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In material structures with nanometer scale curvature or dimensions electrons may be excited to
oscillate in confined spaces. The consequence of such geometric confinement is of great importance in
nano-optics and plasmonics. Furthermore, the geometric complexity of the probe-substrate/sample
assemblies of many scanning probe microscopy experiments often pose a challenging modeling prob-
lem due to the high curvature of the probe apex or sample surface protrusions and indentations.
Index transforms such as Mehler-Fock and Kontorovich-Lebedev, where integration occurs over the
index of the function rather than over the argument, prove useful in solving the resulting differential
equations when modeling optical or electronic response of such problems. By considering the scalar
potential distribution of a charged probe in presence of a dielectric substrate, we discuss certain
implications and criteria of the index transform and prove the existence and the inversion theorems
for the Mehler- Fock transform of the order m ∈ N0. The probe charged to a potential V0, measured
at the apex, is modeled, in the non-contact case, as a one-sheeted hyperboloid of revolution, and in
the contact case or in the limit of a very sharp probe, as a cone. Using the Mehler-Fock integral
transform in the first case, and the Fourier integral transform in the second, we discuss the necessary
conditions imposed on the potential distribution on the probe surface.

PACS numbers:

I. INTRODUCTION

The complicated interaction between two bodies Oi, i = 1, 2, shown in Fig. 1, as their relative
distance is reduced beyond a few nanometers (10−9 meters), encompasses a wide range of forces
operative at their respective length scales. Neglecting gravity, these forces are ultimately electro-
dynamic (Van der Waals, Casimir, Coulomb, etc.) in origin. Monitoring the dynamical attributes
of O1, for example its oscillation eigenfrequency, such forces allow O1 to probe O2. This is the
principle of operation for many scanning probe microscopes [1] (SPM), where one object O1 is the
probe and a second O2 is the sample under study. In most cases, the atoms making up the apex
region of a probe, and those in a volume of the sample/substrate closest to the probe constitute the
engaging parts, as schematically shown in Fig. 2. The probe, typically a small (a few nanometers)
sized sharp material domain interacts with a the sample/substrate surface under study, see Fig. 3.
SPMs can be considered an extension of human visual range, as visual inspection of the atomic
fabrics of our physical environment was not necessary for survival of human species rendering our
eyesight limited to just below millimeter range. The probing capability of most SPMs can therefore,
albeit somewhat metaphorically, be compared to the tips of the fingers (O1) of a blind, “probing”
and sensing the topography of a Braille script (O2).

In situations where the electrodynamics of the interacting bodies Oi, i ∈ N can be approximated
by quasi-statics, significant simplification can be achieved due to the negligence of retardation in
sub-wavelength regions, that is, regions of the system with a dimension smaller than the interacting
photon wavelength [2]. Here, a closely related example, classically experimented with by Newton in
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1665, and found in many SPM work, is the quantum mechanical phenomenon of photon tunneling
between the two prisms O1 and O2. As shown in Fig. 4, for photons of wavelength λ, when
|r1− r2| ∝ λ, tunneling commences prior to full transmission of light at |r1− r2| → 0 corresponding
to the disappearance of the gap. The objects in Fig. 1-Fig. 4 are depicted as finite, but in many cases
one or several dimensions of the system can be large and may be considered as infinite, for example
the dimensions in the x and z directions with respect to the gap size of Fig. 4. When satisfying
the boundary conditions for such problems, the encountered divergent or slowly converging integrals
associated with an infinite dimension of the modeling geometry can raise major numerical issues.
Thus, for any realistic model, careful truncation criteria are required in order that the finiteness of
the probe size, and it’s experimentally imposed potential (boundary conditions) be accounted for.

An example of such a modeling geometry is shown in the cartesian tunneling system shown in
Fig. 5. Other examples, such as the metal coated apertured dielectric probe (aluminum or gold coated
multimode pulled fiber) of a near field scanning optical microscope (NSOM) [3], the semiconductor
(typically silicon nitrite) microcantilever of an atomic force microscope (AFM) [4], or the dielectric
probe (a multimode pulled fiber) of a photon scanning tunneling microscope (PSTM) [5], and the
metallic probe (atomically sharp tungsten) of a scanning tunneling microscope (STM) [6] may all
be candidate problems for the investigation presented here. For further discussions on how these
systems may be modeled in the geometry discussed in this manuscript see references [7]-[9].

Furthermore, in many manufactured nanoparticles such as carbon nanohorn, nanotubes, metal
dimers, metal-insulator-metal tunnel junctions, noble metal nanorings, etc., electron confinement
in surfaces or bulk of Oi, i ∈ N results in surface modes [2] that can be obtained by solving the
appropriate boundary value problem such as Schrödinger’s or Laplace’s equations in spheroidal, hy-
perboloidal, and toroidal spaces. In such instances, the monotonic radial functions w(r) associated
with the solutions to, for example, Laplace’s equation in spherical coordinates appropriate for satis-
faction of boundary conditions at fixed radial values become oscillatory when a boundary condition
has to be satisfied at some initial ri and final rf value, that is, in an interval r ∈ [ri, rf ]. This is
tied to the complex eigenvalues of the problem associated with particular choice of the separation
constant. Likewise, oscillatory angular eigenfunctions become monotonic when satisfaction of the
boundary condition restricts the value of the angular coordinate to a fixed value. In particular,
the discrete eigenvalues of a system become continuous when one dimension of the system becomes
infinite. Such behavior of eigenvalues is of importance for a particular type of surface excitation,
which is due to the quantum mechanical effect of collective electronic oscillations in certain metals.
The quanta of these oscillations are called surface plasmons. In the geometries considered here, the
fractional index of the kernel of the index transforms, can be shown to be closely related to the
momentum of a plasmon.

