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Abstract—Visual sensor networks (VSNs) merge computer
vision, image processing and wireless sensor network disciplines
to solve problems in multi-camera applications by providing
valuable information through distributed sensing and collabo-
rative in-network processing. Collaboration in sensor networks
is necessary not only to compensate for the processing, sensing,
energy, and bandwidth limitations of each sensor node but also
to improve the accuracy and robustness of the sensor network.
Collaborative processing in VSNs is more challenging than in
conventional scalar sensor networks (SSNs) because of two unique
features of cameras, including the extremely higher data rate
compared to that of scalar sensors and the directional sensing
characteristics with limited field of view. In this paper, we
study a challenging computer vision problem, target detection
and counting in VSN environment. Traditionally, the problem
is solved by counting the number of intersections of the back-
projected 2D cones of each target. However, the existence of
visual occlusion among targets would generate many false alarms.
In this work, instead of resolving the uncertainty about target
existence at the intersections, we identify and study the non-
occupied areas in the cone and generate the so-called certainty
map of non-existence of targets. This way, after fusing inputs
from a set of sensor nodes, the unresolved regions on the certainty
map would be the location of target. This paper focuses on
the design of a light-weight, energy-efficient, and robust solution
where not only each camera node transmits a very limited amount
of data but that a limited number of camera nodes is used.
We propose a dynamic itinerary for certainty map integration
where the entire map is progressively clarified from sensor to
sensor. When the confidence of the certainty map is satisfied, a
geometric counting algorithm is applied to find the estimated
number of targets. In the conducted experiments using real
data, the results of the proposed distributed and progressive
method shows effectiveness in detection accuracy and energy and
bandwidth efficiency.

I. INTRODUCTION

Recent advances in CMOS technology make it possible to
produce significantly small size and low cost visual sensor
platforms with imaging, on-board processing and commu-
nication capabilities [1]. A number of such platforms can
form a so-called visual sensor network (VSN) that covers a
larger surveillance area and is capable of solving computer
vision problems through distributed sensing and collaborative
in-network processing.

Although potentially powerful, VSNs also present unique
challenges that could hinder their practical deployment. For
example, VSNs generally require high network bandwidth

for data transmission, which cannot be adequately addressed
because of the energy constraint and the usage of the
low-bandwidth wireless communication. Therefore, energy-
efficient, light-weight solutions need to be pursued [2].

Among all the major processes taken place in a VSN,
i.e., sensing, processing, and communication, communication
consumes most of the energy. Usually, the energy consumed
on sensing and processing can be neglected compared to that
on communication. However, when processing images, some
computationally expensive algorithms can easily consume as
much energy as communication. Therefore, we need to follow
two basic guidelines when solving computer vision problems
in a distributed environment. First, the sensor data, i.e., the
image, should be pre-processed locally to reduce the amount
of transmitted data volume [3]. Second, develop simple but
effective local processing algorithms to reduce the computa-
tional cost.

In this paper, we study a challenging computer vision
problem, target detection and counting, using visual sensor
networks. The target detection and counting problem in VSNs
faces two major challenges [4]. First of all, because of the
crowded targets, “visual occlusions” among targets cannot be
avoided. Secondly, since visual sensors have limited field of
views, and limited computational capacity, visual information
obtained by each sensor node is neither sufficient nor accurate.
To estimate the number of targets in a crowded environment
with the existence of visual occlusion and partial or inaccurate
information is the major challenge of this work. In this paper,
we present a distributed and progressive solution to estimate
the number of crowded targets by performing simple but
effective image processing algorithms on each sensor node,
transmitting very limited amount of processed data among
only a limited number of nodes, and using an efficient data
fusion algorithm to obtain the final result.

In traditional target localization algorithms, the intersections
of the back-projected 2D cones of the targets are calculated
to localize all the individual targets. 2D cones correspond
to the possible occupancy information in the visual hulls,
also referred to as the existence information in this paper.
If the cones from different sensors intersect at the same
point, it can be considered there is at least one target in
that intersection. However, in crowded environments, many



“empty” intersections that are not actually occupied by any
targets are created because of occlusion, as shown in Fig. 1.
Therefore, the existence information in the corresponding
intersections is not certain. To remove the uncertainty about
the target existence at the intersections and to detect the real
locations of the targets among possible intersections have been
very challenging problem in computer vision.

