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ABSTRACT 
 
Identification and automatic labeling of facilities in high-
resolution satellite images is a challenging task as the 
current thematic classification schemes and the low-level 
image features are not good enough to capture complex 
objects and their spatial relationships. In this paper we 
present a novel algorithm framework for automated 
semantic labeling of large image collections. The framework 
consists of various segmentation, feature extraction, vector 
quantization, and Latent Dirichlet Allocation modules. 
Initial experimental results show promise as well as the 
challenges in semantic classification technology 
development for nuclear proliferation monitoring. 

Index Terms— Satellite image analysis, semantic 
classification, invariant features, Latent Dirichlet Allocation 
 

1. INTRODUCTION 
 
The Oak Ridge National Laboratory is developing an 
algorithmic framework to assist the geospatial image analyst 
with the tedious process of searching through geospatial 
image libraries for potential nuclear proliferation activities. 
An overview of this research framework is shown in Figure 
1. Geospatial libraries are continuously collected today in 
higher spatial and spectral resolution than ever before. The 
ability to process and comprehend this data is limited by the 
number of analysts and available software tools. The 
ultimate goal of this research is to detect a variety of 
potential nuclear proliferation-related structures and 
activities. As a first step, development and testing are 
focused on detecting and identifying nuclear power 
facilities. First, images are segmented using a fixed tiling 
approach. Approximately radiometric-invariant features are 
extracted and used to quantize the segmented regions, or 
tiles. These tile features are fed into a probabilistic model, 
which predicts the most likely image "topic," or semantic 
description of the facility of interest (e.g. nuclear plant, coal 
plant, airport) based on the distribution of identified objects 
within the image. Initial results on semantic identification of 
complex structures within imagery show the strong potential 
of the approach. 

Previously, researchers have explored similar paths for 
recognizing the semantic category of an image based on the 
co-occurrence of visual features. Lienou et al. [1] have 
shown that Latent Dirichlet Allocation (LDA) based 
semantic classification of satellite image content using 
simple visual features such as the mean and standard 
deviation of pixel intensity values in a local neighborhood 
yielded promising results. In the context of terrestrial image 
categorization, Li and Perona [2] presented a similar 
approach using LDA on visual words comprised of SIFT 
features to categorize a diverse set of scene types including 
bedroom, kitchen, living room, office, streets etc. Taking 
key insights from previous works, we advance the semantic 
classification of satellite imagery based on LDA framework 
by incorporating unique and richer feature sets to form our 
visual word vocabulary.  

It is also important to note that this work is unique in 
that the facilities of interest being studied here are highly 
overlapping in terms of their overall visual features 
(buildings, parking lots, containment vessels, etc.). It is the 
presence of unique and perhaps infrequently occurring 
features (cooling towers, coal piles, nuclear reactors, etc.) 
and their spatial relationship to one another that separates 
one class of facility from another, which makes this a 
challenging classification problem. 
 

2. SATELLITE DATA 
 
Over 130 multispectral satellite images have been collected 
from commercial satellites of 4 basic categories of facilities: 
U.S and international nuclear plants, coal power plants, 
refineries, and airports.  These images cover over 80 distinct 
geographical sites and when possible, 2 images taken at 
different times have been collected for each site.  These 
images were from high resolution (~1 m) commercial 
satellites, primarily Quickbird and Ikonos, and 3 images are 
stored and catalogued from each acquisition time: the high 
resolution panchromatic image, the lower resolution 
multispectral image data, and a pan-sharpened version 
integrating multispectral data with the higher resolution 
panchromatic image. Analysis has primarily been performed 
on the 11 bit grayscale panchromatic images. 



Pixel data from the images and results from image 
segmentation and feature extraction methods have been 
organized and stored in a relational database.  In addition to 
detailed information about the source and location of the 
images, the database contains information about low level 
processing results and manually labeled ground truth 
information data that are available for selective retrieval.  
This organization of data allows the automated retrieval of 
images, segmentation results, and feature data that can be 
useful for efficiently generating consistent results across 
multiple experiments. 