The goal of this manuscript is to disseminate the usefulness of index transforms in modeling of
nanostructures so as to somewhat bridge the gap between the current experiments and the theoretical
modeling. We have chosen SPM as the experimental platform due to the fact that the shape of many
SPM probes can be approximated with a hyperboloid. The Cartesian cases are mentioned due to
the ability of a special confocal hyperboloid to become a plane, see Fig. 6, Fig. 7, and Fig. 8 .

In order to elucidate the application of the index transform and their kernel conical functions in
the modeling of problems involving Oi, i ∈ N, we have organized our presentation as follows. In
section II we study the Laplace equation for a hyperboloid, and in section III, for a conical case.
Appendices A and B provide useful relations used throughout the manuscript and a conclusion is
given in section IV. In doing so, we first describe the hyperboloidal geometry in subsection II A,
and set up the Laplacian and obtain a general solution to Laplace equation in subsection II B. The
nature of the separation variable used in subsection II B requires special attention and subsection
II C has been devoted to this topic. We then proceed by setting up a boundary value problem in
subsection IID and define and use the Mehler-Fock transform, to obtain a formal solution (pertaining
to the case depicted in Fig. 3-left) in subsection II E, where we also provide a specific example of an
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experimentally relevant boundary condition that can be handled using the results. Section II ends
with subsection II F, where a rigorous treatment of the Mehler-Fock transform of arbitrary order
m is presented and the previous example of a specific boundary condition is revisited. We then
briefly discuss the conical case in Section III for the sake of comparison and further properties of the
conical functions. We end section III with yet another example of an experimentally useful potential
distribution on a conical probe.

II. HARMONIC FUNCTIONS IN HYPERBOLOIDAL DOMAINS AND PROLATE
SPHEROIDAL SYSTEM

We begin by displaying a scanning electron microscope (SEM) image of an optical (SPM) probe
and the corresponding modeling geometry in Fig. 3. Stating that further discussions may be
found in the work of Lebedev[10], Yakubovich[11], Zayed[12], Sneddon[13], Morse and Feshbach[14],
Virchenko and Fedotova[15], and Mandal[16], we proceed by defining the degenerate ellipsoidal coor-
dinates or the spheroidal coordinates in which one set of coordinates is a set of confocal two-sheeted
hyperboloids of revolution (prolate spheroidal coordinates). The orthogonal surfaces are confocal
prolate spheroids, see Fig. 6.

A. The Geometry

Consider the orthogonal coordinate system (ζ, θ, ϕ), shown in Fig. 6 and Fig. 7, and defined via
the following connection to the Cartesian coordinates:

x(ζ, θ, ϕ) = z0 sinh ζ sin θ cos ϕ,

y(ζ, θ, ϕ) = z0 sinh ζ sin θ sinϕ,

z(ζ, θ, ϕ) = z0 cosh ζ cos θ,

(1)

with ζ, θ, and ϕ running in the intervals:

0 ≤ ζ < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, (2)

and z0 > 0 is a scale factor with a metric unit, which explicitly sets the metric units for the distance
between two arbitrary points in space. As is evident from equation (1), the effect of a variation in
z0 corresponds to zooming in or out over an arbitrary region of space. For convenience we set:

cosh ζ = η, 1 ≤ η < ∞,

cos θ = µ, −1 ≤ µ ≤ 1,
(3)

which rewrites (1) as:

x(η, µ, ϕ) = z0

√
(η2 − 1)(1− µ2) cos ϕ,

y(η, µ, ϕ) = z0

√
(η2 − 1)(1− µ2) sinϕ,

z(η, µ, ϕ) = z0ηµ.

(4)

In terms of cylindrical coordinates (ρ, ϕ, z) with:

(x, y, z) = (ρ cos ϕ, ρ sinϕ, z),
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the transformation in (1) can be expressed as:

z + iρ = z0 cosh(ζ + iθ). (5)

Further information is provided in the appendix.
The utility of the description above can be captured in the modeling of a complex SPM probe-

substrate (O1-O2) system shown in Fig. 8. When solving, for example Laplace’s equation, index
transform facilitates the satisfaction of the boundary conditions on the surfaces of O1 and O2 in
Fig. 8.

B. Laplacian and Separation of Variables

Using (A13), Laplace’s equation ∆Φ(r̄) = 0 takes the form:

∂

∂η

[
(η2 − 1)

∂Φ
∂η

]
+

∂

∂µ

[
(1− µ2)

∂Φ
∂µ

]
+
[

1
1− µ2

+
1

η2 − 1

]
∂2Φ
∂ϕ2

= 0, (6)

which is separated with the ansatz:

Φ(r̄) = Φ(η, µ, ϕ) = f(η)g(µ)h(ϕ). (7)

The azimuthal part of Laplace’s equation can now be easily separated. A separation constant m
is used, which is restricted to integer values in order for g(ϕ) to be single valued and oscillatory,
that is:

d2h(ϕ)
dϕ2

+ m2h(φ) = 0 ⇒ h(ϕ) ∝ e±imp, ϕ ∈ [0, 2π], m = 0, 1, 2, · · · . (8)

Thus the general solution can be expanded as a Fourier series in the azimuthal variable ϕ as [13],
[17]:

Φ(η, µ, φ) =
∞∑
0

fm(η)gm(µ)(2− δ0
m) cos mφ. (9)

Introducing the second separation constant c, fm and gm will satisfy the following partial differential
equation:

d

dη

[
(η2 − 1)

dfm(η)
dη

]
− m2

η2 − 1
fm(η) = cfm(η),

d

dµ

[
(1− µ2)

dgm(µ)
dµ

]
− m2

1− µ2
gm(µ) = −cgm(η).