Fig. 1. Four intersections are created from back projection, where intersec-
tions A and B are locations of two real targets but empty intersections C and
D are also generated due to occlusion.

To solve this problem, we present a technique to localize
crowded targets by a collaborative effort from a group of sen-
sor nodes. Instead of resolving the uncertainty about the target
existence, we identify and study the non-occluded areas in the
visual hull, also referred to as the non-existence information
in this paper. Since it is certain that there is no target in the
corresponding region, we refer to the map generated from this
process as the certainty map. This essential difference in the
proposed method shows its effectiveness in target localization
and counting.

In our system, each camera extracts objects of interest
from the background, computes the visual hull of objects,
determines the non-occupied areas by targets and combines
them with other sensor nodes to jointly access the situation in
a more accurate way. Certainty map is used as the information
exchange unit between sensor nodes when fusing the non-
occupied regions to result into a globally consistent belief of
non-occupancy, as shown in Fig. 2. The final certainty map,
which keeps the real occupied regions, is used to estimate
the number and locations of targets. This system is both
computational and bandwidth efficient.

Fig. 2. (a) The certainty map generated by the 1st sensor node (b) Fusion
of certainty maps generated by the 1st and the 2nd sensor nodes (c) Fusion
of certainty maps generated by the 1st, 2nd, and 3rd sensor nodes.

The paper is organized as follows: Section II describes the
background and related works in the visual sensor network.
Section III introduces our proposed distributed and progres-
sive target detection and counting method. In Section IV,
collaborative processing and itinerary selection techniques are
described. The system architecture and experiment results are
presented in Section V. Finally, we conclude in Section VI.

II. BACKGROUND AND RELATED WORKS

In the literature, there exists many works related to the
larger-scale surveillance and monitoring of activities. Appli-
cations like target detection [4], tracking [5] and counting [6]
based on wireless networks have been previously investigated.

Single camera approaches [7]–[9] are easy to deploy but
they could not be applied efficiently in complex environments
such as crowded and occluded target scenarios because they
could not provide 3D information by using a single camera
view. Therefore, several multi-camera systems are researched
and proposed to detect and track multiple objects and compute
their accurate 3D locations in a complex environment. In [5],
and [10], stereo techniques are used to collect the information
from different cameras to localize people. However, these
methods are computationally complex as they use color, shape,
or texture based methods [11]–[13] to segment, detect, and
track multiple targets in a scene by matching each pair of
views between camera nodes, and matching is computationally
expensive in crowded environments because of the large
number of possibilities.

In recent multi-camera systems, occupancy map is popu-
larly used technique to localize objects by using foreground
images captured by overhead cameras [14] or using visual hull
procedure and motion information of the objects [6]. However,
these methods either require a central processing center or the
computational complexity is too high to be deployed in VSNs.
They use all the available information from every camera to
achieve specific tasks like detecting the activities of objects
and tracking them without any sensor and itinerary selection.
Therefore, they may be useful for a small local group of
sensors but not applicable in a large distributed VSN.

III. TARGET COUNTING AND CERTAINTY MAP

In the following sections, we first present the centralized
version of the proposed method to estimate the number of
crowded targets within the sensing region of a VSN. In the
proposed method, each sensor node captures a snapshot of the
scene, processes it locally to compute the local certainty map
and sends the result to the processing center to collaboratively
reach a decision about the number of targets in the scene.
This method can be carried out in three main steps: local
processing, construction and fusion of the local certainty maps,
and target counting.

A. Local Processing

Because of the sheer amount of data generated at each
camera node, local processing is needed to provide the nec-
essary information with a much smaller data volume. We
also need to keep in mind that local processing cannot be
computationally expensive; otherwise, it will consume as
much energy as communication. Because of its algorithmic
simplicity, the background subtraction algorithm is adopted
for object segmentation. The background subtraction algorithm
detects foreground objects by subtracting the background from
each captured image [15]. By using the background subtracted
image, the planer projection of visual hull, the possible regions



occupied by certain object [16], can be generated to derive the
non-occupied areas in the field of view (FOV) of each camera
node, as shown in Fig. 3. The non-occupied areas are certain
areas in which there is no object. On the other hand, there
is an uncertainty about the object existence in occupied areas
which can appear to be the real object or made by occlusion.

