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Abstract—This paper describes the application of a new proba-
bilistic shape and appearance model (PSAM) algorithm to the task
of detecting polycystic kidney disease (PKD) in X-ray computed to-
mography images of laboratory mice. The genetically engineered
PKD mouse is a valuable animal model that can be used to develop
new treatments for kidney-related problems in humans. PSAM is
a statistical-based deformable model that improves upon existing
point distribution models for boundary-based object segmentation.
This new deformable model algorithm finds the optimal boundary
position using an objective function that has several unique char-
acteristics. Most importantly, the objective function includes both
global shape and local gray-level characteristics, so optimization
occurs with respect to both pieces of information simultaneously.
PSAM is employed to segment the mouse kidneys and then tex-
ture measurements are applied within kidney boundaries to de-
tect PKD. The challenges associated with the segmentation non-
rigid organs along with the availability of a priori information led
to the choice of a trainable, deformable model for this applica-
tion. In 103 kidney images that were analyzed as part of a preclin-
ical animal study, the mouse kidneys and spine were segmented
with an average error of 2.4 pixels per boundary point. In all 103
cases, the kidneys were successfully segmented at a level where
PKD could be detected using mean-of-local-variance texture mea-
surements within the located boundary.

Index Terms—Deformable models, screening, segmentation, sta-
tistical shape models.

I. INTRODUCTION: MEDICAL IMAGING AND DEFORMABLE

MODELS

THE Oak Ridge National Laboratory (ORNL), Oak Ridge,
TN, has a Mammalian Genetics Research Facility that

houses more than 70 000 mice representing about 400 mutant
lines. Mutagenesis experiments are performed on the mice, and
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it is important to then determine the physical manifestations
(phenotypes) of these induced mutations. These phenotypes are
often difficult to find, especially when only a few researchers
are available to screen a large number of mice. A large
percentage of these phenotypes are expressed as internal ab-
normalities that cannot be seen without sacrificing the animal.
Examples of these phenotypes include skeletal deformities
(e.g., scoliosis) and deformed or diseased organs [e.g., poly-
cystic kidney disease (PKD)]. In support of this phenotyping
research, an X-ray micro-computed tomography (CT) system
(the MicroCAT) was developed that can acquire CT data sets
with a resolution as high as 50 microns [1]. MicroCAT system
generates large volumetric data sets of the mouse anatomy
that must be analyzed to determine if a particular phenotype
is present in a given subject. To perform phenotypic screening
on large numbers of mice, an automated approach is needed to
identify potential anatomic mutations within the animals.

This paper describes the application of a new statistical-based
deformable model algorithm to the segmentation of kidneys in
X-ray CT images of laboratory mice. This segmentation algo-
rithm has been developed as the crucial first step in a process
to automatically screen mice for genetically-induced PKD.
Once the segmentation is complete, mean-of-local-variance
(MOLV) texture measurements are applied within detected
kidney boundaries to discern the presence of PKD. This new
algorithm is called probabilistic shape and appearance model
(PSAM) and has its roots in the active shape model (ASM)
algorithm developed by Cootes, et al. [2]. ASM was chosen as
an appropriate starting point for the development of a segmen-
tation algorithm for this application because of its applicability
to segmentation problems with the following characteristics:

• shape is a primary characteristic that describes the object;
• images contain complex backgrounds;
• objects have faint, obscured, or partially missing object

boundaries;
• there exists available a priori information on object ap-

pearance.

ASM incorporates a priori information extracted from a training
set to build a gray-level model (GLM) and a global shape model
(GSM). These models are used during an iterative contour de-
formation process that adjusts the position and shape of the con-
tour to match the boundary of the object within the image. Al-
though ASM is an excellent starting point for the motivating
application, it has a shortcoming in a key area: global shape
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and gray-level information are treated independently during op-
timization of the boundary position. This shortcoming limits
ASM’s robustness and accuracy in some applications, including
the kidney screening application presented here. A set of kidney
cross-sectional images from 12 different mice is shown in Fig. 1.
These images were acquired using the MicroCAT X-ray CT
system at a 200 m pixel resolution. The mice were given in-
traperitoneal injections of 200 l of iodinated contrast medium
(Conray 400) 23–25 min prior to CT scanning. Note the vari-
ability in shape, density, pose, and contrast of the kidneys (rel-
ative to their backgrounds) among the 12 images. Also note
the varying complexities in the background structure. In partic-
ular, note the faint boundaries around many of the kidneys (e.g.,
second row, middle image).