(10)

The possibility of obtaining a continuous spectrum of real eigenvalues and eigenfunctions relies on
setting c = ν(ν +1), (this particular selection is a consequence of the necessary criteria for existence
of the eigenvalues and is discussed in [18] and [19]) with ν given by the following complex number
(see next section):

ν = −1
2

+ iq ⇒ c = −1
4
− q2, (11)
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where q is a continuous variable q ∈ [0,∞[, appropriate for the infinite surface of a hyperboloid as
opposed to the discrete values of ν arising in the case of bounded surfaces. The ODEs in (10) are
now written, using (11), as:

d

dη

[
(η2 − 1)

dfm(η)
dη

]
−
[

m2

η2 − 1
−
(

q2 +
1
4

)]
fm(η) = 0,

d

dµ

[
(1− µ2)

dgm(µ)
dµ

]
−
[

m2

1− µ2
+
(

q2 +
1
4

)]
gm(µ) = 0,

(12)

which are solved by the conical functions Pm
− 1

2+iq
(z), also called as associated Legendre functions with

continuous complex lower index (see Appendix for more details). The argument z ∈]−∞,∞[ is set to
z = η = cosh ζ to give the solution to the first equation in (12) while it takes on z = ±µ = ± cos(θ) to
generate the two linearly independent solutions of the second equation in (12). Using the recursion
relations for the conical functions, it can be shown that the differential equations in (12) are satisfied
by the conical functions.

Thus, the general solution is written as the following infinite series over the infinite integrals:

Φ(r̄) =
∞∑

m=0

hm(ϕ)

×
∫ ∞

0

Pm
− 1

2+iq(cosh ζ)
[
Am(q)Pm

− 1
2+iq(cos θ) + Bm(q)Pm

− 1
2+iq(− cos θ)

]
dq,

(13)

where the azimuthal functions hm(ϕ) are given by

hm(ϕ) = (2− δm
0 ) cos mϕ. (14)

C. The Form of ν

Following Lebedev [20], we first show why the separation variable has to take the particular form
of −1/2 + iq and briefly discuss the nature of these eigenvalues and their behavior and physical
interpretation. Our proof here is similar to the one discussed by Belova and Ufliand [19], and N. I.
Sneddon [13]. As derived above, see (6), in order to solve the Laplace equation in toroidal coordinates
(α, η, ϕ) or spheroidal coordinates (ζ, θ, ϕ), using the separation of variables, one has to deal with
the singular boundary value problem:

(1− z2)
d2u

dz2
− 2z

du

dz
+
[
ν(ν + 1)− µ2

1− z2

]
u = 0 (15)

subject to the conditions 
1 ≤ z0 < z < ∞
u(z0) = 0
u(∞) = 0,

(16)

where z = cosh α in toroidal coordinates or z = cosh ζ in spheroidal coordinates and µ denotes one of
the discrete real eigenvalues obtained from the solutions of boundary value problem in the variable
ϕ common to both coordinate systems, which can be assumed to be non–negative. Note also that
in this section we do not assume µ to be necessarily a non–negative integer.
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We start by showing that there are no eigenvalues for the boundary value problem (15) and (16)
in the right half–plane Re ν > 0. It is known that the associated Legendre functions of first and
second kind denoted by Pµ

ν (z) and Qµ
ν (z) are the two linearly independent solutions of (15). The

asymptotic behaviors of Pµ
ν (z) and Qµ

ν (z) for large values of z (see [21], formula 8.776) implies that
Qµ

ν (z) is the only eigenfunction satisfying the last condition in (16). Therefore, the eigenvlues are
given by Qµ

ν (z0) = 0. However, Qµ
ν (z) has no real zeros exceeding 1 for ν > − 3

2 and ν + µ + 1 > 0
(see for example [21], formula 8.783). Thus, the eigenvalues in the right half–plane Re ν > 0, if any,
must be complex. Assuming ν and ν̄ are a pair of conjugate complex eigenvlues, twice integration
of equation (15) together with the boundary condition Qµ

ν (z0) = 0 implies

(λ− λ̄) lim
z→∞

∫ z

z0

|Qµ
ν (z)|2 dz = lim

z→∞
(z2 − 1)

[
Qµ

ν (z)Qµ
ν (z)

′
−Qµ

ν (z)Qµ
ν (z)′

]
, (17)

where λ = ν(ν + 1). Using the fact (see for example Gradshteyn and Ryzhik 8.732)

(z2 − 1)
dQµ

ν (z)
dz

= (ν − µ + 1)Qµ
ν+1(z)− (ν + 1)zQµ

ν (z),

and the asymptotic behavior of Qµ
ν (z) for z � 1, we have that the magnitude of the last expression

in (17) is of order z−2ν−3 for large values of z. As result, the right hand side of (17) should vanish
for any fixed ν with non–negative real part. But this would imply Qµ

ν (z) = 0, a contradiction.
Clearly the equation (15) will remain the same if one substitutes ν by −ν − 1. Therefore, we

have the same eigenvlues for both ν and −ν − 1. But we have just proved that the boundary value
problem (15) and (16) has no eigenvalue in the right half–plane. Thus for any eigenvalue ν we must
have that Re ν ≤ 0 and Re {−ν − 1} ≤ 0, which is only satisfied in the strip

−1 < Re ν ≤ 0.

(Note the strict inequality since ν = 0 and ν = −1 give rise to the same eigenvalue.)
In the strip −1 < Re ν ≤ 0, the eigenfunction to the boundary value problem (15) and (16) is a

linear combination of Pµ
ν (z) and Qµ

ν (z) with continuous spectrum of eigenvalues. Finally if we let
ν = − 1

2 + iq, then we have real–valued eigenvalues ν(ν + 1) = q2− 1
4 and real–valued eigenfunctions

Pµ

− 1
2+iq

(z) and Qµ

− 1
2+iq

(z).

D. The Boundary Value Problem

It is straightforward to show from Maxwell’s equation that, without any source terms, in the time-
independent limit (speed of light c → ∞), the distribution of the scalar potential Φ of the electric
field in domains containing a probe and a sample/substrate (such as those depicted in figures 1-8)
is given by the solution to {

∇ · ε∇Φ(r) = 0 : Ω,

Φ(r) = f(r) : ∂Ω,
(18)

where, ε is the dielectric function characterizing the medium in the subdomains Ω such that{
ΩI : θ < θt < π

2 : O1(probe),
ΩII : θ > π

2 : O2(substrate).
(19)
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The boundary ∂Ω = ∂ΩI ∪ ∂ΩII is given by{
∂ΩI : θ = θt (probe boundary),
∂ΩII : θ = π

2 (substrate surface),
(20)

where θt is a fixed value of the angular variable θ and f(r) is a prescribed function in close resemblance
with an experimentally imposed quasi-static potential. With fixed values θ = θt and θ = π/2,
equation (19) map the tip hyperboloid and the xy–plane, respectively (see for example Fig. 3-left or
the more elaborate system in Fig. 8).

