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Stochastic processes in the form of the classical Brownian motion or internal phonon fluctuations may be
studied by the use of a microcantilever. We present certain dynamic aspects of the behavior of the noise and the
delayed fluctuations exhibited by a microcantilever. In particular, we present an analytic solution describing the
transient response of the oscillator and discuss how self-excitation may determine the presence of small delays
and, conversely, how delay-induced excitation may provide sensory information. As an application of the
analysis, we present dynamic measurement of surface displacement with a preliminary sensitivity of 2 Hz/�m
in the chosen frequency window, which may effectively be extended to the nanometer regime.
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The implications of uncorrelated thermal agitations domi-
nating the microscopic realm are of paramount importance in
both equilibrium and nonequilibrium systems.1,2 In a me-
dium of viscosity �, a Brownian particle undergoing diffu-
sion performs a random walk2 with an averaged squared dis-
placement growing linearly with both time t and temperature
T, i.e., ��u�2��t ,T�=kBTt /�, where kB is the Boltzmann con-
stant and � is the drag coefficient �see investigations by
Einstein3 and a discussion of the Einstein-Smoluchowski dif-
fusion by Islam4�. Picturing a microcantilever oscillator
�MCO� as a giant molecule of an effective mass m at a po-
sition u and bound to a harmonic potential U with a force
constant k, i.e., U�r�=ku2 /2, then in this medium, the
Langevin-like equation mü�t�+�u̇�t�+ku�t�+��t�=0, with �
representing the random forces,5 describes the dynamics of
the oscillator. Under equilibrium, an application of the
fluctuation-dissipation theorem �FDT� as generalized by
Callen and Welton6 yields, in the Fourier space, for the un-
correlated variations in the position of this point mass, a
power spectral density �PSD�, which near its single reso-
nance frequency �0 is given by ��u�2���0 ,T�=�Q0

−2, where
�=2m2kBT�� /	�3, and Q0=m�0 /� determines the spectral
linewidth while �� is the measurement bandwidth. Repre-
senting the MCO as an extended elastic body,7 one arrives at
a mode n dependent PSD of the �resonant� form ��un�2�

��n ,T�=�Qn

−2, where ��un�2� is the Fourier transform of the
autocorrelation function �un�1, t� ,un�1,0�� for a MCO of nor-
malized length, and Qn is proportional to the eigenfrequen-
cies �n.

The Brownian fluctuation resulting in a detectable excita-
tion may act as a sensor exhibiting a shift in the excitation
frequency and amplitude as a result of a MCO-molecule en-
counter. The resulting memoryless dynamics described by
the stochastic differential equations �SDEs� and under equi-
librium by the FDT above, that is, oscillation in the presence
of noise,5,8 has been studied extensively.9 A higher spectral
resolution may be achieved by the engagement of a state
feedback; however, prevailing retardation quickly renders the
above results challenging such that the dynamics of fluctua-
tion in the presence of noise and delays, governed by the
stochastic delay differential equations �SDDEs�, remains an
active area of research due to the non-Markovian position of

the MCO. A posing problem is then whether the MCO de-
scribed by a SDDE partially or completely violates the FDT,
and if so whether this violation is mode dependent. Attempts
to approximate solutions of certain SDDE, such as in the
limit of small delay,10 stationary state,11 and numerical,12

continue to be reported and applications as diverse as gene
regulation13 and Brownian motor14 have been investigated.
Recently, Budini and Cáceres developed a functional ap-
proach to characterize the linear delay Langevin equation for
arbitrary noise.15 To date, the SDDE formulation of a MCO
has not been treated, and as a result, an understanding of the
mode-dependent interplay between delays and noise and sta-
bility criteria will depend mainly on experimental observa-
tions. Experimental work on MCO, from early studies
largely concerned with Q control in atomic force microscopy
�AFM� in ambient and fluidic media to most recent basic
research on sub-Kelvin cooling of oscillation, continues to
improve various dynamic aspects of imaging and
sensing.16–29

Within the Euler-Bernoulli approximation, with a proper
scaling, the nondimensionalized form of the partial differen-
tial equation, describing the position u of the MCO at point

0�x�1 and time t, reads Ãu�x , t�=w�x , t�, with the opera-

tor Ã��x
4+�t

2+��t, where the dimensionless constant �
=� with  containing the material properties of the MCO,
and w is a general forcing.23 In this Brief Report, we con-
sider two functional forms for w, an impulsive one and one
leading to a SDDE.