B. Certainty Map

In a certainty map, the environment is divided into uni-
formly sampled grids where each grid point represents that the
corresponding ground space in the surveillance area is certain
about target non-existence (labeled with one or white) or
uncertain about target existence (labeled with zero or black).
Since certainty map is a binary image consisting of zeros and
ones, it can be further compressed by using special coding
techniques to decrease the data size to save the communication
cost.

Fig. 3 illustrates the steps in constructing the certainty map
at a sensor node. For the corresponding scenario in Fig. 3,
we obtain the foreground image in Fig. 3(c) by subtracting
the background image in Fig. 3(b) from the original image in
Fig. 3(a). Each object sweeps a cone in 3D space as shown
in Fig. 3(d). To find visual hull of the object, these 3D cones
are projected onto a plane parallel to the ground as seen in
Fig. 3(e). The non-occupied (clear) areas in the visual hull are
thus determined to construct the local certainty map as shown
in Fig. 3(f).

Fig. 3. Illustration of local processing and construction of the certainty map
at a visual sensor node. (a) The original captured image by sensor node, (b)
The background image, (c) The foreground image, (d) Visual hulls of objects
in 3D (e) Projection of 3D cones onto a plane parallel to the ground, and (f)
Constructed local certainty map.

In recent techniques [6], [17], after receiving the visual
hulls from all sensor nodes, the central processor computes the
occupancy map with a standard visual hull procedure which
localizes the objects at the intersection of the occluded visual
hulls. Although this paper shares the same visual hull idea,
it differs from previous works in that we identify the non-
occupied areas where the non-existence of target is certain and
progressively combine these non-occupied areas to localize the
objects in a distributed fashion.

In this paper, it is assumed that each sensor node, si knows
its coordinates in the 2D global coordinate system as (xi, yi).
Let vsi

denote such non-occupied areas in FOV of the sensor

node, si. Let ϕi,j denote the starting angle and ψi,j the ending
angle of the jth non-occupied area in corresponding planer
projection of visual hull onto the 2D ground space, j =
1, . . . , k. Therefore, we can describe the total non-occupied
areas in a sensor node vsi as (xi, yi, ϕi,1, ψi,1, . . . , ϕi,k, ψi,k).
Let S = {s1, s2, . . . , sn} denote the set of sensor nodes in the
network and f(vsi) denote the function which generates the
local certainty map by using the non-occluded areas in each
sensor node. We then have

U(S) = f(vs1) ∪ f(vs2) ∪ . . . ∪ f(vsn)

where U(S) denotes the union formed by all the local certainty
maps in S. Targets are located in the complement of U(S), the
remaining regions from union of the local certainty maps.

By using the visual hull, non-occupied areas in the FOV of
each camera node are cleared from the certainty map, where
white pixels indicate the cleared areas, because there is 100%
confidence about no target in that region. On the other hand,
black pixels in the certainty map indicate that there are still
uncertainties regarding target existence which can be one of
the three possibilities. First, the region is occupied by target;
second it is outside of the FOV of the camera; and third,
occlusion.

The size of the total uncertain region in global certainty
map monotonically decreases, thus guarantees the convergence
of the global certainty map. The idea is that the uncertainty
regions will be shrinking as local certainty maps are fused. If
the non-existence of target for certain region is declared by one
sensor node, the corresponding region is globally announced
as non-occupied and cleared from the certainty map. If the
entire surveillance area is covered by sensor nodes, then the
only uncertain region left would be the location of targets.

C. Target Counting Algorithm

The final certainty map consists of sets of small regions
with potential locations of targets, referred to as the phantoms.
Phantoms are the remaining areas in the certainty map that
could not be cleared by any sensor nodes. In literature,
there are different approaches to count the objects in each
phantom. In [6], the area of each phantom is divided by
object size regardless of object shape. However, because of
the occlusion of objects in crowded environments, there will
be some residual areas in the phantom that cannot be clarified
by any cameras and make the size of the phantoms bigger than
the object size. Therefore, it is necessary to consider the shape
of the object and residual areas when to compute the number
of objects in each phantom. If there is no occlusion and there is
infinite number of cameras, the size of the phantom converges
to the actual size of the object. However, in crowded targets,
it is not possible to prevent occlusion and the residual areas in
the phantom. In Fig. 4, the possible residual areas are shown
for cylindrical objects. The planer projections of the cylindrical
objects are discs in the ground space. The smallest residual
areas occurs when the objects touch each other assuming there
is no overlapping between the objects.