In the present case we are specifically interested in the following boundary conditions:{
Φ(r) = f(r) : ∂ΩI

ẑ · ε∇Φ(r) = 0, R · ∇Φ(r) = 0 : ∂ΩII
(21)

where R = (x, y, 0). Nevertheless, our result is easily adopted to a more general problem with the
following boundary conditions:{

Φ(r) = f(r) : ∂ΩI

n̂ · ε∇Φ(r) = 0, t̂ · ∇Φ(r) = 0 : ∂ΩII
(22)

where n̂(t̂) is a normal (tangential) unit vector to the probe’s surface, important for the case of an
isolated probe interacting with a charged substrate. For example, f can then represent the potential
of a surface dipole.

E. Solution of the Boundary Value Problem and the Mehler-Fock transform

Using (13) and the properties of the conical functions Pm
− 1

2+iq
(cos θ) one can write the general

solution to the boundary value problem (18)–(20) as

Φ(r) =
∞∑

m=0

hm(ϕ)
∫ ∞

0

Pm
− 1

2+iq(cosh ζ)um
q (cos θ) dq, (23)

where hm(ϕ) is as before and

um
q (cos θ) =

{
Cm

q Pm
− 1

2+iq
(cos θ) + Dm

q Pm
− 1

2+iq
(− cos θ) : ΩI

Em
q Pm

− 1
2+iq

(− cos θ) : ΩII
(24)

Taking the z = 0 plane as the boundary of a hyperboloid with an angle π/2 (or a cone with half
angle π/2), the second condition; that is, the continuity of the normal component of the displacement
field D = ε∇Φ(r) due to lack of free charges at ∂ΩII , and the continuity of the tangential component
of the electric field E = ∇Φ(r); or equivalently, the continuity of the scaler potential Φ(r), results in

0 =
∞∑

m=0

hm(ϕ)
∫ ∞

0

dqPm
− 1

2+iq(cosh ζ)×

{
Λ
Λ′

, (25)

where

Λ = (Cm
q + Dm

q − Em
q )Pm

− 1
2+iq(0), (26)

Λ′ = (εIC
m
q − εID

m
q + εIIE

m
q )

∂Pm
− 1

2+iq
(cos θ)

∂ cos θ

∣∣∣∣∣
θ=π/2

.
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In writing the second equation, we have utilized the generating function of the conical function (B7).
Thus, ∀r ∈ [0,∞), the orthogonality of the azimuthal and the conical functions yields Λ = Λ′ = 0,
and we write

um
q (cos θ) = Dm

q vm
q (cos θ), (27)

where

vm
q (cos θ) =

{
α(ε)Pm

− 1
2+iq

(cos θ) + Pm
− 1

2+iq
(− cos θ) : ΩI

β(ε)Pm
− 1

2+iq
(− cos θ) : ΩII

(28)

and

α(ε) =
εI − εII

εI + εII
, β(ε) =

2εI

εI + εII
. (29)

Now, the satisfaction of the boundary condition at the probe; that is, condition (21) or (22) on ∂ΩI ,
implies f(ζ, ϕ) = Φ(ζ, θt, ϕ). Therefore, using (23) and (27) for the probe boundary ∂ΩI , we must
have

f(ζ, ϕ) =
∞∑

m=0

hm(ϕ)
∫ ∞

0

Dm
q vm

q (cos θt)Pm
− 1

2+iq(cosh ζ) dq, (30)

where

vm
q (cos θt) = vm

q (cos θ)
∣∣
∂ΩI

= α(ε)Pm
− 1

2+iq(cos θt) + Pm
− 1

2+iq(− cos θt). (31)

Assuming that for each fixed ζ > 0, f is ϕ–integrable on the interval [0, 2π], it follows from the
classical result on Fourier series that

fm(ζ) =
1
2π

∫ 2π

0

f(ζ, ϕ)hm(ϕ) dϕ =
∫ ∞

0

Dm
q vm

q (cos θt) Pm
− 1

2+iq(cosh ζ) dq. (32)

It is also worth mentioning that for each fixed ζ > 0, equality (30) holds at every continuity point
of f with respect to ϕ, and the right side of (30) converges to the average of f with respect to ϕ at
the point of discontinuity. Moreover at those ζ where f is continuous with respect to ϕ on [0, 2π],
the series in (30) converges uniformly and absolutely (see any classical reference on this topic).

Finally, the calculation of Dm
q is facilitated by the use of the Mehler–Fock index transform of the

order m ∈ N0 = N ∪ {0} (see [13] and/or [11]) defined by

Jm(q) =
∫ ∞

1

f(η)P−m
− 1

2+iq
(η)dη, (33)

with the inverse transformation (see [12] pp. 415–426)

f(η) = (−1)m

∫ ∞

0

q tanh(πq)Jm(q)Pm
− 1

2+iq(η) dq, (34)

where q ≥ 0 and

P−m
− 1

2+iq
(cosh ξ) =

√
2
π

sinh−m ξ

Γ(1/2 + m)

∫ ξ

0

cos αq

(cosh ξ − coshα)1/2−m
dα (ξ > 0) (35)
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denotes the usual associated Legendre or conical function (see [15]). If m = 0, we simply denote
P 0
− 1

2+iq
(η) by P− 1

2+iq(η).
In the next section, we will fully discuss the conditions under which the Mehler–Fock transform

of order m exists and give necessary conditions for the inverse formula to hold. In this section,
however, we make the assumption that the inverse formula (34) holds for each fm(ζ) in (32). It
follows now from (32), (33), and (34) that

