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Abstract— A great effort of the research community is geared
towards the creation of an automatic screening system able to
promptly detect diabetic retinopathy with the use of fundus
cameras. In addition, there are some documented approaches
to the problem of automatically judging the image quality. We
propose a new set of features independent of Field of View or
resolution to describe the morphology of the patient’s vessels.
Our initial results suggest that they can be used to estimate the
image quality in a time one order of magnitude shorter respect
to previous techniques.

I. INTRODUCTION

Diabetic retinopathy is the leading cause of blindness in
the Western world. The World Health Organization estimates
that 135 million people have diabetes mellitus worldwide and
that the number of people with diabetes will increase to 300
million by the year 2025 [1].

New high-quality mydriatic and non-mydriatic cameras
have the potential to greatly improve our ability to effec-
tively screen a large population and to warn them of a
possible disease which may lead to blindness if not treated
promptly. In the recent years a substantial effort of the
research community went towards the creation of automatic
or semi-automatic systems allowing to detect various type of
retinopathy. The results obtained are promising but, they are
strongly dependent on the initial image quality as underlined
in various papers [2].

An algorithm to automatically estimate the quality of a
fundus image is essential to build a robust screening system
which can be operated not only by expert ophthalmologists,
but also by less trained operators. The overall goal is
to make these systems suitable for many environments,
similarly to the omnipresent automatic blood pressure
monitors.

However, the measurement of image quality is not a
straightforward task, mainly because quality is a subjective
concept which varies even between experts, especially for
images that are in the middle of the quality scale. Existing
algorithms judge the image quality depending on the length
of visible vessels in the macula region [3], others depending
on edges and luminosity respect to a reference image [4]
[5] and also with an unsupervised classifier that employs
multi-scale filterbanks responses [6]. The shortcomings of
these methods are either the fact that they do not take into
account the natural variance encountered in retinal images,
or that they require a considerable time to produce a result.

The speed of the quality evaluation method is key towards
the development of an automatic retinopathy scan system.

Patient and operator sitting in front of the machine wants
to know almost immediately if she is operating the system
correctly without having to wait for the relatively long
diagnosis process to take place. A simple analogy is in
our everyday life: whenever we swipe a credit card on the
magnetic reader we want to know immediately if we inserted
the card on the wrong side or if we swiped it too fast. It will
be very unpleasant having to wait for the submission of the
payment, just to be told that the card should be swiped again
in another way.

II. APPROACH

The approach described in this paper is partially inspired
from the work of Niemeijer et al. [6]. They developed the
Image Structure Clustering (ISC), an algorithm able to give
information on the presence of local image structures at each
pixel of the image clustering the output of a set of multi-
scale filters. This technique allows to implicitly detect vessels
and optic disc in a completely unsupervised manner. The
decision regarding the quality of the fundus image is taken
employing the global histogram of the ISC features, which
is used as the input for a Support Vector Machine classifier
similarly to the well known “Bag-of-Words” approach [7]
[8]. While this technique has the merit of providing a reliable
quality estimation without having to explicitly localise major
anatomical structures, it requires a substantial amount of time
to classify a new image 1 and it does not take into account
the relative position of the features found.

Our approach is based on the hypothesis that a vessel
segmentation algorithm’s ability to detect the eye vasculature
correctly is directly related to the overall quality of an image.
Fig 1 shows the vessels detected by our implementation of
[9] in images with different quality. It is immediately evident
that the low vessel density in the bottom part of the right
image is due to an improper illumination of the eye (or
possibly to a closed eyelid). Therefore if we are able to build
a fast classifier to estimate the posterior probability that the
vessels detected are abnormal, we will be able to judge the
quality of the image. The algorithm proposed can be divided
as follows:

1Niemeijer et al. estimated it to be approximately 30 seconds, a figure
that is confirmed by our implementation of the algorithm for images with
a size of 768x576



Fig. 1. Comparison of the vessel segmentation in a good and a poor quality
fundus image
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A. Mask Localisation

In this context for mask we intend a binary image having
the same resolution of the fundus image whose positive
pixels correspond to the foreground area.

The green channel of the RGB fundus image is extracted,
and the image is scaled down to 160x120. Four seeds are
placed on the four corners of the image and a region growing
algorithm is started from these locations. The algorithm
measures the mean grey level of the region with ∆2 = 20.
When four regions are segmented, the mask is filled with
negative pixels when it belongs to a region and positive
otherwise. The process is completed scaling back the image
to its original size. The initial and final scaling are necessary
to keep the computational time as small as possible.

