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Abstract—Existing feature extraction and classification ap-
proaches are not suitable for monitoring proliferation activity
using high-resolution multi-temporal remote sensing imagery.
In this paper we present a supervised semantic labeling
framework based on the Latent Dirichlet Allocation method.
This framework is used to analyze over 120 images collected
under different spatial and temporal settings over the globe
representing three major semantic categories: airports, nuclear,
and coal power plants. Initial experimental results show a
reasonable discrimination of these three categories even though
coal and nuclear images share highly common and overlapping
objects. This research also identified several research challenges
associated with nuclear proliferation monitoring using high
resolution remote sensing images.
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I. INTRODUCTION

Nuclear proliferation is a major national security concern

for many countries, especially to the United States. With

more understanding and availability of nuclear technologies,

and increasing persuasion of nuclear technologies by several

new countries, it is increasingly becoming important to

monitor the nuclear proliferation activities. Improvements in

spatial and temporal resolutions, acquisition, and availability

of remote sensing imagery made it possible to accurately

identify key geospatial features and their changes over

time. High-resolution remote sensing images can be highly

useful in monitoring nuclear proliferation activities over any

geographic region. Recent studies have shown the usefulness

of remote sensing imagery for monitoring nuclear safeguards

and proliferation activities [1]. However, there is a great

need for developing technologies to automatically or semi-

automatically detect nuclear proliferation activities using

high-resolution remote sensing imagery.

Classification is one of the widely used technique for

thematic information extraction from the remote sensing

imagery. Classification is often performed on per-pixel basis;

however proliferation detection requires identification of

complex objects, patterns and their spatial relationships.

One key distinguishing feature when identifying a com-

plex geospatial object as compared to traditional thematic

classification is that the objects and patterns that consti-

tute a complex facility, such as a nuclear power plant,

have interesting sub-objects with distinguishing shapes (e.g.,

circular shape of cooling towers) and spatial relationships

(metric, topological, etc.) among those sub-objects. These

complexities are clearly evident from Figure 1(c).

As can be seen from Figure 1, thematic classification

is designed to learn and predict thematic classes such as

urban, forest, crops, etc., at pixel level. However, such

thematic labels are not enough to capture the fact that

the given image contains a nuclear power plant. What is

missing is the fact that the objects, such as switch yard,

containment building, turbine building, and cooling towers

have distinguishing shapes, sizes, and spatial relationships

(arrangements or configurations) as shown in Figure 1(c).

These semantics are not captured in the traditional pixel

based thematic classification. In addition, traditional image

analysis approaches mainly exploit low-level image features

(such as, color and texture and, to some extent, size and

shape) and are oblivious to higher level descriptors and

important spatial (topological) relationships without which

we can not accurately discover these complex objects or

higher level semantic concepts. A recent review paper [2]

looked at the current state of art in image information mining

and identified key research gaps with respect to nuclear

proliferation monitoring using high-resolution images. To

address one of the key gaps identified in that paper, that is,

assigning a semantic label to a given image, we recently

developed an unsupervised semantic classification frame-

work [3]. Though the framework successfully demonstrated

semantic clustering as a viable solution for identifying

complex facilities such as nuclear and thermal power plants,

it has several limitations. First, one has to manually assign

the semantic labels to unsupervised topics found using the

framework. Second, unsupervised approach do not scale

well for large number of topics and image categories. In

this paper, we address these limitations by adopting super-

vised LDA algorithm [4], [5] into the framework proposed

in [3]. We further extended our evaluation to three broad

categories: airports, nuclear, and coal plants. Initial results

of supervised extension shows better performance than the

unsupervised approach and has potential to scale to more

semantic categories commonly found in remote sensing

images. Though the ultimate goal of this research is to detect



(a) FCC Image with Thematic class labels (B-Buildings, C-Crop,
F-Forest)

(b) Thematic Classified Image (B-Buildings, C-Crop, F-Forest)

(c) FCC Image with Semantic Labels (S-Switch Yard, C-
Containment Building, T-Turbine Generator, CT-Cooling Tower

Figure 1. Thematic Classes vs. Semantic Classes

a variety of potential nuclear proliferation-related structures

and activities, the current technology is still not mature

enough to automate the end-to-end processing of high-

resolution images to achieve this goal. We need advances in

on all fronts: low-level and medium-level feature extraction,

indexing, segmentation, spatial relationship modeling, and

finally, semantic classification.