Dm
q =

(−1)mq tanh(πq)
vm

q (cos θt)

∫ ∞

0

fm(ζ)P−m
− 1

2+iq
(cosh ζ) sinh ζ dζ. (36)

Thus the solution to the boundary value problem (18)–(20) is given by

Φ(r) =
∞∑

m=0

(−1)mhm(ϕ)
∫ ∞

0

vm
q (cos θ)

vm
q (cos θt)

q tanh(πq)Fm(q)Pm
− 1

2+iq(cosh ζ) dq, (37)

where hm(ϕ) and vm
q (cos θ) are given by (14) and (28), respectively, and

Fm(q) =
∫ ∞

0

fm(ζ)P−m
− 1

2+iq
(cosh ζ) sinh ζ dζ (38)

where

fm(ζ) =
1
2π

∫ 2π

0

f(ζ, ϕ)hm(ϕ) dϕ. (39)

We now proceed by studying a specific example, where the boundary function f is axially sym-
metric, that is, f(ζ, ϕ) = f(ζ). As a result, the solution reduces to the case m = 0 and calculation
of

F (q) = F0(q) =
∫ ∞

0

f(ζ)P− 1
2+iq(cosh ζ) sinh ζ dζ, (40)

or equivalently

F (q) =
∫ ∞

1

f(η)P− 1
2+iq(η) dη. (41)

As an example, assuming V0 to be a constant potential (corresponding to a charged probe), and γ
to be a constant spatial decay rate, we examine the function

f(η) = V0e
−γη, (42)

which has the Mehler–Fock integral transform (see for example (7-6-22) in [13] or (2.17.7.1) in [22])√
2

πγ
Kiq(γ) =

∫ ∞

1

e−γηP− 1
2+iq(η) dη, (43)

where Kiq(γ) are the MacDonald’s function, which can be expressed in terms of their Fourier cosine
transform

Kiq(γ) =
∫ ∞

0

e−γ cosh ζ cos(qζ) dζ. (44)

Thus, using (37), we can write the solution as

Φ(r) =
√

2
πγ

∫ ∞

0

v0
q (cos θ)

v0
q (cos θt)

q tanh(πq) Kiq(γ)P− 1
2+iq(cosh ζ) dq. (45)



10

F. Existence and Inversion Theorems for the Mehler-Fock Transform of Order m ∈ N0

In what follows, we give a formal operational proof motivated by Sneddon (see [13], pp. 415-
416) to provide natural sufficient conditions on a class of functions f , where the inversion formula
or a unique solution of the integral equation (33) holds. As a consequence, we give an answer to
Sneddon’s question regarding the absence of such conditions for the Mehler–Fock transformation of
general order m ∈ N0. Note that the classical case m = 0 was investigated in details by Lebedev
[23] and [10]. Further results with conditions on Jm(q) can also be found in the works of Olevskii
[24] and Vilenkin [25]. The L2, Lp–versions of this transformation were studied in [26], [11], [27],
and [28].

1. Sneddon’s Operational Method

We state our existence theorems in two parts based on the extra conditions needed for cases m=0,
1, and 2. Recall that C0(0,∞) denotes the space of continuous functions vanishing at infinity and
C

(k)
0 (0,∞), k ≥ 1, stand for the spaces of k–times continuously differentiable functions vanishing at

infinity.

Theorem 1 (Existence Theorem part I). Let f be a locally integrable function on (1,∞); i.e.
f ∈ Lloc

1 (1,∞), satisfying the asymptotic conditions

f(η) =

{
O((η − 1)a) as η → 1+,

O(ηb) as η →∞,
(46)

where

a +
m

2
> −1 and b +

1
2

< 0 (m ∈ N0). (47)

Then the Mehler–Fock transform Jm(q) is well–defined as an absolutely and uniformly convergent
integral for all m ∈ N0. Moreover, for each fixed m ≥ 0, Jm(q) belongs to C

(k)
0 (0,∞) for all k ≥ 0.

If m ≥ 3, then Jm(q) has the asymptotic behavior

Jm(q) = O

(
1
q3

)
as q →∞. (48)

Proof. Throughout the proof, note that we will switch between the two variables η and ξ related
by the equality η = cosh ξ. Fix m ∈ N0. Substituting (35) in (33) and using Fubini’s Theorem for
non-negative integrands imply that

|Jm(q)| ≤
√

2
π

1
Γ(1/2 + m)

∫ ∞

0

∫ ∞

α

|f(cosh ξ)| sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ dα

=

√
2
π

1
Γ(1/2 + m)

∫ ∞

0

|f(cosh ξ)| sinh1−m ξ

∫ ξ

0

dα

(cosh ξ − coshα)1/2−m
dξ (49)

≤
√

π

Γ(1/2 + m)

∫ ∞

1

|f(η)|(η2 − 1)−m/2(η − 1)mP− 1
2
(η)dη.

Now, taking into account that (see [21] 8.7–8.8)

P− 1
2
(η) = O(1) as η → 1 + and P− 1

2
(η) = η−1/2 as η →∞,
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it follows from our assumptions (46) and (47) that the last expression in (49) is finite. This proves
that Jm(q) belongs to C0(0,∞). For any fixed k ≥ 0, a similar argument as in (49) shows that∣∣∣J (k)

m (q)
∣∣∣ ≤√ 2

π

1
Γ(1/2 + m)

∫ ∞

0

αk

∫ ∞

α

|f(cosh ξ)| sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ dα

=

√
2
π

1
Γ(1/2 + m)

∫ ∞

0

|f(cosh ξ)| sinh1−m ξ

∫ ξ

0

αkdα

(cosh ξ − coshα)1/2−m
dξ

≤
√

π

Γ(1/2 + m)

∫ ∞

1

|f(η)|(η2 − 1)−m/2(η − 1)mP− 1
2
(η) logk

(
η +

√
η2 − 1

)
dη < ∞,

where the last estimate holds under the extra assumption a + k+m
2 > −1. But this trivially follows

from (47). Therefore we have Jm(q) ∈ C
(k)
0 (0,∞).