 
3. SEGMENTATION & FEATURE EXTRACTION 

 
Various segmentation strategies are being developed to 
effectively segment the satellite image into the constituent 
parts, including variations of the J-value segmentation 
approach [3], [4]. Results using these more advanced 
segmentation strategies will be reported in future work, 
however, for the results reported here, a straightforward 
tiling strategy was implemented where the original image 
was divided into 128x128 pixel non-overlapping tiles. The 
size of the tiles (128 m square) was empirically chosen to be 
large enough to capture the salient features of the underlying 
structures (buildings, reactors, cooling towers, etc.), but not 
so large that a single tile would consistently contain 
structural features from multiple objects. This is important 
because the feature vectors representing the “visual words” 
used later in the semantic classification process are extracted 
from these individual tiles. 

The objective of the feature extraction step is to 
represent each segment of a tessellated image by a unique 
feature vector characterizing the spectral, textural and 
structural details. The spectral, textural and structural details 
are represented through a statistical distribution of low-level 
features. The spectral attributes of an image segment 
provide valuable cues in distinguishing certain land-cover 
classes, and these are represented through intensity 
histograms. For multi-spectral images, we compute 64-bin 
histograms for each channel and for panchromatic images, 
we compute 64-bin histograms over the pixel intensity 

values. To characterize the textural details of an image 
segment we use histograms computed over local binary 
patterns (LBP) [5]. For generating LBPs, a 3x3 pixel 
neighborhood around each pixel is thresholded based on the 
intensity value of the center pixel to form a binary pattern 
from eight neighboring pixels. To make the LBPs 
rotationally invariant, we only consider the 36 binary 
patterns from the total of 256 patterns based on rotation 
invariance.  

We capture the structural information of the image 
segment based on local edge patterns (LEP), edge 
orientation and line statistics. The LEPs [6] characterizing 
the structural details of the image segment is computed 
similarly to LBP except that in this case local binary 
patterns are computed based on binary edge map rather than 
intensity values. In the case of LEPs there are 36 
rotationally invariant binary patterns, but based on the state 
of the center pixel (edge=1, no-edge= 0), possible patterns 
are mapped to 72 unique patterns. We compute a 72-bin 
histogram over the LEPs to capture the structural 
information. For additional implementation details on LBP 
and LEP, reader is referred to [7].   

Edge orientation is a promising feature to discriminate 
man-made and natural structures present in the image. We 
compute edge orientations at each pixel using steerable 
filters [8]. We compute the 64-bin histogram of the edge 
orientation over angles from -90 to +90. To make the edge 
orientation histogram rotationally invariant, we compute a 
64-point fast Fourier transform and keep the magnitude of 
the first 32 points as features.  

Previous work by [9] have shown that line statistics 
derived from imagery provide a promising feature to 
discriminate different man-made structure categories. Line 
statistics are computed from line support regions- 
contiguous groups of pixels having consistent gradient 
orientation [10]. We computed histograms based on line 
length (21 bins) and line contrast (24 bins) computed from 
line support regions.  

The spectral, textural and structural features extracted 
from the image segment are stacked to form the original 
feature vector. The original 249-dimensional 

 
Figure 1. Schematic of developed framework for semantic image classification. 
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(64+36+72+32+21+24) feature vector is subjected to 
standard dimensionality reduction technique based on PCA 
followed by linear discriminant analysis to produce a 
reduced 9-dimensional feature vector. Next, we applied 
feature vector quantization using K-means and Gaussian 
Mixture Model (GMM) clustering techniques on the 
reduced feature vectors to form our visual word vocabulary.  
 

4. SEMANTIC LABELLING 
 
The next step is to apply a semantic label to the image of 
interest based on the distribution of visual words contained 
within the image. The algorithm selected to determine the 
best semantic label is based on the LDA model and is 
described next. 

 
4.1. Latent Dirichlet Allocation (LDA) 
 
The LDA model, originally proposed by Blei et al., [11], is 
an unsupervised statistical generative model developed for 
finding latent semantic topics in large collections of text 
documents. In the LDA model, each document d is assumed 
to be generated by a K-component mixture model, where the 
mixing probabilities 

 

θd for each document are governed by 
a global Dirichlet distribution. We now briefly introduce the 
terminology and notations: 
 
1. A word w 

 

∈ {1, …, V} is the most basic unit of data. 
Here V denotes the vocabulary. As we are applying 
LDA to the remotely sensed image domain, a word w 
corresponds to a region (each cell or window in a grid 
as shown in Figure 1, or any arbitrary segment in the 
image). As can be seen in Figure 1, lot of words (tiles) 
are similar (for example, building tiles, water tiles), 
therefore these words need to be grouped together first 
into visual words. Thus, in the image domain, the basic 
unit of discrete data is the visual word. 