Before describing the details of the new PSAM algorithm and
its application to this problem, it is appropriate to highlight re-
cent developments in statistical-based deformable models that
are variations on ASM. Wang, et al. [3] have developed a prob-
abilistic based optimization scheme that uses Cootes’ point dis-
tribution model and integrates Canny-edge information into the
maximum a posteriori (MAP) objective function as the under-
lying image attraction force. Kervrann, et al. [4] have developed
similar probabilistic techniques, but include Markov modeling
on the local scale to promote boundary smoothness. Both of
these ASM adaptations rely on edge information in the target
image as the external attraction force, rather than the gray-level
gradients proposed by Cootes. Duta, et al. [5] have also refined
the ASM technique in terms of the image attraction force as
well as the optimization approach to fit the boundary to the un-
derlying image data. Consideration of boundary-point outliers
is an important consideration in their work. Gleason, et al. [6]
have improved upon the original ASM by including more com-
prehensive gray-level information from the image (raw intensity
plus profile gradients) and have added constraints to the shape
model to improve convergence. Even with the considerable re-
search that has been performed, none of the resulting approaches
address the key ASM shortcoming outlined previously of inde-
pendent optimization with respect to gray-level and shape infor-
mation.

Another algorithm that is an extension of the idea behind
ASM is the active appearance model (AAM) [7]. In ASM the
boundary of the object is modeled using a set of landmark points
(LPs) that define the exterior boundary of the structure, while
AAM models the entire object appearance as a collection of
gray-level values. It turns out that AAM is not applicable to
the problem of PKD screening, because PKD causes signifi-
cant changes in the internal kidney appearance. As a result, it
makes sense to only model the part of the kidney where the rel-
ative intensity characteristics are more consistent, that is, the
boundary. For this reason, a new PDM technique was developed
that takes advantage of the modeling approach of ASM, but im-
proves upon that technique with a new boundary optimization
approach.

II. SHAPE AND GRAY-LEVEL OBJECTIVE FUNCTION

This section outlines the theoretical development of the
PSAM segmentation algorithm. First, we will define the

Fig. 1. X-ray CT abdominal cross-sections of 12 different mice. The white
structure at the top of each image is the spinal column. The two elliptical shaped
structures to the lower-left and right of the spinal column are the kidneys. The
black spots in the abdomen are air pockets and the distributed white abdominal
structure (especially in the first five images) is excess contrast agent.

boundary we are searching for as an ( ) coordinate matrix,
, of size 2, where is the number of LPs needed to

represent the boundary. Each row of corresponds to the
( ) coordinate of a boundary or LP as follows:

(1)

where the LPs are defined by the coordinate pairs

(2)

The subscript is used to foreshadow the relationship of the
boundary with a combined shape-pose parameter vector, , to be
described later. Defining the boundary this way accommodates
some flexibility in how the boundary is represented. The points
in are typically LPs that lie directly on the boundary (as used
in ASM), but in addition, other ( ) coordinate locations could
be included that, for example, lie in image regions that are on
the interior or exterior of the object boundary.

Next, we will define a feature vector matrix, . In this formu-
lation, the feature vectors (rows of ) contain features extracted
from the neighborhood of each LP on the boundary. If the length
of each feature vector is , then the size of will be .
These feature vectors may contain any image information that
is relevant to the given application, such as gray-level intensities
in the neighborhood of each pixel, local texture measurements,
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or gray-level gradient information (as used in ASM and PSAM).
We can write as

(3)

where

(4)

In (4), is the image, and is a neighborhood operator that
samples the image in the neighborhood of ( ) and organizes
these samples into the feature vector, . Now that we have de-
fined our parameters, we can formulate the probabilistic objec-
tive function.

In the PSAM boundary-finding application, the goal is to
maximize the a posteriori probability of the boundary , given
the measured image features in . Using the compound version
of Bayes rule [8], we can write the a posteriori probability ex-
pression for the boundary, , given a collection of feature vec-
tors, , as

(5)

where is the prior probability of a boundary instance,
; is the conditional density of given the boundary

instance, ; and is the prior probability density for .
The goal is then to optimize (5) by searching over all possible
values of to find the one, , that corresponds to the MAP
value as given by

(6)

Finding can be further simplified by writing the objective
function [we will now call it ] can be written as

(7)

where we have dropped the term – since it is indepen-
dent of and is therefore a constant.