Here, we observe that (49) implies one can reverse the order of integration in the definition of (33)
and rewrite Jm(q) as

Jm(q) =

√
2
π

1
Γ(1/2 + m)

∫ ∞

0

cos αq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ dα. (50)

Now the proof of (48) can be accomplished by three successive applications of integration by parts
starting with the equality (50). Let

dF (α) = cos αq dα

and

G(α) =
∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ.

Clearly F vanishes at zero. Moreover, using assumption (46) on the asymptotic behavior of f for
large η, it follows from the estimate∣∣∣∣∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ

∣∣∣∣ ≤ ∫ ∞

α

|f(η)|(η2 − 1)−m/2(η − 1)m−1/2dη

= O

(∫ ∞

α

ηb−1/2dη

)
,

and b+ 1
2 < 0 that G also vanishes at infinity. Therefore the integration by parts in (50) with respect

to α yields

Jm(q) =

√
2
π

q−1

Γ(m− 1/2)

∫ ∞

0

sinhα sinαq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ dα. (51)

The latter iterated integral is absolutely and uniformly convergent due to the estimate∫ ∞

0

sinhα

∫ ∞

α

|f(cosh ξ)| sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ dα

=
∫ ∞

0

|f(cosh ξ)| sinh1−m ξ

∫ ξ

0

sinhα

(cosh ξ − coshα)3/2−m
dα dξ

≤ π√
2

∫ ∞

0

|f(cosh ξ)| sinh2−m ξ (cosh ξ − 1)m−1P− 1
2
(cosh ξ) dξ

=
∫ ∞

1

|f(η)|(η − 1)(m−1)/2 (η + 1)(1−m)/2P− 1
2
(η)dη < ∞,
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where in the last estimate we have used assumptions (46) and (47). Another integration by parts
with respect to α in (51), where

dF (α) = cos αq dα

and

G(α) = sinhα

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ,

together with the estimate

sinhα

∣∣∣∣∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ

∣∣∣∣ ≤ sinhα

coshα− 1

∫ ∞

α

|f(η)|(η2 − 1)−m/2(η − 1)m−1/2dη

= O

(∫ ∞

α

ηb−1/2dη

)
→ 0 α →∞,

where b + 1
2 < 0, gives

Jm(q) =

√
2
π

q−2

Γ(m− 1/2)

∫ ∞

0

coshα cos αq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ dα (52)

−
√

2
π

q−2

Γ(m− 3/2)

∫ ∞

0

sinh2 α cos αq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)5/2−m
dξ dα.

Using a similar argument as the one given for (51) one can show that the iterated integrals in (52) are
convergent absolutely and uniformly under the assumptions (46) and (47) of the theorem. Finally,
we use integration by parts in (52). Since the elimination of the free terms uses the same techniques
already explained in (51) and (52), we omit their proofs here. Thus we get

Jm(q) = −
√

2
π

q−3

Γ(m− 1/2)

∫ ∞

0

sinhα sinαq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ dα

+
3√
2π

q−3

Γ(m− 3/2)

∫ ∞

0

sinh 2α sinαq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)5/2−m
dξ dα

−
√

2
π

q−3

Γ(m− 5/2)

∫ ∞

0

sinh3 α sinαq

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)7/2−m
dξ dα, (53)

under conditions (46) and (47) of the theorem. This completes the proof of (48).

In general, it is impossible to differentiate under the integral sign as we did in (51), (52), and (53).
Therefore, we must use a different argument in order to prove (48) for the cases m = 0, 1, 2. Now let
us consider again the equality (50). The same argument regarding the integration by parts in (51)
implies

Jm(q) = −
√

2
π

1
qΓ(1/2 + m)

∫ ∞

0

sinαq
d

dα

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ dα, (54)

where in the above equality we have not differentiated under the integral sign. However, for m 6= 0,
the latter equality (54) can be written in the form (51). Next, we denote by

ϕm(α) =

√
2
π

1
Γ(1/2 + m)

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)1/2−m
dξ, (55)
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the inner integral in (54). In fact, ϕm(α) is called a fractional integral operator of an integrable
function f(cosh ξ) sinh−m ξ by function coshα on the half–axis [29]. Before stating the second part
of our Existence Theorem, we need one more definition.

Definition. A function ϕ is said to belong to the class AC3(0,∞) if ϕ admits the integral repre-
sentation

ϕm(α) =
1
2

∫ ∞

α

(t− α)2h(t)dt =
∫ ∞

α

dα

∫ ∞

α

dα

∫ ∞

α

h(α) dα, (56)

for some locally integrable function h in Lloc
1 (0,∞) such that∫ ∞

0

t2 |h(t)| dt < ∞. (57)

In fact AC3(0,∞) is a generalization of the class of absolutely continuous functions on the half–
axis. (For further discussions and results see [29], Chapter 2.)

Theorem 2 (Existence Part II). Let f satisfies the conditions of Theorem 1. If the fractional
operator ϕm(α) belongs to the class AC3(0,∞) for m = 0, 1, 2, then the Mehler–Fock transform
Jm(q) satisfies the asymptotic behavior (48) and the equality (59), where for the case m = 0 we have
to add the extra condition ϕ′0(0) = 0.

Proof. Substituting (56) into (54) and differentiating under the integral sign gives

Jm(q) =
1
q

∫ ∞

0

sinαq

∫ ∞

α

(t− α)h(t) dt dα, (58)

where the above iterated integral is absolutely convergent due to the fact∫ ∞

0

∫ ∞

α

(t− α)|h(t)|dtdα =
∫ ∞

0

|h(t)|
∫ t

0

(t− α)dα =
1
2

∫ ∞

0

t2|h(t)| dt < ∞.