A. Related Work

The LDA model, originally proposed by Blei et al., [6] is

an unsupervised statistical generative model developed for

finding latent semantic topics in large collections of text

documents. Since then, LDA technique has been widely

applied and extended to several other domains. Previously,

Lienou et al. [7] have shown that the LDA based semantic

classification of satellite image content using simple visual

features such as the mean and standard deviation of pixel

intensity values in a local neighborhood yielded promising

results. In the context of terrestrial image categorization,

Li and Perona [8] presented a similar approach using

LDA on visual words comprised of scale invariant feature

transformation (SIFT) features to categorize diverse set of

scene types including bed room, kitchen, living room, office,

streets etc. Taking key insights from previous works, our

initial work has adopted LDA for unsupervised semantic

classification [3] for analyzing large volumes of satellite

imagery for identification of complex facilities, especially

nuclear and coal power plants. A unique feature of this

framework is that it incorporated a richer set of features to

generate a visual vocabulary that is more appropriate for rec-

ognizing these complex structures under a variety of scene

acquisition conditions. Though initial evaluation showed

promising results, one of the key limitations of this approach

was that the topics found by the unsupervised LDA needs

to be manually mapped into real semantic categories such

as nuclear and coal plants. Thus the approach is not suitable

for dealing with large number of topics which is often the

case with high-resolution remote sensing imagery. In this

paper, we extended our semantic classification framework

by adopting the supervised LDA method proposed in [5].

We now describe this supervised semantic classification

framework in detail.

B. Supervised Semantic Classification Framework

Figure 2 shows the overall semantic classification frame-

work that we are developing as a first step towards semi-

automatic monitoring of nuclear proliferation activities us-

ing high-resolution remote sensing imagery. This system

consists of three core components: i) feature extraction,

ii) visual vocabulary generation, and iii) semantic labeling

using supervised LDA. As compared to the unsupervised

approach, in the new framework, each image is associated

with a class label. Likewise, LDA is replaced by sLDA. This

system, once trained, can be used to predict semantic label
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Figure 2. Supervised Semantic Labeling Framework

given a new image. We now briefly describe each of these

key components.

II. FEATURE EXTRACTION

The main objective behind the feature extraction process

is to map each image to a set of visual words that correlates

with the image content. Although various advance segmen-

tation strategies are being developed to effectively segment

the satellite image into the constituent parts, for this work we

employ a straightforward tiling strategy. The original image

is divided into 128x128 pixel non-overlapping tiles. The

size of the tiles (128 square meters) is empirically chosen

to be large enough to capture the salient features of the

underlying structures (buildings, reactors, cooling towers,

etc.), but not so large that a single tile would consistently

contain structural features from multiple objects. This is

important because the feature vectors representing the visual

words used later in the semantic classification process are

extracted from these individual tiles.

Feature extraction consists of three distinct steps: i) fixed

or variable tile generation, ii) feature extraction, and iii)

feature encoding. The objective of the feature extraction step

is to represent each segment of a tessellated image by a

unique feature vector characterizing the spectral, textural and

structural details. The spectral, textural and structural details

are represented through statistical distribution of low-level

features. The spectral attributes of an image segment provide

valuable cues in distinguishing certain land-cover classes

and these are represented through intensity histograms. For

multi-spectral images, we computed 64-bin histograms for

each channel and for panchromatic images, we computed

64-bin histograms over the pixel intensity values. To char-

acterize the textural details of an image segment we used

histograms computed over local binary patterns (LBP) [9].

For generating LBPs, a 3x3 pixel neighborhood around each

pixel is thresholded based on the intensity value of the center

pixel to form a binary pattern from eight neighboring pixels.

To make the LBPs rotationally invariant, we only consider

the 36 binary patterns from the total of 256 patterns based

on rotation invariance.