First, the stochastic parameters may be studied via the
transient behavior of the MCO. The dissipation mechanisms
due to the classical Brownian molecular bombardment, and
to the internal losses �collectively including Zener,30 disloca-
tion, and impurity� involved, may be distinguished by the
application of an impulse. Figure 1 shows an instance of
such a measurement, where a 1 �s, 1 V pulse was applied to
the piezobimorph of an AFM holding the MCO. Most of the
power appears to have been lost through the lowest-
frequency mode, but several higher-frequency modes are
also involved that due to the low Nyquist frequency are dis-
placed by aliasing. Furthermore, in all experiments, apart
from decaying, a complicated frequency modulation appears
to modify the amplitude. A numerical fit to the envelope of
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the signal �Fig. 1�a�� provides a direct measure of the dissi-
pation. The origin of the observed frequency beat pattern
may be explored on the basis of an eigenmode interference
as follows. For w�x , t�=0, separation of variables yields
u�x , t�=��x���t�. Denoting the Laplace transform by
L	u�x , t�
= û�x ,s�, we obtain the solution for the case w�0
by a transformation into Laplace space and the eigenfunction
expansions

û�x,s� = �
k=1

�

ak�s��k�x�, ŵ�x,s� = �
k=1

�

bk�s��k�x� . �1�

Since 	�k�x�
1
� form an orthonormal set, the expansion coef-

ficients can be shown to be

bk = �
0

1

ŵ�u,s��k�u�du, ak =
bk

�s + ��2 + �k
2 , �2�

where �k=�k
4−�2 with the eigenvalues of the spatial solu-

tion denoted by �k, k=1,2 , . . ., and �=� /2. Thus,

û�x,s� = �
k=1

�
�k�x�

�s + ��2 + �k
2�

0

1

ŵ�u,s��k�u�du . �3�

We apply Borel’s theorem to obtain the formal solution

u�x,t� = �
k=1

�
�k�x�

�k
�

0

1

�k�u�du�
0

1

�k��,t,u�d� , �4�

where �k=w�u ,��e−��t−�� sin �k�t−��. Based on the experi-
ment of Fig. 1, we assume here the following excitation
w�x , t�=wa��t− t*���x ,x*�, where wa denotes the magnitude
of the impulse �in scaled variables�, and 0�x*�1 and 0
� t* are dimensionless space and time impulse parameters
denoting the position along the MCO and the time at which
the driving impulse is applied. Thus, the kth solution reduces
to

uk�x,t� = wae−��t−t*��k�x��k�x*�
sin��k�t − t*��

�k
, �5�

such that the general solution u�x , t�=�k=1
� uk�x , t� for t� t*

and u�x , t�=0 for t� t*. It is now evident from the last term,
weighted with the eigenfrequencies, that an �eigenfunction�
interference results in the observed beat pattern of Fig. 1.
The contribution from the higher modes declines as �k

−1 as
supported by the PSD in Fig. 1. Measured from the first
experimental frequency, Eq. �5� predicts that the contribu-
tions of the higher modes scale as 0.16 and 0.06 for the
second and the third respectively. It is noteworthy that �from
the FDT� the stochastic noise of the MCO ��un�2���n

−2 is
severely suppressed for higher modes. From the definition of
�k and �k, one may propose that such a superposition of the
modes itself may provide sensory information due to the
position of the beats.