Note that in the last inequality we have used condition (57). Now using Integration by parts twice
in (58), assuming that ϕ′m(0) =

∫∞
0

th(t) dt = 0, the estimates∣∣∣∣∫ ∞

α

(t− α)h(t)dt

∣∣∣∣ ≤ ∫ ∞

α

t|h(t)| dt ≤ 1
α

∫ ∞

1

t2|h(t)|dt → 0, α →∞,∫ ∞

α

|h(t)|dt ≤ 1
α2

∫ ∞

1

t2|h(t)| dt → 0, α →∞,

imply

Jm(q) = − 1
q2

∫ ∞

0

cos αq

∫ ∞

α

h(t) dt = − 1
q3

∫ ∞

0

h(α) sinαq dα.

This proves (48) and (59) for cases m = 0, 1, 2 by noting that the equality ϕ′m(0) = 0 indeed holds
for all m ∈ N via (51).

The Existence Theorems I and II have the following consequences. They play essential roles in
the proof of Inversion Theorems.



14

Corollary 1 . Under either of the assumptions of Theorem 1 for m ≥ 3 or Theorem 2 for m = 1, 2,
the following identity for the Mehler–Fock transform of oeredr m holds.√

2
π

∫ ∞

0

qJm(q) sinαq dq =
sinhα

Γ(m− 1/2)

∫ ∞

α

f(cosh ξ) sinh1−m ξ

(cosh ξ − coshα)3/2−m
dξ, α > 0. (59)

Proof. Recall from the classical analysis (see [13]) that for an integrable function f ∈ L1(0,∞) the
sine Fourier transform

(Fsf)(α) =

√
2
π

∫ ∞

0

f(q) sinαq dq (60)

exists and is well defined as a Lebesgue or Riemann improper integral. Moreover, as a consequence
of the familiar Riemann–Lebesgue lemma, we have that (Fsf)(α) belongs to the space C0(0,∞)
satisfying the inverse sine Fourier transform formula,

f(q) =

√
2
π

∫ ∞

0

(Fsf)(α) sinαq dα. (61)

Under either of the assumptions of Theorem 1 for m ≥ 3 or Theorem 2 for m = 1 and 2, it follows
immediately from the asymptotic result (48) that qJm(q) ∈ L1(0,∞), and therefore the existence
of the sine Fourier transform (60). Since for m = 1, 2, the identity (54) can be written in the form
(51) as in the cases m ≥ 3, it is straightforward to deduce (59) from (49), (51), and the inversion
formula of the sine Fourier transform (61). (See [13] for more details and explanations.)

Obviously for m = 0, as explained earlier, one can not in general differentiate under the integral
sign in (54) and obtain (51). However, replacing (54) by (51) in the proof of the above corollary
gives the following version of Corollary 1 for m = 0.

Corollary 2 . Under the assumptions of Theorem 2 for m = 0, we have∫ ∞

0

qJ0(q) sinαq dq = − 1√
2

d

dα

∫ ∞

α

f(cosh ξ) sinh ξ

(cosh ξ − coshα)1/2
dξ, α > 0. (62)

It should be mentioned that formula (62) serves as a starting point to invert the classical Mehler–
Fock transformation by Sneddon’s operational method. In fact, such a result has been recently
proved in [30] (see Section 1.9), where one has imposed conditions on J0(q). Our result for the
inversion formula of the classical Mehler–Fock transform is based on conditions on f.

Theorem 3 (Inversion Theorem: Classical Case). If f satisfies the conditions of Theorem 1 for
m = 0, then the classical Mehler–Fock transform J0(q) admits the inversion formula

f(η) =
∫ ∞

0

q tanh πq P− 1
2+iq(η)J0(q)dq. (63)

Proof. It is known (see [29]) that the identity

f(cosh ξ) = − 1
π

∫ ∞

ξ

1
(coshα− cosh ξ)1/2

d

dα

∫ ∞

α

f(coshu) sinhu

(coshu− coshα)1/2
du dα (64)

holds for any f such that the integral

d

dα

∫ ∞

α

f(coshu) sinhu

(coshu− coshα)1/2
du =

π√
2
ϕ′0(α),
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where ϕ(α) defined as in (55), belongs to L1(0,∞) and tends to 0 as α →∞. Indeed, it follows from
our assumption that∫ ∞

0

∣∣∣∣ d

dα

∫ ∞

α

f(coshu) sinhu

(coshu− coshα)1/2
du

∣∣∣∣ dα =
π√
2

∫ ∞

0

|ϕ′0(α)| dα

≤ π√
2

∫ ∞

0

∫ ∞

α

(t− α)|h(t)| dt dα

=
π

2
√

2

∫ ∞

0

t2|h(t)|dt < ∞.

Therefore (62) and (64) yield

f(cosh ξ) =
√

2
π

∫ ∞

ξ

1
(coshα− cosh ξ)1/2

∫ ∞

0

qJ0(q) sinαq dq dα. (65)

Next we invert the order of integration in the left–hand side of (65) via Fubini’s Theorem using

the fact the function (q, α) 7→ qJ0(q) sinαq

(coshα− cosh ξ)1/2
belongs to the space L1 ((0,∞)× (ξ,∞)) for all

ξ ≥ 0. Now, (63) follows from appealing to the value of the inner integral (see [15])
√

2
π

∫ ∞

ξ

sinαq

(coshα− cosh ξ)1/2
dα = tanhπq P− 1

2+iq(cosh ξ) (66)

and making the obvious change of variable η = cosh ξ.