We captured the structural information of the image tile



based on local edge patterns (LEP), edge orientation and

line statistics. The LEPs [10] characterizing the structural

details of the image segment are computed similarly to LBP

except that in this case local binary patterns are computed

based on the binary edge map rather than intensity values.

In the case of LEPs there are 36 rotationally invariant

binary patterns, but based on the state of the center pixel

(edge=1, no-edge= 0), possible patterns are mapped to 72

unique patterns. We computed a 72-bin histogram over the

LEPs to capture the structural information. For additional

implementation details on LBP and LEP, reader is referred to

[11]. Edge orientation is a promising feature to discriminate

man-made and natural structures present in the image. We

computed edge orientations at each pixel using steerable

filters [12]. We computed the 64-bin histogram of the

edge orientation over angles from -90 to +90. To make

the edge orientation histogram rotationally invariant, we

computed a 64-point fast Fourier transform and kept the

magnitude of the first 32 points as features. Previous work

by [13] have shown that the line statistics derived from

the imagery provides a promising feature set to discriminate

various man-made structures. Line statistics are computed

from the line support regions, which are contiguous groups

of pixels having consistent gradient orientation [14]. We

have computed the histograms based on line length (21 bins)

and line contrast (24 bins) from line support regions.

Finally, the spectral, textural and structural features ex-

tracted from the image segment are stacked to form the

full feature vector. The original 249-dimensional (64+36+

72+32+21+24) feature vector is subjected to standard di-

mensionality reduction technique based on PCA followed by

linear discriminant analysis method to produce a reduced 9-

dimensional feature vector. Next, we applied feature vector

quantization using Gaussian Mixture Model (GMM) clus-

tering techniques on the reduced feature vectors to form the

visual word vocabulary for the LDA method.

III. VISUAL WORD VOCABULARY

As compared to pixel based thematic classification, se-

mantic classification works with words. As described in the

previous section, a word could be a fixed tile, variable tile,

or an image segment. As compared to text based semantic

annotation, words in the same object category (e.g., building)

in an images vary. For example, consider the baseball field

in Figure 2, where tile (1,2) and (1,2) are very similar,

they represent (predominantly) grass, while tile (1,1) and

(2,2) are very similar, they represent bases. Therefore, the

words (tiles) that are very similar (represent same object) in

the image need to be grouped and assigned a single object

label. These new words are called visual words. K-means

clustering has been widely used in the past for visual word

generation. In this work, in addition to K-means clustering

we experimented with GMM clustering. GMM clustering

offers better visual word generation especially if the samples

follow a Gaussian distribution. In our experiments, we found

that the visual word set generated by GMM is slightly

better than the visual word set generated though K-means

clustering. We now briefly describe the GMM clustering

approach used in this work.

A. Estimating GMM Parameters

Let us assume that the training dataset D is generated by a

finite Gaussian mixture model consisting of M components.

If the labels for each of these components were known, then

problem simply reduces to the usual parameter estimation

problem and we could have used the maximum likelihood

estimation (MLE) technique. Since labels for words are not

known, we used the well-known expectation maximization

algorithm to estimate the GMM parameters. Let us assume

that each sample xj comes from a super-population D,

which is a mixture of a finite number (M ) of clusters,

D1, . . . , DM , in some proportions α1, . . . , αM , respectively,

where
∑M

i=1 αi = 1 and αi ≥ 0(i = 1, . . . ,M). Now

we can model the data D = {xi}ni=1 as being generated

independently from the following mixture density.

p(xi|Θ) =
M∑
j=1

αjpj(xi|θj) (1)

L(Θ) =
n∑

i=1

ln

⎡
⎣ M∑
j=1

αjpj(xi|θj)
⎤
⎦ (2)

Here pj(xi|θj) is the probability density function (pdf)

corresponding to the mixture j and parameterized by θj ,

and Θ = (α1, . . . , αM , θ1, . . . , θM ) denotes all unknown pa-

rameters associated with the M -component mixture density.