Although in view of the FDT the stochastic noise is se-
verely reduced for higher modes, we show that a proper
amount of induced delay may excite these fast modes under
a state-feedback condition, allowing for measurements at
higher frequencies. To examine one such condition, we take
w�x , t� to be the retarded position of the MCO, then u�x ,��
satisfies the SDDE Ãu�x , t�=��t�+�u�x , t−��, with the pa-
rameter � characterizing the coupling strength �for �=0, the
stochastic process u is a Markov chain due to ��. This is a
pointwise reinjection, whereas experimentally, the reinjec-
tion only carries information about the retarded position of
the laser-illuminated segment of the MCO and not all x on
�0, 1�. For very small delays, the SDDE reduces to the SDE

Ãu�x , t�=��t�+��n=0
N �−��t�nu�x , t� /n!+O��N+1�; however,

the applicability of the FDT remains questionable in either
case. Since ���t��=0, the formal solution reads23 �u�x , t��
=�k,l�k�x�pkl�t�exp��kl+ i�kl�t, where the polynomials pkl

are determined by the prefunctions on �−� ,0�, and for each
spatial eigenmode k, there is an infinite number l of eigen-
values ��kl ,�kl� due to the delay �. In the absence of the
delay, the solutions �the prefunctions to the case with non-
zero delay� are given by �u�x , t��=�k�k�x�p exp��+ i�k�t,
where �k

2= ��k
0�2− �� /4�2, with �k

0 representing the eigenfre-
quencies in the absence of any dissipation and �=−2� /m
�Hz� measures the relaxation time of the oscillator. With a
nonzero delay, the eigenvalues multiply and, for each k and l,
satisfy

FIG. 1. �Color online� Mode interference in transient response
of the MCO and decay back to the noise level in �a� oxygen and �c�
vacuum environments. �b� Constructed power spectral density, dis-
playing a major loss channel centered at the fundamental frequency
F0, also reveals several smaller peaks as aliases due to a Nyquist
frequency of FN=80 kHz�Fn, n�0. The symbols in �a� mark the
loci to which an exponential function was fitted.
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� = arctan� �kl��/2 − 2�kl�
�kl

2 − �kl
2 − ��kl/2 + ��k

0�2��kl
−1. �6�

This equation can be derived from the characteristic equation
of the delay partial differential equation of the MCO.23 The
sign of �kl conditions the quotient �kl=� /Tkl. The criterion
�m+ j���kl� �m+1/2�, with j=1/4 �3/4� for positive
�negative� coupling strength and m�0 an integer, implies for
a fix � that when � is varied, �kl and �kl fluctuate such that a
mode k may be amplified only for � in a band dictated by m.
Thus, within the same band m, scanning � may enforce the
system to excite higher modes in satisfying the criterion. We
propose that both � and � provide sensory information as
exemplified below. To this end, the analysis in Eq. �6� is the
first reportage.

An example of how this result may be utilized is the re-
mote detection of nanometer solid or liquid surface �and po-
tentially subsurface� displacements. Briefly, prior to engag-
ing the feedback at time t= t0, the MCO is maintaining a
frequency spectrum consistent with the distribution of its
normal modes, as prescribed by the eigenfunctions of the
partial differential equation representing the motion of the
MCO. Engaging a feedback, the eigenvalue spectrum of the

system will be modified. The thermomechanical noise of the
MCO is detected by the optical readout system of an AFM,
amplified by a controller unit using a signal access module,31

and is finally reinjected. The retarded position of the MCO
may be reinforced either explicitly via a piezobimorph or
implicitly via acoustic coupling through a gas, in which case,
the internal delay of the feedback system is varied when
working in different media �see inset of Fig. 2�a��. In the
former case, an analog delay generator was incorporated so
as to compensate for any delay-induced frequency shift,
maintain a fix frequency, or tune the frequency.

For a MCO with the measured resonances at 13.14, 85.6,
and 241.0 kHz, this delay corresponds to phase shifts of
0.69°, 4.49°, and 12.75°, respectively. The measured total
resonance frequency and phase variations are shown in Fig. 2
for Fi, i=1,2 ,3, as a function of d, the distance between the
MCO and the acoustic excitation source, where the effects of
a continuous variation in delay are shown to shift all fre-
quencies due to the feedback mechanism. While all peaks
underwent periodical shifts with distance, F1 only experi-
enced one quarter of a cycle, and F2 and F3 exhibited two
and seven cycles, respectively, consistent with the phase in-
formation in the right column in Fig. 2. As can be seen, for
the peak with a period of T1=76.9 �s, the phase traverses
only a quarter of the plane, whereas the higher peaks T2
=11.76 �s and T3=4.15 �s allow two and seven zero-phase
crossings. Such clear frequency shifts, observed for the
monitored peaks, give these modes excellent probing capa-