B. Vessel Segmentation

The visible eye vasculature is detected using the mathe-
matical morphology method presented by Zana and Klein [9]
which proved to be effective for the fluorescein angiography
images of the retina [10]. The algorithm is implemented in
C with the OpenCV libraries [11]. It is capable of running
multiple computational threads at the same time in order to
exploit the power of current multi-core processors.

2∆ represents the upper threshold to define common areas in the region
growing algorithm

Fig. 2. Visual summary of the feature vector composition. (a) Original
Image. (b) Mask detected and fitted ellipse (dashed line). (c) Vessel
Segmentation. (d) Local window in polar coordinates. (e) Colour histogram.

C. Feature Vector Composition

The global vessel density could be calculated directly with
areaVessels
areaMask . Even if this global parameter gives us a strong clue

about its importance in a quality estimation context, it is not
enough to estimate abnormalities in the vessel segmentation
due to the cropping of the image. Especially because images
can be taken with different camera settings, as seen in the
top left and right images in Fig 1.

Our approach tries to normalise any affine homography
or image field trimming by fitting an ellipse to the mask.
Afterwards, the local vessel density are extracted employing
polar windows which reference the initial ellipse. Each local
density is stored in a feature vector, which will be completed
by colour histogram features. See Fig 2 for a summary.

Ellipse Fitting: The classical technique to fit a geometric
primitive like an ellipse to a set of points is the use of
iterative methods like Hough transform [12] or RANSAC
[13]. Iterative methods, however, require an unpredictable
amount of computational time because the size of the image
mask could vary. We employ the non-iterative least squares
based algorithm presented by Halir and Flusser [14] which
is able to fit more than 100,000 points in a second according
to the authors. The points to be fitted used by the algorithm
are calculated using simple morphological operations on the
mask. The complete procedure follows:

α ← erode(maskImage)
γ ← maskImage−α

f itEllipse(γ)

The erosion is computed with a square structuring element
of 5 pixels.

Local Vessel Density: An “adaptable” polar coordinate
system (θ ,r) is built with the origin coincident with the
origin of the ellipse. It is adaptable in the sense that its radius
is not constant but it changes accordingly to the shape of the



Fig. 3. Examples of Outlier Images

ellipse. The local windows are obtained sampling r every r
3

and sampling θ every π
3 , for a total of 18 sections; Fig 2.(d)

shows this type of quantisation. The area of the vasculature
under each window is computed, normalised with zero mean
and unit variance3 and stored in the feature vector.

Colour Histogram: 5 bins per RGB colour channel of
the original image are extracted, normalised with 0 mean
and unit variance and added to the feature vector. Now the
feature vector will be composed of a total of 33 features. Raw
colour histograms are used because they help to distinguish
between real fundus images from outliers, i.e. images took
without patients in front of the camera.

D. Classification

The judgement of the quality of each feature vector is
interpreted as classification problem between two classes:
”Good Quality” and ”Bad Quality”. The quality metric used
is the posterior probably for the feature vector to belong
to the ”Good Quality” class. The choice of the appropriate
classifier is key for a robust system capable of generalising
well, especially if the training set used has a limited number
of images. Two families of classifiers are tested: Support
Vector Machines (SVM) and K-Nearest Neighbour (KNN).
In both cases two external libraries are employed, libSVM
[15] for the former and PRtools [16] for the latter.

III. RESULTS

A. Test Data

The dataset employed consists of 84 macula centred
fundus images acquired with different resolutions and FOVs.
They were divided in 4 classes: ”Good”, ”Fair”, ”Poor” and
”Outliers”. The first 3 classes are composed of a subset of the
fundus image database provided by M.D. Abramoff [TODO:
add reference!]. The ”Outlier” class consists of images that
do not show the patient’s eye but which might be erraneously
sent to an automatic screening system, examples are shown
in Fig. 3. For all the tests 24 images (12 ”Good” and 12
”Poor” ) were extracted from the dataset and used uniquely
for the training phase.