The log-likelihood function for this mixture density is given

in 2. In general, Equation 2 is difficult to optimize because

it contains the ln of a sum term. However, this equation

greatly simplifies in the presence of unobserved (or incom-

plete) samples. We now simply proceed to the expectation

maximization algorithm, and the interested reader can find

detailed derivation of parameters for GMM in [15]. The

expectation maximization (EM) algorithm at the first step

maximizes the expectation of the log-likelihood function,

using the current estimate of the parameters and conditioned

upon the observed samples. In the second step of the EM

algorithm, called maximization, the new estimates of the

parameters are computed. The EM algorithm iterates over

these two steps until the convergence is reached. For a

multivariate normal distribution, the expectation E[.], which

is denoted by pij , is the probability that Gaussian mixture

j generated the data point i, and is given by:

pij =

∣∣∣Σ̂j

∣∣∣−1/2

e{− 1
2 (xi−μ̂j)

tΣ̂−1
j (xi−μ̂j)}

∑M
l=1

∣∣∣Σ̂l

∣∣∣−1/2

e{− 1
2 (xi−μ̂l)tΣ̂

−1
l (xi−μ̂l)}

(3)



The new estimates (at the kth iteration) of parameters in

terms of the old parameters at the M-step are given by the

following equations:

α̂k
j =

1

n

n∑
i=1

pij (4)

μ̂k
j =

∑n
i=1 xipij∑n
i=1 pij

(5)

Σ̂k
j =

∑n
i=1 pij(xi − μ̂k

j )(xi − μ̂k
j )

t∑n
i=1 pij

(6)

Once the parameters are estimated using the EM algorithm

described above, the resulting GMM can be used to assign

cluster labels to the new samples. Visual words generated

from this clustering process forms the vocabulary for LDA

algorithm described in the next section.

IV. LATENT DIRICHLET ALLOCATION (LDA)

In this section we briefly describe the LDA model origi-

nally proposed by Blei et al., [6]. In the LDA model, each

document d is assumed to be generated by a K-component

mixture model, where the mixing probabilities θd for each

document are governed by a global Dirichlet distribution. Let

us first introduce the terminology and notations used before

describing LDA model and parameter estimation technique.

• A word w ∈ 1, , V is the most basic unit of data. Here V

denotes the vocabulary. As we are applying LDA to the

remotely sensed image domain, a word w corresponds

to a region (each cell or window in a grid as shown in

Figure 1, or any arbitrary segment in the image). As

can be seen in the Figure 2, many words (windows)

are similar (for example, building tiles, water tiles),

therefore these words need to be grouped together first

into visual words). Thus, in the image domain, the basic

unit of discrete data is the visual word.

• A document d is a sequence of N words denoted by

w = (w1, w2, . . . , wN ), where wn is the nth word in

the sequence. With respect to the image domain, the

document corresponds to an image.

• A corpus is a collection of M documents (images)

denoted by D = w1, w2, . . . , wM .

• A topic z ∈ 1, ,K is a probability distribution over the

vocabulary of V words (visual words).

A. LDA as a Generative Process

We now briefly describe the generative process modeled

by LDA. Given a corpus of unlabeled images, the LDA

model discovers hidden topics as distributions over visual

words in the vocabulary. In this process, words are modeled

as observed random variables and topics are latent random

variables. LDA assumes the following generative process.

• For each image indexed by d ∈ {1 . . .M} in a corpus:

– Sample a K-dimensional topic weight vector (mix-

ing proportions) θd from the distribution p(θ|α) =
Dir(.|α)

• For each word indexed by n ∈ {1 . . . N} in a document

d:

– Choose a topic zn ∈ {1 . . .K} from the multino-

mial distribution p(zn = k|θd) ∼Mult(.|θd) = θkd
– For a chosen topic zn, draw a word wn from the

probability distribution p(wn = i|zn = j, β) ∼
Mult(.|β) = βij

As can be seen from the above-described generative pro-

cess, LDA is a hierarchical model. Each of K multinomial

distributions βk assigns a high probability to a specific set of

words that are frequently occurring or semantically coherent

in a topic. Since the generative process assumes that each

word in a document is generated by a different topic, the

LDA model allows multiple topic assignments to a single

image. This generative process defines a joint distribution for

each document wm. For given α and β, the joint distribution

over the topic mixtures θ is given by:

p(θ, z, w|α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β) (7)