Depending on the application at hand, the term
may be difficult to calculate. If independence is assumed be-
tween the feature vectors in , and if it is also assumed that
each feature vector, , is dependent only on it corresponding
location, ( ) (i.e., th row of ), then the conditional den-
sity of given can be rewritten as [8]

(8)

Plugging this expression back into (7), we can write

(9)

It is useful to note that the first term is the “data-driven” term of
the objective function in that it depends on image characteristics
(external energy term), while the second term is “model-driven”
in that it depends on prior distributions of boundary shape and
location (internal energy term).

Note how this formulation can accommodate several impor-
tant goals. First, this objective function allows simultaneous op-
timization with respect to image-derived gray-scale information
(first term) and shape information (second term). Second, be-
cause this objective function is based on a probabilistic frame-
work, we can interpret its value as a measure of how well the
final boundary fits the distribution approximated by those con-
tained in the training set. This measure can be broken down
into two pieces: 1) the first term measures how well the final
gray-level information matches that which was extracted from
the training data, and 2) the second term measures how well the
overall shape and location of the boundary matches that which
was extracted from the training set.

Optimizing over all possible boundary vectors, ,
can be a daunting task for several reasons. First, depending on
the number of LPs used to represent the boundary, could
be a very large matrix, and finding the maximum of with re-
spect to each of the 2 elements of can be computationally
demanding. Applying principal component analysis (PCA) and
then using only the significant modes of variation reduces the
dimensionality of to resolve this problem. The boundary
can be approximated in the PCA subspace as a vector, , with
fewer dimensions. As detailed in [9], is constructed to be a
combination of the boundary coordinates in PCA subspace, ,
and the pose of the boundary, , relative to the mean shape cal-
culated during the shape training process (see next section) as
follows:

(10)

where . Here, is scale, is rotation,
and , are the - and -translations required to align the
boundary with the mean shape. Also, we define the length of
the PCA shape vector, , to be , the length of is 4, and the
overall length of is then .

Hence, optimizing the objective function in the PCA sub-
space with respect to the more compact vector, , is a simpler
task. If we substitute the new boundary representation, , into
(7), the objective function then takes the form

(11)

where

(12)

and , are functions that map from the PCA subspace
back into the and image-coordinates, respectively.

To use this objective function in practice, we must know all
of the individual conditional probability densities, ,
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. In the PSAM approach, these conditional
densities can be straightforwardly measured from the training
data as described later. Finally, the prior probability of the PCA
boundary vector, , must also be known. Once again, this
can be estimated from the training data.

A. Shape Model Training

Although it was convenient to represent the boundary as a
matrix, , during the compound Bayesian description of the
objective function, it is simpler for implementation to represent
the entire collection of ( ) coordinates as a vector, . Let the
manually selected boundary for the th image in an -image
training set be represented by a collection of LPs, as

(13)

where the LPs that make up the boundary for the th sample
are defined by the coordinate pairs

(14)

These training boundaries are manually delineated by a qual-
ified person that understands the characteristics of the object
within the scene that must be segmented and recognized.

Prior to building the shape model, the alignment of the sets
of LPs to a common coordinate frame is done via Procrustes
analysis [10] to form the aligned sets of LPs

(15)

Using this training data set of aligned LPs, , we can
straightforwardly create a GSM based on by applying PCA
as described in [9].

B. Gray-Level Model Training

Recall that is a vector of image gray-level values in the
neighborhood of the th LP. For this algorithm we assume that
the values of lie along a linear profile that passes through the
th LP and is normal to the current boundary estimate. We can

write the raw pixel intensity elements of the normal profile as

and (16)

where is the number of gray-level samples in each profile,
and is the angle of the profile through the th LP normal to
the boundary. For this application, the elements of the vector
are not the raw image intensity values, but the gradient along
the profile to make the values independent of global intensity.
Once we have extracted the gray level gradient profile vectors
for each LP on the boundary for all images in the training
set, we can (similar to the GSM) create a GLM using PCA as
described in detail in [9].