2. A document d is a sequence of N words denoted by w = 
(w1, w2, …, wN), where wn is the nth word in the 
sequence. With respect to the image domain, a 
document corresponds to an image. 

3. A corpus is a collection of M documents (images) 
denoted by D = {w1, w2, …, wM}.  

4. A topic z 

 

∈ {1, …, K} is a probability distribution over 
the vocabulary of V words (visual words). 

4.1. LDA as a Generative Process 
 
We now briefly describe the generative process modeled by 
LDA. Given a corpus of unlabeled images, the LDA model 
discovers hidden topics as distributions over visual words in 
the vocabulary. In this process, words are modeled as 
observed random variables and topics are latent random 
variables. LDA assumes the following generative process. 
• For each image indexed by d 

 

∈ {1…M} in a corpus: 

o Sample a K-dimensional topic weight vector 
(mixing proportions) 

 

θd from the distribution
)|(.)|( ααθ Dirp = . 

• For each word, wn 

 

∈ {1…N} in a document d: 
o Choose a topic zn 

 

∈ {1…K} from the multinomial 
distribution k

dddn Multkzp θθθ == )|(.~)|(  
o For a chosen topic zn, draw a word, wn, from the 

probability distribution:  
ijnn Multjziwp βββ === )|(.~),|(  

As can be seen from the above-described generative 
process, LDA is a hierarchical model. Each of K 
multinomial distributions kβ  assigns a high probability to a 
specific set of words that are frequently occurring or 
semantically coherent in a topic. Since the generative 
process assumes that each word in a document is generated 
by a different topic, the LDA model allows multiple topic 
assignments to a single image. This generative process 
defines a joint distribution for each document wm. For given
α and β , the joint distribution over the topic mixturesθ  is 
given by: 
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Then the objective is to find the corpus level parametersα
and β  such that the loglikelihood of the entire image 
collection is maximized. Unfortunately, learning the 
parameters of LDA model is intractable. However, two 
approximations, namely mean-field variational expectation 
maximization (EM) [11], and the stochastic EM Gibbs 
sampling [12], are widely used in the literature. We have 
implemented the mean-field variational EM approach. 
Mathematical details are omitted for brevity, but the 
interested reader can refer to [11] for full details. First, 
various feature are extracted from each fixed grid cell or 
word. These words are then quantized into visual words, 
using K-Means and GMM clustering techniques. The LDA 
model is then applied to these visual words. The following 
section gives more details on various parameters used.  
 
4.1. Experiments and Results 
 
As described in Section 2, we have collected a variety 
(different spectral, spatial, and temporal resolutions) of 
images. For semantic classification using LDA, we have 
selected and preprocessed 52 images of which 31 images 
contained nuclear power plants and 21 contained coal power 
plants. An independent test data set consisting of 19 nuclear 
images and 5 coal images were also collected. Each of these 
images has gone through the fixed tiling and feature 
extraction processes described in Section 3. We have 
applied both k-means and GMM clustering techniques on 
these images. Unlike k-means, which identifies clusters by 
nearest centroids using Euclidean distance, GMM finds a set 



of k Gaussians from the data by using the Mahalanobis 
distance. K-Means is a special case of GMM clustering 
under certain conditions. On of the challenges in applying 
these clustering techniques is to specify optimal number of 
clusters. We performed two kinds of experiments to find the 
optimal number of clusters. In the first approach, we used an 
information theoretic measure, Bayesian information 
criterion (BIC) [13], to find optimal number of clusters. 
However, BIC based approach is quite computationally 
expensive as it evaluates BIC optimization in an incremental 
fashion for different values of K. In the second approach, we 
tried only a fixed number of clustering’s (15 to 30, in 
increments of 5) as we know that the optimal value lies in 
this interval. The size of vocabulary (V) for LDA is equal to 
the number of clusters. We fit the LDA model to the training 
data by using the vocabulary generated from the clustering. 
We evaluated training accuracy of LDA for different topic 
and vocabulary sizes, and found the best accuracy for the 
following combination: number of visual words = 25 and 
number of topics = 3. We used the GMM and LDA models 
learned from training data to evaluate the predictive 
performance of LDA in semantic labeling by applying them 
to an independent test data. Both the training and test 
accuracies are summarized in Table I. Since we used LDA 
in unsupervised mode, we manually mapped the topics 
predicted by LDA onto the nuclear and coal categories.  
 