In Fig. 4(a), the residual area around the object converges
to zero if there is infinite number of cameras. In Fig. 4(b)
and 4(c), the smallest residual areas around the objects, shown
for two and three objects cases, are the areas between the
objects.

Fig. 4. Three different scenarios of residual areas for cylindrical objects.

These residual areas, Ri, cannot be prevented so they have
to be taken into consideration in the calculation of minimum
size of the total area for different number of object cases in
a phantom. They are calculated by adding the corresponding
minimum residual areas to total area of objects, such as two
and three object cases shown in Fig. 4. The number of objects
can be found by comparison between the area of each phantom
and the pre-calculated minimum size of the total area for
different number of object cases.

IV. COLLABORATIVE PROCESSING AND
ITINERARY SELECTION

In order to fuse or integrate the certainty map, two mech-
anisms can be adopted, centralized and progressive. In the
centralized approach, each camera node sends its local cer-
tainty map to a processing center for information fusion. In the
progressive approach, the certainty map is propagated through
the network. At each camera node, the certainty map is refined
by integrating with local certainty map to add more certainty
to the previous map. In other words, the local information
helps clarify uncertain areas as this fusion process prolongs.

If there is no energy or bandwidth limitation, the informa-
tion from all the available cameras can be used to compute
the best possible certainty map since the residual areas in
the certainty map monotonically decreases as the number
of cameras increases. However, the energy resource is very
limited in VSNs and increasing the number of used camera
nodes decreases the network lifetime. In the next section,
we will compare the performance between centralized and
progressive integration of the certainty map through experi-
ments. Here, we first tackle a critical problem in realizing the
progressive integration, i.e., how to determine the itinerary that
the certainty map propagates. This problem is two-fold: the
itinerary of propagation and when to stop the integration.

A. Itinerary Selection

The visual data provided by physically close camera nodes
might be highly correlated. If removal of a sensor node from
the itinerary does not shrink the uncertainty region of the cer-
tainty map too much, the information provided by that camera
node is redundant. In order to save energy, transmission of the
certainty map between these sensor nodes must be avoided.

To find the minimum subset of camera nodes to construct the
accurate certainty map is the main goal of itinerary selection.

In literature, different approaches for sensor selection have
been proposed for different scenarios. In [18], clustering the
parallel and perpendicular cameras to the vectors connecting
the objects is a good approach for two-object case. However,
how to find the vectors connecting the objects without prior
knowledge of objects location or how to update the vectors
for moving objects is another problem.

In this paper, we study three different itinerary selection
criteria as fix, random and dynamic itinerary to fuse the
certainty map.

1) Fix Itinerary: To overcome the problems identified
above, the cameras can be clustered by using their orientation
angles regardless of the target location. The best choice for
the next camera is to select the camera which has the best
complimentary field of view of the previous camera. The 90
degree difference in the camera orientation with the previous
camera gives the best complimentary FOV. Therefore, to
determine the fix itinerary, cameras which have the 90 degree
difference in the camera orientation with others are clustered
into small subsets.

2) Random Itinerary: Instead of using the fix itinerary, we
also implement the itinerary in which cameras are randomly
selected to integrate the certainty map.

3) Dynamic Itinerary: Neither fix nor random itinerary
determines the route of certainty map migration based on the
content of the map. Therefore, it is not guaranteed that the next
integration would clear the most uncertainty region leading to
the shortest route.

To overcome this problem, we propose a dynamic itinerary
selection method, where in each iteration sensor nodes com-
pute their local certainty maps, calculate the size of area that
can be cleared from the current certainty map and broadcast
it through the network. The sensor node which has the largest
clarification area gets the priority over the others to integrate its
local certainty map with current certainty map and broadcasts
the updated current certainty map to the network to allow
other sensor nodes to recalculate the amount of the additional
clearance on the current certainty map. This procedure repeats
until confidence test is satisfied.