C. Objective Function Parameterization and Optimization

Once the formulation of the GSM and GLM is complete, all
of the required information is available to parameterize and opti-
mize the objective function in (11). We can rewrite (11) as func-
tions of and as follows:

(17)

where and . For parame-
terization purposes, the distributions of both the shape vectors
( ) and the gray-level vectors for each LP ( ) are assumed
to be Gaussian as in [6] and [9]. Gradient descent was chosen to
optimize the objective function. The gradient can be written as

(18)

Because we assume Gaussian distributions for both the GSM
and GLM, the gradient of each term can be calculated. The gra-
dient of the shape term is given by

(19)

where is the variance of as measured from the training
set.

The gray-level model term is more complex. The gradient of
is given by

(20)

Note that , the profile with the mean subtracted (see (21), is
being written as to indicate that it is a function of , the
PCA-based boundary. The partial derivative term in (20) is given
by

(21)

where is the mean gray-level profile through the th LP. The
partial derivative of depends, of course, on how the gray-level
profiles are defined during training, as well as on the operator,

. The profile samples here are calculated as edge profiles
based on a first-forward difference gradient

(22)

Here, and are vectors that contain the values of the ( )
coordinate locations of the samples along the th normal profile
and are defined as [see (16)]

(23)

(24)

where is the angle of the th profile. Also note that is the
image under test and that ( ) is the pose-corrected coordi-
nate pair indicating the location of the th LP within the image.
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The profile is also normalized by the sum of the absolute values
of the profile elements, . The expression for the
profile in this case is

(25)

The gradient of the normalized profile in (25) results in a lengthy
but straightforwardly implemented result. The final expression
still requires one to calculate the gradient of the image along the
profile points—that is, .

Applying the chain rule, we can write this partial derivative
as follows:

(26)

We do not have an analytical form of the image, , so we calcu-
late its partial derivatives via a finite-difference operation. Also,
we can write the partials of and as follows:

(27)

(28)

The partials of and (the scaled and rotated coordinates of
the th LP) and (the angle of the th profile) have a straight-
forward analytic solution. This completes the calculation of the
gradient terms in the objective function, . Gradient descent can
now be used to optimize the objective function to find the best
boundary position and shape.

One important item to note about this formulation is the very
small number of parameters that must be tuned for a given ap-
plication. The length of the gray-level profiles, , and the
step-size used during the gradient descent optimization are the
only two parameters that may need to be adjusted. This may
be compared to the ASM implementation where up to five dif-
ferent parameters are typically adjusted for a new application.
Section III presents some results using PSAM.

III. EXPERIMENTAL METHOD

PSAM requires a training set to incorporate shape and gray-
level information about the object(s) of interest. To build the
training set, a population of 30 mice were used. Of these 30
mice, 28 were healthy and two of them were afflicted with PKD.
Only two PKD samples were available for this preclinical study
because of the difficulties associated with housing and caring
for these diseased animals. As described in the introduction,
the mice were injected with contrast agent and three-dimen-
sional (3-D) volumes of each animal were subsequently gener-
ated using an X-ray micro-CT scanner. Transaxial slices through
the kidneys within the reconstructed volumes were used to train

and test the PSAM algorithm. Several transaxial slices (from
1 to 6) containing kidneys were selected from each of the 30
subjects to create a database of 103 total kidney images. In the
cases for which several slices were selected from the same an-
imal, there is significant anatomic variation from slice to slice
in both the kidneys and the structures surrounding the kidneys.
As illustrated in the scout image in Fig. 2, all of the slices were
manually selected using the L3 and L4 vertebrae as skeletal ref-
erence markers. In this region both the left and right kidneys
are visible in an axial slice. Although beyond the scope of this
paper, this information could be used to automate the process of
selecting the kidney position.