Now, by employing Bayes rule:

p(θ, z|w,α, β) = p(θ, z, w|α, β)
p(w|α, β) (8)

the likelihood of a document can be derived as follows:

p(w|α, β) (9)

=

∫
p(θ|α)

(
N∏

n=1

∑
zn∈Z

p(zn|θ)p(wn|zn, β)
)
dθ

=
Γ(
∑

i αi)∏
i Γ(αi)

∫ ( K∏
i=1

θαi−1
i

)⎛⎝ N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wj

n

⎞
⎠ dθ

Then the objective is to find the corpus level parameters α
and β such that log-likelihood of the entire image collection

is maximized, that is,

L(α, β) =
∑
m=1

M log p(w|α, β) (10)

Unfortunately, learning the parameters of LDA model

is intractable. Well-known maximum likelihood estimation

(MLE) can not be directly applied because of the presence

of unobserved variables z, and θ. However, two approx-

imations, namely mean-field variational expectation maxi-

mization (EM) [6], and the stochastic EM Gibbs sampling

[16], are widely used in the literature. We have implemented

the mean-field variational EM approach, which is briefly

described in [3].



(a)

Figure 3. Graphical model representation of multi-class sLDA with
annotation (source [5])

B. Supervised LDA

Supervised LDA, originally proposed in [4], is not suitable

for multi-class classification problem as the algorithm was

designed for continuous response variable. In the nuclear

proliferation monitoring, our goal is to predict a class

label for a given image, for example, nuclear or coal or

airport, so that human analyst can select the appropri-

ate image for further analysis. Therefore incorporating the

response variable (class labels) into the learning process

is critical. The supervised LDA was recently extended to

multi-class classification problem [5], where the response

variable admits discrete class labels. The discrete variable

is assumed to be drawn from a softmax regression. The

original approach [5] is designed to simultaneously model

both classification and annotation tasks. Basic idea behind

the approach is that annotation and classification are tightly

coupled and by jointly modeling them will lead to better

performance of both annotation and classification tasks. In

this paper, we only implemented the classification task and

we now briefly describe this procedure. We use the same

concepts introduced in section IV for modeling image as

bag of words. The graphical model of multi-class sLDA with

annotation is given in Figure 3. Also known as plate model,

in this graphical model, nodes represent variables, edges

represent possible dependencies between random variables,

plates (solid rectangles) denote replicated structure. Dotted

rectangles are not part of the original plate model, they were

drawn and numbered 1 through 4 to point to the correspond-

ing numbered sections in the following description [5] of the

generative process.

1) Draw topic proportions θ ∼ Dir(α)
2) For each image region (fixed window) rn, n ∈
{1, 2, . . . , N}
• Choose a topic zn ∈ {1 . . .K} from the multino-

mial distribution p(θ|α) = Dir(.|α)

• Choose a word rn|zn ∼Mult(πzn)

3) Draw class label c|z1:N ∼ softmax(z̃, η), where

z̃ = 1
N

∑N
n=1 zn is the empirical topic frequencies

and the softmax function is given by the following

distribution:

p(c|z̃, η) = exp(ηTc z̃)/
∑C

l=1 exp(η
T
l z̃)

4) Fore each annotation term wm,m ∈ {1, 2, , . . . ,M}:
• Draw region identifier ym ∼ Unif{1, 2, . . . , N}
• Draw annotation term wm ∼Mult(βzn)

As compared to the unsupervised LDA model described in

the previous section, the annotated multi-class sLDA models

both the image class (item 3) and image annotation (item 4)

with same latent space. Notation are given in Table I.