The method is described in Algorithm 1, where S denotes
the set of sensor nodes and |f(vsi)| denotes the total size of
area in local certainty map that can be cleared from the current
certainty map by sensor node si. δ is the threshold to determine
that if the sensor node holds adequate additional clarification
information to remain in set S. If the clarification information,
|f(vsi)|, is below the threshold δ, the sensor node, si, removes
itself from the set S.

B. Confidence Test

No matter which itinerary approach is adopted, a common
question each faces is when to stop the integration process.
Because of energy constraints, we have to stop transferring
the certainty map in the VSN when certain criteria can be
satisfied.



Algorithm 1 : Dynamic Itinerary
Initialize:
Certainty map, CM = ∅, is fully occupied.
S = {s1, s2, . . . , sn} {set of sensor nodes}
repeat

for each si in S do
Compute clarification amount, |f(vsi)|, by using
the current CM
if |f(vsi)| < δ then

S = S − si {remove redundant sensor}
else

Broadcast |f(vsi)| to the network to deter-
mine the highest one.

end if
end for
if sj = max(|f(vS)|) then

S = S − sj {remove the winning sensor}
Update CM by sj , the jth sensor node.
Broadcast updated CM to the remaining nodes
within S.

end if
until S = ∅

In the fix or random itinerary, the certainty map is transmit-
ted to the next sensor node without prior knowledge about how
much it can clarify from the certainty map. If the sensor node
does not contribute to certainty more than a defined threshold,
it raises a stopping flag. If the number of consecutive stopping
flags reaches a certain percentage of the total number of
sensor nodes, transmission is stopped and the final certainty
map is declared. This method has an apparent drawback. If
the certainty map travels among sensor nodes with redundant
information at some portion of the itinerary, the procedure will
be stopped even though other sensors can still contribute to
the map.

In dynamic itinerary, it is not necessary to count the number
of flags because in each iteration, each sensor node propagates
its clearance amount to the network and the additional clear-
ance amount is monotonically decreasing. If none of the sensor
nodes has adequate additional clearance area on the certainty
map, we can stop transmitting the certainty map immediately.

C. Voting

The other critical question about the proposed algorithm
is the accuracy and robustness. Single camera node, which
gives inaccurate information about the location of the targets,
negatively impacts the performance and sometimes causes
failure of the target detection algorithm. To obtain more
accurate and robust results, certain degree of redundancy is
necessary to tolerate the inaccurate information and failure of
some camera nodes.

Voting is one of the most commonly used multiple sensor
fusion techniques to combine individual sensor results [19]. In
simple voting strategy, each sensor node has equal importance
to contribute to the voting result. In this paper, we propose

to use the voting approach to tolerate potential inaccurate
information from sensor nodes.

In the voting approach, if a sensor node believes that there
is no object in the specific location of the certainty map, it
increments the certainty value of that specific location. There-
fore, instead of a binary certainty map with 1 indicating 100%
certainty of non-existence of targets, as shown in Fig. 5(a), the
voting approach generates a gray-scale certainty map, shown
in Fig. 5(b) with non-zero regions indicating certain degree
of belief of the non-existence of targets, and the higher the
number of votes, the more certain it is.

Fig. 5. (a) Binary certainty map and (b) Gray-scale certainty map.

A threshold value needs to be specified in the end to convert
the gray-scale certainty map to binary for decision making
purpose. To choose 1 as the threshold value means that there
is no tolerance for failure of any sensor node. If one of the
sensor nodes claims the non-existence of any object for any
location in the certainty map, the algorithm believes it and
clears the corresponding region from the certainty map as in
the case of the binary certainty map.

To be more robust to sensor failures, the threshold value can
be chosen greater than one. For example, if the threshold value
is selected as two, to clear a specific area from certainty map,
at least two sensors must declare the clearness of that region.
Higher threshold value requires more sensor nodes to reach a
consensus. In next section, we have designed an experiment
to show how the threshold value affects the performance of
the target counting algorithm.

V. EXPERIMENTAL RESULTS

In our experimental setup shown in Fig. 6, two static objects
are located in a 9 by 12 feet square area surrounded by
38 mobile sensor platforms (MSPs) with onboard processing,
wireless communication and imaging capabilities. The objects
are 1 foot in height and cameras are located at 6 inches in
height. Four of the MSPs are located at the corners of the
experimental area and oriented toward the center of the area.
The rest of the MSPs are located 1 foot apart and oriented
to the room with perpendicular angle with the sides of the
area. In this experimental setup, each foot square area is
discretized into 100 grid locations to construct the certainty
map, corresponding to a regular grid with a 9 cm resolution.

