adjusted for a new application.
Section |11 presents some results using PSAM.

Ill. EXPERIMENTAL METHOD

PSAM requires atraining set to incorporate shape and gray-
level information about the object(s) of interest. To build the
training set, a population of 30 mice were used. Of these 30
mice, 28 were healthy and two of them were afflicted with PKD.
Only two PKD samples were available for this preclinical study
because of the difficulties associated with housing and caring
for these diseased animals. As described in the introduction,
the mice were injected with contrast agent and three-dimen-
sional (3-D) volumes of each animal were subsequently gener-
ated using an X-ray micro-CT scanner. Transaxial slicesthrough
the kidneys within the reconstructed volumes were used to train

and test the PSAM algorithm. Several transaxial slices (from
1 to 6) containing kidneys were selected from each of the 30
subjects to create a database of 103 total kidney images. In the
cases for which severa slices were selected from the same an-
imal, there is significant anatomic variation from dlice to slice
in both the kidneys and the structures surrounding the kidneys.
Asillustrated in the scout image in Fig. 2, al of the slices were
manually selected using the L3 and L4 vertebrae as skeletal ref-
erence markers. In this region both the left and right kidneys
arevisible in an axial dlice. Although beyond the scope of this
paper, thisinformation could be used to automate the process of
selecting the kidney position.

To provide datafor usein both the training set and as ground
truth data for quantifying PSAM performance, the kidneys and
spine were manually delineated in all 103 images by placing a
collection of landmark points on the spine and kidney bound-
aries. Because of the flexibility of PSAM to handle both open
and closed boundaries, the spine (an open boundary) was added
to the two kidneys (closed boundaries) to serve as an anchor
point because of its unique density in abdominal images. These
manual segmentations were validated by a veterinarian radiol-
ogist. Asisthe case with similar PDM techniques, it is impor-
tant for PSAM that the same number of LPs be used to delin-
eate the boundary of each object (or objects) within the training
set. Furthermore, the LPs must maintain the property of cor-
respondence in that each LP must be placed in a similar po-
sition on the boundary of every object within the training set.
This is typically accomplished by placing corresponding LPs
on critical boundary features (e.g., corners), and then interpo-
lating between these to create additional LPs that also lie on
the boundary. In the case of the images being studied here, the
kidneysin particular do not have consistent, distinguishing fea-
tures(e.g., corners) to beused as* critical” featuresto help main-
tain correspondence. In addition, the varied kidney orientations
make it challenging to consistently place LPs in the same po-
sition on the boundary within the training images. In this sit-
uation, it helps to manually add reference marks to the image
that help guide the LP placement process. Fig. 3 shows a mag-
nified kidney CT image that illustrates the process used to con-
sistently label LPs along the kidney images. First, asingle line
was drawn that passes through the approximate center of both
kidneysto divide the kidneysinto upper and lower halves. Next,
two additional lines were drawn that pass through the approx-
imate center of each kidney and are perpendicular to the first
line. As illustrated, the intersection points of these three lines
with thekidney boundarieswere used asthelocations of thecrit-
ical points. Two additional interpolating boundary points were
then placed between these critical LPs to further delineate the
kidney boundaries. Landmarking of the spine was carried out
in a more consistent fashion in that three critical points were
placed that mark the upper-left, upper-right, and bottom of the
vertebra. Two additional LPs were placed on each side of the
spine along the vertebra boundary.

IV. RESULTS

To create the PSAM training set, one dlice (and its corre-
sponding L Ps) was selected from the CT volume of 29 of the 30



Fig. 2. Scout image showing the abdominal region from which the transaxial
kidneys slices were extracted.

subjects. Prior to segmenting each of the 103 testimages, PSAM
was retrained (see Section 1) using a set of 29 dlices excluding
the animal from which the current test image came. Regarding
parameter settings, the gray-level profile length N, was set to
7, the gradient step-size was chosen to be 3e-4, and these values
werenot changed during the entiretesting process. The accuracy
of segmentation was measured on each of the 103 images by
comparing the PSAM segmentation to the manual segmentation
of the corresponding imagein thetraining set. The accuracy was
quantified by measuring the average euclidean distance between
the PSAM-generated L P positions and the position of the man-
ually-placed L Psin the corresponding image. Three representa-
tive examples of the segmentation results are shown in Fig. 4.
For the 103 cases, the average error in each LP position (i.e., the
distance between the corresponding PSAM- and manually-gen-
erated LP) over all LPswas 2.4 pixelswith astandard deviation
of 1.4. The minimum and maximum average PSAM errors over
all cases were 1.1 pixels and 5.8 pixels, respectively. The error
measurement used here is quite conservative in that the error
increases even if an LP moves along the correct boundary but
away from its corresponding manually selected LP. Depending
on the goal of the application, an error based on the distance
from an LP to the true boundary (rather than the corresponding
LP) may be more appropriate. This average error typicaly re-
sults in a kidney segmentation that is quite reliable in terms of
its utility in screening for PKD. Fig. 5 shows a comparison of
a PSAM result to the manually labeled boundary for the same
image. The PSAM average error for this mouse was 2.3 pixels
per LP. Note that there are minor differences in boundary posi-
tion, but the kidneys are well delineated.

For comparison, conventional ASM was implemented as de-
scribed in [2] and [6] and then applied to all 103 cases. After
tuning multiple ASM parameters to achieve the best possible
segmentation results, the average LP error was measured as 3.3
pixels with a standard deviation of 2.3. The minimum and max-
imum average ASM errorsover al caseswere 2.4 pixelsand 8.0

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 10, OCTOBER 2002

Fig. 3. lllustration of procedure to maintain LP correspondence on kidney
boundaries across all images in the training set. Manually drawn lines through
thekidney centersprovideareferencefor critical LP positions. Thewhitearrows
indicate the position of the critical LPsfor the kidney and spine boundaries.