To provide data for use in both the training set and as ground
truth data for quantifying PSAM performance, the kidneys and
spine were manually delineated in all 103 images by placing a
collection of landmark points on the spine and kidney bound-
aries. Because of the flexibility of PSAM to handle both open
and closed boundaries, the spine (an open boundary) was added
to the two kidneys (closed boundaries) to serve as an anchor
point because of its unique density in abdominal images. These
manual segmentations were validated by a veterinarian radiol-
ogist. As is the case with similar PDM techniques, it is impor-
tant for PSAM that the same number of LPs be used to delin-
eate the boundary of each object (or objects) within the training
set. Furthermore, the LPs must maintain the property of cor-
respondence in that each LP must be placed in a similar po-
sition on the boundary of every object within the training set.
This is typically accomplished by placing corresponding LPs
on critical boundary features (e.g., corners), and then interpo-
lating between these to create additional LPs that also lie on
the boundary. In the case of the images being studied here, the
kidneys in particular do not have consistent, distinguishing fea-
tures (e.g., corners) to be used as “critical” features to help main-
tain correspondence. In addition, the varied kidney orientations
make it challenging to consistently place LPs in the same po-
sition on the boundary within the training images. In this sit-
uation, it helps to manually add reference marks to the image
that help guide the LP placement process. Fig. 3 shows a mag-
nified kidney CT image that illustrates the process used to con-
sistently label LPs along the kidney images. First, a single line
was drawn that passes through the approximate center of both
kidneys to divide the kidneys into upper and lower halves. Next,
two additional lines were drawn that pass through the approx-
imate center of each kidney and are perpendicular to the first
line. As illustrated, the intersection points of these three lines
with the kidney boundaries were used as the locations of the crit-
ical points. Two additional interpolating boundary points were
then placed between these critical LPs to further delineate the
kidney boundaries. Landmarking of the spine was carried out
in a more consistent fashion in that three critical points were
placed that mark the upper-left, upper-right, and bottom of the
vertebra. Two additional LPs were placed on each side of the
spine along the vertebra boundary.

IV. RESULTS

To create the PSAM training set, one slice (and its corre-
sponding LPs) was selected from the CT volume of 29 of the 30
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Fig. 2. Scout image showing the abdominal region from which the transaxial
kidneys slices were extracted.

subjects. Prior to segmenting each of the 103 test images, PSAM
was retrained (see Section II) using a set of 29 slices excluding
the animal from which the current test image came. Regarding
parameter settings, the gray-level profile length was set to
7, the gradient step-size was chosen to be 3e-4, and these values
were not changed during the entire testing process. The accuracy
of segmentation was measured on each of the 103 images by
comparing the PSAM segmentation to the manual segmentation
of the corresponding image in the training set. The accuracy was
quantified by measuring the average euclidean distance between
the PSAM-generated LP positions and the position of the man-
ually-placed LPs in the corresponding image. Three representa-
tive examples of the segmentation results are shown in Fig. 4.
For the 103 cases, the average error in each LP position (i.e., the
distance between the corresponding PSAM- and manually-gen-
erated LP) over all LPs was 2.4 pixels with a standard deviation
of 1.4. The minimum and maximum average PSAM errors over
all cases were 1.1 pixels and 5.8 pixels, respectively. The error
measurement used here is quite conservative in that the error
increases even if an LP moves along the correct boundary but
away from its corresponding manually selected LP. Depending
on the goal of the application, an error based on the distance
from an LP to the true boundary (rather than the corresponding
LP) may be more appropriate. This average error typically re-
sults in a kidney segmentation that is quite reliable in terms of
its utility in screening for PKD. Fig. 5 shows a comparison of
a PSAM result to the manually labeled boundary for the same
image. The PSAM average error for this mouse was 2.3 pixels
per LP. Note that there are minor differences in boundary posi-
tion, but the kidneys are well delineated.

For comparison, conventional ASM was implemented as de-
scribed in [2] and [6] and then applied to all 103 cases. After
tuning multiple ASM parameters to achieve the best possible
segmentation results, the average LP error was measured as 3.3
pixels with a standard deviation of 2.3. The minimum and max-
imum average ASM errors over all cases were 2.4 pixels and 8.0

Fig. 3. Illustration of procedure to maintain LP correspondence on kidney
boundaries across all images in the training set. Manually drawn lines through
the kidney centers provide a reference for critical LP positions. The white arrows
indicate the position of the critical LPs for the kidney and spine boundaries.

Fig. 4. PSAM results on three mouse kidney CT images. The images on the
left are the initial PSAM position, and the images on the right show the final
position of PSAM after convergence.

Fig. 5. Manually segmented image (left) compared to PSAM segmented
image (center) and the ASM result (right). The calculated average LP position
error for this case is 2.3 pixels for PSAM and 3.5 pixels for ASM.
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pixels, respectively. This larger error led to significantly poorer
kidney boundary delineation as can be seen in Fig. 5.