FIG. 2. �Color online� Delay-induced loci of the eigenfrequen-
cies. The modes disappear for certain delays and reappear periodi-
cally due to the induced suppression and amplification. Left: de-
layed frequency F response of the resonances F1, F2, and F3 of the
MCO. The acoustically coupled feedback system depicted in the
inset in �a� is excited by the stochastic noise. Right: the phase
variation versus distance for the measured peaks. The distance �rep-
resented by the radius� d is given in mm, while the phase is mea-
sured in degrees. �a� corresponds to F1=13 kHz, �b� to F2

=85 kHz, and �c� to F3=241 kHz.

FIG. 3. Simulated delay-induced loci of the eigenfrequencies
corresponding to the experimental values, in good agreement with
Fig. 2. The gray scale measures the coupling strength.
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bilities. While the maximum frequency shifts are �F1
=250 Hz and �F2=1.6 kHz for the first two peaks, the third
mode undergoes a shift of �F3=100 Hz per 50 �m, making
this peak the most sensitive probe. This enables the motion
detection of an acoustic source by a fraction of a micrometer.
In light of Eq. �6�, the measured periodic dependence is in
remarkable agreement with the transcendental dependence of
the eigenvalues on the delay and the frequency. A simulation
of the observed variation in Fig. 2 is shown in Fig. 3 for the
three frequencies investigated. Thus, the ability to reach a
desired frequency as a result of a change in the time delay is
summarized in these figures for the first three frequencies.
Figure 3 theoretically shows the variation of the experimen-
tally examined frequencies with delay, whereas Fig. 2 shows
the experimental data. Thus, in the case of resonance, for a
given coupling strength, a domain of frequencies is available
to choose from by varying the time delay.

In conclusion, we have investigated the noise induced
self-oscillation dynamics, transient response, and an acousti-
cally coupled feedback for a MCO. For MCOs of high
Young’s modulus, megahertz windows are readily accessible
from the fundamental modes, or from higher resonance of
typical AFM MCOs. Under delayed oscillations, say, at
1 MHz, a striking sensitivity of 1 nm surface displacement
will be plausible. Nanosecond delay detection has the poten-
tial of environmental sensing. The results show great poten-
tial for applications in fields such as remote microscale sur-
face movement measurements, gas composition detection,
and acoustic wave detection to provide sensory information
of a kind not previously reported. Elastic versus viscous ef-
fects may be separated by the presented impulse excitation
and formation of the beats. Under otherwise identical condi-
tions, the geometry dependence of the frictional �drag� force
may be determined, while for MCOs with the same geometry

but different material, the material dependence may be deter-
mined. To discern the internal losses from those due to the
drag force, the same can be repeated in vacuum.

Many problems related to the nanoscale thermal and sto-
chastic processes remain open. Straightforward experiments
were presented that will stimulate further discussions; in par-
ticular, we propose that the implications of FDT be explored
within the context of delayed coupling. Stochastic processes
in the equilibrium or in steady-state limit provide a direct
window into the nanoscale realm of adsorption and diffusion.
The stochastic excitation of the system was utilized in a de-
layed feedback to amplify or cool the oscillations at various
modes of oscillation. As an application of the mode-
dependent dynamics, we proposed and tested an experiment
that readily allows surface displacement with potential for
nanometer displacement using pure time delay via an acous-
tic coupling. A time-dependent delay may be induced by
fluctuating d, resulting in parametric dynamics. Energy dis-
sipation in form of elastic and viscous damping may be stud-
ied by impulse excitation of a silicon MCO. The typical de-
cay predicted by a simple point mass, that is, an
exponentially modified oscillation amplitude, does not cor-
rectly predict the experimental results. In view of a beam
model, the experimentally observed frequency beats were ex-
plained. The beat frequency was observed to shift with the
viscous damping in various environment. The presented
feedback mechanism, facilitated by an acoustic coupling,
conveniently provides pure time delay generation that is nec-
essary for the excitation of the higher-frequency modes of
the MCO.
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