Symbol Meaning
K Number of topics
C Number of class labels
r image visual word
w annotation term
M size of (annotation) vocabulary
η1:C set of C class coefficients
d document (image)
θd per document topic proportions
α uniform Dirichlet prior on the per-document topic distribution
β uniform Dirichlet prior on per-topic word distribution

Table I
NOTATIONS

C. Inferencing and Parameter Estimation

As noted in previous section, for LDA model inferencing

posterior over hidden variables is intractable. Approximate

solution was obtained in [5] using mean-field variational

methods. There are three latent variables in the annotated

multi-class sLDA model: per-image (d) topic proportions

θ, per-visual word (r) topic assignment zn, and the per-

annotation (w) region identifier ym. The mean-field varia-

tional distribution over latent variables is given by:

q(θ, z, y) = q(θ|γ)
N∏

n=1

q(zn|φn)

M∏
m=1

q(ym|λm) (11)

where γ is a variational Dirichlet, φn is a variational

multinomial over the K topics, and λm is a variational multi-

nomial over the image regions. These parameters are found

using coordinate ascent by minimizing the KL divergence

between q and the true posterior. Once the parameters are

estimating using the training data, classification is performed

(predict class label for a new image) by estimating the

probability of class label using the following approximation:



p(c|r, w) (12)

≈
∫
exp

(
ηTc z̃ − log

(
C∑
l=1

exp(ηTl z̃

))
q(z)dz

≥ exp

(
Eq[η

T
c z̃]− Eq

[
log

(
C∑
l=1

exp(ηTl z̃

)])

The log of sum term in Eq. 13 poses problem, however

can be approximated using Jensen’s inequality. The predic-

tion rule can be written as:

c∗= arg max
c∈{1,...,C}

Eq[η
T
c z̃] (13)

= arg max
c∈{1,...,C}

ηTc φ̃

In this paper, we utilized only classification part of the an-

notated multi-class supervised LDA model. We now present

the experimental results.

V. EXPERIMENTAL RESULTS

Over 200 multi-spectral satellite images have been col-

lected from commercial satellites of 4 basic categories of

facilities: U.S and international nuclear plants, coal power

plants, refineries, and airports. These images cover over

80 distinct geographical sites and when possible, 2 images

taken at different times have been collected for each site.

These images were from high resolution (1m) commercial

satellites, primarily Quickbird and Ikonos. These images are

preprocessed, stored and cataloged for each acquisition time:

the high resolution panchromatic image, the lower resolution

multi-spectral image data, and a pan-sharpened version

integrating multi-spectral data with the higher resolution

panchromatic image. Analysis has primarily been performed

on the 11 bit grayscale panchromatic images. Pixel data

from the images and results from image segmentation and

feature extraction methods have been organized and stored

in a relational database. This organization of data allows

the automated retrieval of images, segmentation results, and

feature data that can be useful for efficiently generating

consistent results across multiple experiments.

For supervised semantic labeling using LDA, we have

selected and preprocessed 123 images of which 18 im-

ages contained airports, 75 images contained nuclear power

plants, and 30 contained coal power plants. These images

are divided into two independent training and test datasets

consisting of 41 and 82 images respectively (see Table II).

Each of these images has gone through the fixed tiling and

feature extraction processes described in Section II. We have

applied both k-means and GMM clustering (Section III)

techniques on these images. Unlike k-means which iden-

tifies clusters by nearest centroids using Euclidean distance,

GMM finds a set of k Gaussians from the data by using

Type Training Test Total.
Airport 8 10 18
Coal 13 17 30
Nuclear 20 55 75
Total 41 82 123

Table II
TOTAL IMAGE COLLECTION

G.Truth Airport Coal Nuclear Prod. Acc. (%)
Airport 5 3 0 62.5
Coal 1 9 3 69.2
Nuclear 1 9 10 50.0
Users Acc (%) 71.4 42.85 76.9 (OA) 58.5

Table III
TRAINING ACCURACY (UNSUPERVISED LDA)

G.Truth Airport Coal Nuclear Prod. Acc. (%)
Airport 7 3 0 70.0
Coal 2 7 8 41.2
Nuclear 3 25 27 49.1
Users Acc (%) 58.3 20.0 77.2 (OA) 50.0

Table IV
TEST ACCURACY (UNSUPERVISED LDA WITH MANUAL CLASS

ASSIGNMENT)

G.Truth Airport Coal Nuclear Prod. Acc. (%)
Airport 6 2 0 75
Coal 0 11 2 84.6
Nuclear 0 0 20 100.0
Users Acc. 100.0 84.6 90.9 (OA) 90.2

Table V
TRAINING ACCURACY (MULTI-CLASS SLDA)