Images are captured by each MSP with different field of
views as shown in Fig. 7(top). Background subtraction is
first performed to obtain the foreground objects shown in
Fig. 7(middle). The visual hulls of the non-occupied areas



Fig. 6. Experimental setup with 2 objects and 38 cameras.

are computed by using the planer projection, as shown in
Fig. 7(bottom).

Fig. 7. (top) Images captured by cameras 1 to 38. (middle) Foreground
images from cameras 1 to 38. (bottom) Non-occluded visual hulls of each
camera.

We conduct two sets of experiments to study the effect
of choosing different itinerary schemes and that of different
voting threshold on the performance of the detection. The fol-
lowing values are used for a couple of parameters introduced
in the algorithm:

• δ, the threshold to determine if a sensor node holds
adequate additional clarification information, is set to be
10% of the object size. When belowing this threshold, a
stopping flag is raised.

• The number of consecutive stopping flags is set to be 10%
of the total number of sensors in the network, i.e., 4. If
the number of consecutive flags is 4, then the itinerary is
stopped and a final certainty map is generated.

A. Effect of Different Itineraries

Three different itineraries, fix, random and dynamic, are
tested to show the effect of the itinerary selection on the
performance of the algorithm.

Fig. 8(top) shows the intermediate certainty maps that
is progressively improved from node to node following a
fixed itinerary, discussed in Sec. IV-A1. After transmitting
the certainty map to the 19th MSP, the additional clearance
from the certainty map is less than the threshold, δ, therefore,
the corresponding MSP raises a stopping flag to be carried
to others about its inadequate contribution to the certainty
map. When there have been four consecutive flags raised for
robustness purpose, the itinerary would stop in order to save
energy. In the fix itinerary, the itinerary stopped at the 22nd

MSP.

Fig. 8. (top) The clarification of the certainty map using the fix itinerary.
(bottom) The clarification of the certainty map by using the dynamic itinerary.

For dynamic itinerary, since the amount of cleared areas
monotonically decreases from sensor to sensor, we do not
have to wait until getting four consecutive flags to stop the
integration. The itinerary is stopped as soon as the size of the
additional clearance region is less than the threshold, δ. In
Fig. 8(bottom), the progress of the certainty map in dynamic
itinerary is shown. The itinerary is stopped at the 12th sensor
node. We observe that the dynamic itinerary scheme generates
the best route to clarify the certainty map by using the least
amount of sensor nodes.

The comparison of fix itinerary, average result of the 1000
different random itineraries and dynamic itinerary is shown in
Fig. 9 with the number of uncertain pixels at each iteration
(or sensor stop) as a performance metric. We observe that the
dynamic itinerary shows the best performance by clarifying
the certainty map at the fastest rate. In addition, random
selection of the itinerary clarifies the certainty map faster than
fix itinerary and gives better result in general.



Fig. 9. Total number of uncertain pixels in certainty map for different
itinerary selection.

B. Effect of the Voting Threshold

Voting is adopted to improve the accuracy and robustness of
the target counting algorithm. In Fig. 10, the final version of
the certainty map is shown by using different threshold values
as 1, 2, 3, 4, 5, and 6, respectively. In Fig. 10(a), the threshold
value is 1 so there is no tolerance for any sensor failure. If
one of the MSP claims a pixel as non-existence of the object,
it is 100% accepted. In Fig. 10(b), the threshold value is 2
and to clear the specific area from certainty map at least two
MSPs must agree that region should be cleared.

Fig. 10. Final version of the certainty map using voting with different
threshold values.

The total numbers of dark pixels in the final certainty map,
which correspond to the uncertain areas of target existence, for
different voting threshold values are shown in Fig. 11. If the
selected threshold is small, the uncertain areas are very few.
When increasing the voting threshold value it also increases
the total numbers of uncertain areas in the certainty map and
begins to introduce the non-occupied areas as object as shown
in Fig. 10(d-f).

As shown in Fig. 11, the total number of uncertain pixels
exponentially increases if the voting threshold value increases.
It reaches maximum at threshold value 15 because there is no
pixel that can be clarified by 15 cameras at the same time. The
density of cameras is not enough to clarify the non-occupied
areas for that threshold value. Therefore, the selection of the
threshold value depends on the required tolarance as well as
the sensor density.