B. Global Vessel Density Distribution

The first test performed is an empirical evaluation of our
hypothesis about the importance of the vessel density to
derive a quality metric. The global histograms of the three
image classes is computed using the global vessel density

3The zero mean and unit variance is calculated for each feature across
all the training images

TABLE I
CLASSIFICATION

Class

Classifier Good Poor Outlier

SVM (Linear Kernel) 100% 100% 89%
SVM (Radial Kernel) 100% 100% 89%
KNN (K=1) 100% 100% 89%
KNN (K=8) 100% 100% 33%
Niemeijer Features with SVM (Radial Kernel) 83% 100% 100%

The first four classifiers employ the Elliptical Local Vessel Density
features plus the raw histogram. The percentage represents the number of

images correctly identified per class.

TABLE II
QUALITY SCORES

Class

Classifier Good Fair Poor Outliers

SVM (Linear Kernel) 0.93 (0.08) 0.6 (0.35) 0 (0) 0.11 (0.2)
SVM (Radial Kernel) 0.65 (0.11) 0.43 (0.35) 0 (0) 0.09 (0.15)
KNN (K=1) 0.45 (0.11) 0.26 (0.21) 0 (0) 0.05 (0.08)
KNN (K=8) 0.58 (0.18) 0.45 (0.25) 0 (0) 0.27 (0.21)
The first number represents the average quality score for all the images

tested in a class. The number between brackets is the standard deviation.

normalised for the mask area. 21 equally spaced bins are
used. Fig. 4 shows the three distributions obtained. Already
with this very simple feature it is possible to separate the
“Good” from the “Poor” distributions.

C. Quality evaluation

Table I compares the efficiency of four classifiers using our
approach with the method presented by Niemeijer et al. [6].
All the classifiers based on Elliptical Local Vessel Density
classified without any error Inlier images (i.e. real fundus
images) as opposed to our implementation of the Niemeijer
et al. method.

Table II shows a summary of the quality scores obtained
for each classifier, in this case the scores are not directly
comparable with the method of Niemeijer et al. The SVM
with linear kernel is the one that produces the scores that
separate the classes best. The score obtained for the “Fair”
class is particularly interesting because the classifier was not
explicitly trained with this class.

D. Computational Speed

The computational speed is evaluated on a 2.4 GHz
machine with 2 Gb of memory. Every test is run for all
the dataset and the average time is measured. The Mask
localisation phase is implemented in MATLAB and takes
an average of 0.49 seconds. Given the iterative nature of the
process, we suspect that the speed could be greatly improved
when the algorithm is implemented in C++. The Vessel
Segmentation phase runs in 2.7 seconds for a single image
having a resolution of 756x576 pixels. The algorithm seems
to scale well on multi-core machines, as it took roughly
the same time to segment two images simultaneously on a
Pentium DualCore 2.4. The Feature Vector Composition and
Classification phase runs in 0.83 seconds with a SVM (Linear



Fig. 4. Vessel Density Distribution

Kernel) classifier. Other classifiers scored a result lower than
1 second. However, if the training set was increased, an
exponential computational time increase should be expected
for the KNN classifier.

IV. CONCLUSIONS AND DISCUSSION

A new set of features for macula centred fundus images
independent of FOV and scale was presented. The initial
results seem to indicate that they can be used by various
classifiers to produce a value from 0 to 1 which expresses
the quality of the image. We compared our approach with an
in house implemented version of the state of the art quality
classifier by Niemeijer et al. [6]. The results obtained rule in
favour of our technique for inlier images, but not for outliers.
The reason is probably due to the initial vessel segmentation
technique which considers vessels various other structures.
For example, edges of doors are often labelled as vessels
in indoor images. Currently, a relatively small image dataset
was used with a considerable variation in resolution and FOV,
which might explain why the Niemeijer approach did not
perform as expected. The next step will be the use of a much
larger dataset cross-labelled by different ophthalmologists.

Great attention was paid to the computational complexity
of our technique. The total running time required to judge
the image quality is around 4 seconds. Still, there is an ample
margin for improvement, especially considering that some of
the system component were implemented with an interpreted
language like MATLAB.

We would like to note that this work focuses on the quality
of the image with respect to the morphology of vascular
structure. Although we suspect it is a not a great leap of
faith, in future work we would like to numerically prove that
the quality classification described can improve the lesion
detection algorithms performances if used as a preprocessing
step.

Finally we would like to mention that the Elliptical Local
Vessel Density features seem to have other applications aside
quality estimation. We divided our dataset in right and left

eye, trained the system with a linear SVM classifier on our
feature vectors (without the raw histogram bins) and tested
it. Without any optimization, it was possible to correctly
identify 92% of right eyes and 100% of left eyes.
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