G.Truth Airport Coal Nuclear Prod. Acc. (%)
Airport 6 3 1 60.0
Coal 1 10 6 58.8
Nuclear 0 9 46 85.18
Users Acc. 85.71 45.45 86.79 (OA) 75.6

Table VI
TEST ACCURACY (MULTI-CLASS SLDA)

Mahalanobis distance. K-Means is a special case of GMM

clustering under certain assumptions. On of the challenges

in applying these clustering techniques is to specify optimal

number of clusters. We did two kinds of experiments to

find optimal number of clusters. In the first approach, we

used information theoretic measure, Bayesian information

criterion (BIC) [13], to find optimal number of clusters.

However, BIC based approach is quite computationally

expensive as it evaluates BIC optimization in an incremental

fashion for different values of K. In the second approach,

we tried only a fixed number of clusterings (15 to 30, in

increments of 5) as we know that the optimal value lies

in this interval (from BIC experiment). The size of visual

vocabulary (V) for LDA is equal to the number of clusters.

Figure 5 shows example airport, nuclear and coal plant

images. We fitted both LDA and multi-class sLDA models

to the training data by using the visual vocabulary generated

from the GMM clustering. We evaluated both training and



Figure 4. Overall Classification Accuracy As a Function of Number of Topics

test accuracy of these two models for different topic and vo-

cabulary sizes, and found the best accuracy for the following

combination: number of visual words = 25 and number of

topics = 20. For unsupervised LDA we choose only top 5

topics to manually assign labels to test images, beyond that

finding the right number and combination of topics would be

cumbersome. Training and test accuracies were summarized

in Tables III to VI. Accuracy against number of categories

is summarized in Figure 4.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a supervised semantic la-

beling framework for identification of complex facilities

in high-resolution satellite images. The framework consists

of three key components. We developed several feature

extraction techniques including intensity histograms, local

binary patterns (LBP), local edge patterns (LEP), and edge

orientation. The features extracted from fixed tiles are then

quantized using GMM clustering technique. LDA and sLDA

models are trained on 51 images collected under differ-

ent spatial and temporal settings spread across the globe.

The models learned are then applied on independent test

dataset consisting of 82 images. The overall test accuracy

for unsupervised LDA is 50% and multi-class supervised

LDA is 75.6%, which shows good improvement in per-

formance. These experimental results show good promise

of the proposed framework. It is important to note that

the image corpus contains complex objects with highly

overlapping visual words, especially buildings. Our initial

experiments also show several limitations and challenges in

semantic labeling of complex facilities in high resolution

images. First, the existing feature sets do not account for

object geometry (e.g., large building vs. small buildings vs.

circular buildings) which is highly useful in distinguishing

the nuclear plants from thermal plants. One of the important

challenges that needs to be addressed is the tile size. In

this study we chose the tile size (128 m square) empirically,

large enough to capture the salient features of the underlying

structures (buildings, reactors, cooling towers, etc.). We are

experimenting with several tile sizes to find if there is a

relationship between the tile size and the quality of label

prediction. In future we will also compare the performance

of new features against most commonly used SIFT features.

Another limitation of LDA model is that spatial relationships

among the objects are ignored due to the ‘bag of words’



assumption. As can be seen from the example images, spatial

relationships are important as the objects (e.g., cooling tow-

ers, turbine building, switchyard) are arranged in a specific

spatial configuration, therefore incorporating neighborhood

relationships should improve the prediction performance.

Another limitation that we observed is the equal weighting

of visual words by the LDA method. There are a few dis-

tinguishing visual words between these semantic categories,

however the frequency of these words (e.g., many coal plants

have open coal dumps within the plant vicinity) is extremely

low as compared to dominant visual words such as buildings.

Our future research will focus on: (i) supervised approaches

for visual word/vocabulary generation, (ii) modeling spatial

relationships which becomes even more critical with the

addition of more complex facilities into the mix, and (iii)

visual word weighting. Since obtaining ground truth for

visual words and as well as semantic labels for large number

of images is difficult, we will also look at employing

semi-supervised [17] approaches in the context of semantic

labeling.
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Figure 5. Examples From Three Image Categories
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