In most visual camera applications, the cameras are assumed
to be oriented accurately in the scene. There is no tolerance
to inaccurately mounted cameras which have different orien-

Fig. 11. Total area in final certainty map for different voting threshold values.

tations than assumed because of external effects or internal
hardware problems or inaccurate installation. By using voting
mechanism this kind of inaccuracy is automatically tolerated.

In the following experiment, we add Gaussian random noise
with zero mean and different standard deviation values to
all the camera orientations. In Fig. 12, the total number of
uncertain pixels in the final version of the certainty map is
shown for different standard deviation and for different voting
threshold values.

Fig. 12. Total area in final certainty map for Gaussian noise with zero
mean and different standard deviation values added to orientation of the visual
sensors for different voting threshold values.

To add more Gaussian noise by increasing the standard de-
viation amount reduces the system performance. Higher voting
threshold values can be selected to avoid the performance
drop. However, we cannot select the voting threshold too high
because it depends on the density of the sensor nodes as shown
in Figs. 10 and 11. We observe in Fig. 12 that the performance
of the system with voting threshold three is better than voting
threshold one and two because the inaccuracy in the camera
orientation is tolerated by using the voting to fuse the certainty
maps generated by different sensor nodes.

C. Performance Comparison through Analytical Study

The advantage of using dynamic itinerary in distributed
processing is that less number of nodes might be involved
in the integration process and that the cleared areas from the
certainty map monotonically decreases between iterations. To
provide an analytical comparison between different schemes
in reaching a final certainty map, we compare the number of
bits transmitted within the network which is a good indicator
of energy consumption and bandwidth usage.



Assume there are K sensors in the network, among which
kd sensors are involved in the target counting process if using
dynamic itinerary, and ko sensors involved if using fixed
or random itinerary. Assume there are n targets within the
surveillance area of the K sensors, the worst case scenario
for data transmission is that there are n + 1 non-occupied
regions in local certainty map which can be expressed as
a data vector, vsi = (xi, yi, ϕi,1, ψi,1, . . . , , ϕi,n+1, ψi,n+1).
The size of the data vector is 32(4+2n) bits per transmission,
assuming each value is represented as 32-bit floating point.
In dynamic itinerary, the total size of area in local certainty
map that can be cleared from the current certainty map by
sensor node si, |f(vsi)|, is also required to propagate to the
network with a size of 16t bits where t is the number of
sensor nodes remaining in S for each iteration and we assume
|f(vsi)| can be represented as a short integer which is 16
bits. t monotonically decreases when redundant and winner
sensor nodes are removed from S in each iteration. The total
amount of data transmitted in dynamic itinerary is less than
other itineraries if the following equation holds:

32(4 + 2n)ko > 32(4 + 2n)kd + 16t

t ≤ K ∗ kd.

Thus,
ko

kd
> 1 +

K

8 + 4n

As shown in Fig. 13, when the ratio of the number of
sensor nodes involved in reaching the final certainty map
in dynamic itineraries and other itineraries are greater than
certain number, dynamic itineraries require less amount of
data transmission indicating less energy consumption and less
bandwidth occupation than fix and random itinerary used in
distributed processing.

Fig. 13. Comparison of the number of bits transmitted in VSN by using
dynamic itinerary and other itineraries.

VI. CONCLUSION

In this paper, we presented an algorithm that can reliably
detect the position of crowded targets and count them in
distributed wireless VSNs under certain energy and bandwidth
constraints. To achieve our goal, we designed a light-weight,
energy-efficient, and robust solution where not only each
camera node transmits a very limited amount of data but that a
limited number of camera nodes is used to estimate the number
of targets. We identified and studied the non-occupied areas in

the back-projected 2D cones, generated the certainty map of
non-existence of targets and defined a dynamic itinerary for
certainty map integration where the entire map is progressively
clarified from sensor to sensor until the confidence of the
certainty map is satisfied. When the confidence of the certainty
map is satisfied, a geometric counting algorithm finds the
estimated number of targets. In the conducted experiments
using real data, the results of the proposed distributed and
progressive method showed effectiveness in detection accuracy
and energy and bandwidth efficiency.
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