For all 103 images, an MOLV texture measurement was ap-
plied within the kidney boundaries to screen for the presence of
PKD. The first step in the MOLV measurement is calculating
the local variance of the gray-level values in the neighborhood
(4 4 area) of each pixel within the kidney boundary. In the
second and final step, the mean of the local variances across all
of these pixel neighborhoods within each kidney boundary is
computed. This mean can then be interpreted as a relative mea-
surement of a region’s texture. A mathematical expression for
MOLV in one region (i.e., kidney) is

(29)
where is the total number of pixels contained within the kidney
boundary, is a set of pixels representing the local neighbor-
hood around the th pixel within the boundary, is the number
of pixels in (note that for a 4 4 local neigh-
borhood), and is the gray-scale value of the th pixel in the
image, .

In all 103 cases, the presence (or absence) of PKD was cor-
rectly determined by setting the MOLV threshold level at 50,
below which a kidney was flagged as healthy and above which a
kidney was flagged as having PKD. Four representative texture
measurements (two normal plus two PKD) from the 103 tested
images are shown in Table I. The images from which these four
texture measurements were extracted are shown in Fig. 6.

A repeatability experiment was performed by scanning two of
the 30 mice a second time. In between scans, the animal was re-
moved from the scanner and then placed back on the CT scanner
bed. This process changed the position and orientation of the
kidneys within the scanner and, hence, within the reconstructed
CT volume. Six transaxial slices containing kidneys were seg-
mented using PSAM and the accuracy was compared to the
PSAM segmentation applied to the first scan of each animal.
For the first subject the average LP position errors for the first
and second scans were 2.8 and 2.5, respectively. For the second
mouse, the same error measurements were calculated to be 1.8
and 2.8 pixels. These errors measured on the repositioned an-
imal are well within the expected errors based on the tests per-
formed on the original 103 images.

The segmentation errors that are encountered using the
PSAM algorithm are generated from a couple of different
sources. The two most likely sources are: 1) small inaccuracies
in LP placement during PSAM training, and 2) PSAM bound-
aries getting trapped in local minima during the optimization
process. The first source of error will diminish as the quality
of the labeled training sets improves with operator experience.
The second source of error may be reduced by trying optimiza-
tion approaches other than gradient descent (e.g., simulated
annealing).

Fig. 6. Examples of two healthy kidney segmentations (rows 1 and 2) and two
PKD segmentations (rows 3 and 4). The original images are on the left, and an
8-bit representation of the MOLV texture images are on the right.

TABLE I
REPRESENTATIVE MOLV KIDNEY TEXTURE

MEASUREMENTS.

V. CONCLUSION AND FUTURE WORK

A theoretical formulation for a new statistical based de-
formable model algorithm (PSAM) has been presented that
has several improvements over similar PDM-based techniques.
Most notable is the formulation of an objective function that
allows simultaneous optimization of the GSM and GLM.
In the presence of missing and/or broken edge information,
PSAM effectively uses the a priori shape and gray-level data
gathered from the training set to create a model of gray-level
appearance and a model of global shape that are combined
into a single objective function. This unification of the models
during optimization has several advantages in that it provides a
general framework into which other (existing and future) PDM
techniques fit well. Also, the number of parameters (only two)
that need to be adjusted to achieve acceptable segmentation
results is small relative to comparable techniques. Finally,
as the results in Section IV demonstrate, the performance of
PSAM is improved. This is particularly true for applications in
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which the true object boundaries may be faint and/or missing.
In these types of applications, simultaneous optimization of
the gray-level and shape models becomes important to prevent
some LPs from being shifted to stronger, but erroneous edges
(see Fig. 5).

The PSAM method has been demonstrated as a very effective
tool for segmenting the spine and kidneys in X-ray CT images
of mice for the purposes of screening for PKD. Even in the few
cases where a kidney boundary was partially missed, enough of
the kidney was detected to allow accurate screening for PKD.
Although not reported here, PSAM has been applied success-
fully to the segmentation of mouse heart and lungs as well as to
mouse brain segmentation within X-ray CT images [11].

A three-dimensional version of the ASM algorithm has been
developed for segmentation of a 3-D object embedded within a
volumetric data set. One of the main challenges in the 3-D appli-
cation of any PDM-based segmentation approach is the practical
matter of manual training by an anatomy expert who may not be
accustomed to viewing volumetric data on a computer screen. A
new training approach has been developed to overcome this dif-
ficulty by presenting the 3-D volumetric data in a unique way
that simplifies the overall process [12]. The improved PSAM
optimization approach reported here is being updated for use
with this 3-D algorithm.
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