Fig. 4. PSAM results on three mouse kidney CT images. The images on the
left are the initiadl PSAM position, and the images on the right show the fina
position of PSAM after convergence.

Fig. 5. Manually segmented image (left) compared to PSAM segmented
image (center) and the ASM result (right). The calculated average LP position
error for thiscaseis 2.3 pixelsfor PSAM and 3.5 pixelsfor ASM.
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pixels, respectively. Thislarger error led to significantly poorer
kidney boundary delineation as can be seenin Fig. 5.

For all 103 images, an MOLYV texture measurement was ap-
plied within the kidney boundariesto screen for the presence of
PKD. The first step in the MOLV measurement is calculating
the local variance of the gray-level values in the neighborhood
(4 x 4 ared) of each pixel within the kidney boundary. In the
second and final step, the mean of the local variances across all
of these pixel neighborhoods within each kidney boundary is
computed. This mean can then be interpreted as a relative mea-
surement of a region’s texture. A mathematical expression for
MOLYV in one region (i.e., kidney) is

> 11)2

VjEN (i)
(29)

wheren isthetotal number of pixelscontained withinthekidney
boundary, N () isaset of pixelsrepresenting thelocal neighbor-
hood around the ith pixel within the boundary, m isthe number
of pixelsin N(z) (note that mn = 16 for a4 x 4 loca neigh-
borhood), and I; is the gray-scale value of the jth pixel in the
image, 1.

In al 103 cases, the presence (or absence) of PKD was cor-
rectly determined by setting the MOLV threshold level at 50,
below which akidney wasflagged as healthy and abovewhich a
kidney was flagged as having PKD. Four representative texture
measurements (two normal plus two PKD) from the 103 tested
images are shown in Table I. Theimages from which these four
texture measurements were extracted are shown in Fig. 6.

A repeatability experiment was performed by scanning two of
the 30 mice asecond time. I n between scans, the animal wasre-
moved from the scanner and then placed back on the CT scanner
bed. This process changed the position and orientation of the
kidneyswithin the scanner and, hence, within the reconstructed
CT volume. Six transaxial dices containing kidneys were seg-
mented using PSAM and the accuracy was compared to the
PSAM segmentation applied to the first scan of each animal.
For the first subject the average LP position errors for the first
and second scans were 2.8 and 2.5, respectively. For the second
mouse, the same error measurements were calculated to be 1.8
and 2.8 pixels. These errors measured on the repositioned an-
imal are well within the expected errors based on the tests per-
formed on the original 103 images.

The segmentation errors that are encountered using the
PSAM algorithm are generated from a couple of different
sources. The two most likely sources are: 1) small inaccuracies
in LP placement during PSAM training, and 2) PSAM bound-
aries getting trapped in local minima during the optimization
process. The first source of error will diminish as the quality
of the labeled training sets improves with operator experience.
The second source of error may be reduced by trying optimiza-
tion approaches other than gradient descent (e.g., smulated
annealing).
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Fig. 6. Examplesof two healthy kidney segmentations (rows 1 and 2) and two
PKD segmentations (rows 3 and 4). The original images are on the | eft, and an
8-bit representation of the MOLV texture images are on the right.

TABLE |
REPRESENTATIVE MOLV KIDNEY TEXTURE
MEASUREMENTS,.
Normal Subject # Texture Left Texture Right
1 28 38
2 30 34

PKD Subject # Texture Left Texture Right

1 104 215

2 65 131

V. CONCLUSION AND FUTURE WORK

A theoretical formulation for a new statistical based de-
formable model algorithm (PSAM) has been presented that
has several improvements over similar PDM-based techniques.
Most notable is the formulation of an objective function that
alows simultaneous optimization of the GSM and GLM.
In the presence of missing and/or broken edge information,
PSAM effectively uses the a priori shape and gray-level data
gathered from the training set to create a model of gray-level
appearance and a model of global shape that are combined
into a single objective function. This unification of the models
during optimization has several advantagesin that it providesa
general framework into which other (existing and future) PDM
techniques fit well. Also, the number of parameters (only two)
that need to be adjusted to achieve acceptable segmentation
results is small relative to comparable techniques. Finally,
as the results in Section IV demonstrate, the performance of
PSAM isimproved. Thisis particularly true for applicationsin



which the true object boundaries may be faint and/or missing.
In these types of applications, simultaneous optimization of
the gray-level and shape models becomes important to prevent
some LPs from being shifted to stronger, but erroneous edges
(see Fig. 5).

The PSAM method has been demonstrated asavery effective
tool for segmenting the spine and kidneys in X-ray CT images
of mice for the purposes of screening for PKD. Even in the few
cases where a kidney boundary was partially missed, enough of
the kidney was detected to allow accurate screening for PKD.
Although not reported here, PSAM has been applied success-
fully to the segmentation of mouse heart and lungs as well asto
mouse brain segmentation within X-ray CT images[11].

A three-dimensional version of the ASM a gorithm has been
developed for segmentation of a 3-D object embedded within a
volumetric data set. One of the main challengesin the 3-D appli-
cation of any PDM-based segmentation approach isthe practical
matter of manual training by an anatomy expert who may not be
accustomed to viewing volumetric data on acomputer screen. A
new training approach has been devel oped to overcome this dif-
ficulty by presenting the 3-D volumetric data in a unique way
that simplifies the overall process [12]. The improved PSAM
optimization approach reported here is being updated for use
with this 3-D algorithm.
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