Table I. LDA performance on training and test images. 

 Nuclear Coal Nuclear Coal 
Nuclear 26 5 13 6 
Coal 6 5 2 3 
Overall Accuracy Training = 73% Test = 67% 

 
5. CONLCUSIONS 

 
Given the highly overlapping visual words from one facility 
type to another, the achieved results are quite promising. 
There are clearly several avenues of research needed to 
improve the classification accuracy. First, to improve the 
uniqueness of visual words across facility types, a 
supervised version of LDA is being implemented. Second, 
the bag-of-words model inherent to LDA does not take into 
account unique spatial relationships between objects that are 
specific to a given facility type, so we are investigating 
methods of including these spatial relationships into our 
modeling approach. Future work will focus on 
implementation of these new approaches and evaluation of 
new features and categories on a larger set of images. 
 

6. ACKNOWLEDGEMENTS 
 
Research sponsored by the NA-22 office of the National 
Nuclear Security Administration within the Department of 
Energy. This manuscript has been authored by employees of 

UT-Battelle, LLC, under contract DE-AC05-00OR22725 
with the U.S. Department of Energy. 
 

7. REFERENCES 
 
[1] M. Lienou, H. Maitre and M. Datcu, “Semantic 
Annotation of Satellite Images Using Latent Dirichlet 
Allocation”, IEEE Geoscience  and Remote Sensing Letters, 
vol. 7, no. 1, January 2010. 
[2] L. Fei-Fei and P. Perona, “ A Bayesian 
Hierarchical Model for Learning Natural Scene Categories”,  
IEEE Conference on Computer Vision and Pattern 
Recognition, 2005. 
[3] Y. Deng and B. S. Manjunath, “Unsupervised 
segmentation of color-texture regions in images and video,” 
IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 23, pp. 800–810, August 2001. 
[4] Celebi ME, Aslandogan YA, Stoecker WV, 
Iyatomi H, Oka H, Chen X, “Unsupervised border detection 
in dermoscopy images,” Skin Res Tech, vol. 13:1–9, 2007 
[5] M. Pietikainen, T. Ojala and, Z. Xu, “Rotation-
invariant texture classification using feature distributions”, 
Pattern Recognition, vol. 33, no.1, pp. 43-52, 2000. 
[6] C. H Yao and, S. Y Chen, “Retrieval of translated, 
rotated and scaled color textures”, Pattern Recognition, vol. 
36, pp. 913-929, no. 4, 2003. 
[7] K. W. Tobin, B. L. Bhaduri, E. A. Bright, A. M. 
Cheriyadat, T. P. Karnowski, P. J. Palathingal, T. E. Potok, 
and J. R. Price, “Large-Scale Geospatial Indexing for 
Image-Based Retrieval and Analysis,” Proc. International 
Symposium on Visual Computing, LNCS 3804, Springer-
Verlag, Berlin, 2005, pp. 543-552, 2005. 
[8] W.  Freeman and, E. Adelson, “The design and use 
of steerable filters”, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 13, no. 9, pp. 891-906, 1991. 
[9] C. Unsalan and, K. L. Boyer, “Classifying Land 
Development in High-Resolution Panchromatic Satellite 
Images Using Straight-Line Statistics”, IEEE Trans. on 
Geoscience  and Remote Sensing ,vol. 42, no. 4, April 2004 
[10] J. B. Bums, A. R. Hanson, and E. M. Riseman, 
“Extracting straight lines”, IEEE Trans. Pattern Analysis 
Machine Intelligence, vol. PAMI-8, pp.425–455, July 1986. 
[11] Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. 
Latent dirichlet allocation. J. Mach. Learn. Res., vol. 3, 993-
1022, 2003. 
[12] T. L. Griffiths and M. Steyvers, “Finding scientific 
topics,” Proceedings of the National Academy of Sciences, 
(101) Suppl. 1: 5228-5235,  2004. 
[13] Fraley, C., Raftery, A.E. and Wehrens, R., 
Incremental Model-Based Clustering for Large Datasets 
with Small Clusters. Journal of Computational and 
Graphical Statistics, vol. 14, 529-546, 2005. 


	Semantic Information Extraction from Multispectral Geospatial Imagery via a Flexible Framework
	Abstract