In order to invert the generalized Mehler–Fock transform of order m ≥ 1, we reconsider the
representation (59) assuming the imposed conditions in Theorem 1 and 2 for m ≥ 3 and m = 1, 2,
respectively. After an elementary change of variable one gets√

2
π

∫ ∞

0

qJm(q)
sin(q arccoshα)

(α2 − 1)1/2
dq =

1
Γ(m− 1/2)

∫ ∞

α

f(η)(η2 − 1)−m/2

(η − α)3/2−m
dη, α > 1. (67)

Moreover, the following identity (see in [29], Chapter 1)

(−1)m

√
πΓ(m− 1/2)

dm

dηm

∫ ∞

η

dt

(t− η)1/2

∫ ∞

t

f(u)(u2 − 1)−m/2

(u− t)3/2−m
du

=
(−1)m

(m− 1)!
dm

dηm

∫ ∞

η

(u− η)m−1f(u)(u2 − 1)−m/2 du (68)

= f(η)(η2 − 1)−m/2, η > 1,

holds for any f ∈ Lloc
1 (0,∞) with the asymptotic behavior (46) and parameters a and b satisfying

(47). Applying (68) to both sides of (67) implies

f(η)(η2 − 1)−m/2 =
(−1)m

√
2

π

dm

dηm

∫ ∞

η

dt

(t2 − 1)1/2(t− η)1/2

∫ ∞

0

qJm(q) sin(q arccosh t) dq, (69)

where η > 1. By a simple change of variables t = cosh α and η = cosh ξ, the right–hand side of (68)
becomes

f(cosh ξ) sinh ξ−m =
(−1)m

√
2

π

(
d

d cosh ξ

)m ∫ ∞

ξ

dα

(coshα− cosh ξ)1/2

∫ ∞

0

qJm(q) sinαq dq. (70)
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Using Fubini’s Theorem and employing the identity (66) with the variable η, one can write (70) in
the form

f(η) = (−1)m(η2 − 1)m/2 dm

dηm

∫ ∞

0

q tanh πq P− 1
2+iq(η)Jm(q)dq, η > 1,m ∈ N0, (71)

Identity (71) is called the inversion formula for the generalized Mehler–Fock transform (33). Note
that when m = 0, formula (71) coincides formally with (63) proved in Theorem 3.

To rewrite (71) in the classical form (34); that is,

f(η) = (−1)m

∫ ∞

0

q tanh πq Pm
− 1

2+iq(η)Jm(q)dq, (72)

one should obviously consider extra conditions under which it is possible to interchange differential–
and integral operator in (70). Therefore, as we shall see shortly, the appearance of a set of new
necessary conditions on f seems to be inevitable.

We start with the case m = 1. Indeed, it is known that the uniform estimate

Pm
− 1

2+iq(η) = O(qm−1/2) as q →∞

holds for any compact set K ⊂ {η : 1 ≤ η < ∞) (see [11], Theorem 1.8]). As a consequence of (48),
we have q3/2J1(q) is integrable over (0,∞), which implies that the integral (71) is absolutely and
uniformly convergent. As a consequence, one can differentiate inside the integral in (71) and obtain
the classical inverse formula for m = 1.

For m = 2, 3, . . . , we employ the identity (see [21] formula 8.752 )

Pm
− 1

2+iq(η) =
Γ(1/2 + m + iq)
Γ(1/2−m + iq)

P−m
− 1

2+iq
(η). (73)

Returning to (33), using (28) together with (A6) gives

Jm(q) =
Γ(1/2−m + iq)
Γ(1/2 + m + iq)

∫ ∞

1

dm

dηm
[P− 1

2+iq(η)](η2 − 1)m/2f(η)dη. (74)

Next we apply the method of integration by parts m times in (74). In order to eliminate the free
terms resulting from this procedure, we have to further assume that f belongs to C(m)(1,∞) and
satifies the conditions

lim
η→1+

dn−1

dηn−1
[(η2 − 1)m/2f(η)] = 0, n = 1, . . . ,m, (75)

and

lim
η→∞

ηn−m−1/2 dn−1

dηn−1
[(η2 − 1)m/2f(η)] = 0, n = 1, . . . ,m, (76)

In fact, the above conditions are direct consequences of the behavior of the conical functions near
unity and infinity (see [21] 8.7–8.8). Now, m successive application of integration by parts in (29)
gives

Jm(q) = (−1)m Γ(1/2−m + iq)
Γ(1/2 + m + iq)

∫ ∞

1

P− 1
2+iq(η)

dm

dηm
[(η2 − 1)m/2f(η)]dη. (77)
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If we further assume that the integral∫ ∞

1

P− 1
2
(η)

∣∣∣∣ dm

dηm
[(η2 − 1)m/2f(η)]

∣∣∣∣ dη < ∞, (78)

is finite, then one can estimate |Jm(q)| to get

|Jm(q)| ≤
∣∣∣∣Γ(1/2−m + iq)
Γ(1/2 + m + iq)

∣∣∣∣ ∫ ∞

1

P− 1
2
(η)

∣∣∣∣ dm

dηm
[(η2 − 1)m/2f(η)]

∣∣∣∣ dη < C q−2m, q →∞, (79)

where C is a constant and in the last inequalty we have applied the Stirling asymptotic formula
for the ratio of gamma functions (see fo example [21] formula 8.327). The estimate (79) is what
we need at last. It implies qm+1/2Jm(q) ∈ L1(0,∞) for and, as a result, formula (72) holds for
m = 2, 3, . . . , as well since one can now differentiate under the integral (71) via its absolute and
uniform convergence. We summarize the above result in the last theorem of this section.

Theorem 4 (Inversion Theorem Part II). Let f ∈ C(m)(1,∞) and m ∈ N. Suppose f satisfies
either the assumptions of Theorem 1 for m ≥ 3 or those of Theorem 2 for m = 1, 2. If we further
assume the conditions (75), (76), and (78), then generalized Mehler–Fock transform (1) admits for
all η ≥ 1 the inversion formula (72) given by

f(η) = (−1)m

∫ ∞

0

q tanh πq Pm
− 1

2+iq(η)Jm(q)dq.

Before closing this section, we make one final remark. As it has already surfaced in the argument
leading to the proof of Theorem 4, we did not need any extra assumptions on f for the case m = 1.
However, in most applications, one needs the inversion formula (72) for all m ≥ 1. Therefore, we
have stated the theorem for all m ∈ N and have not treated m = 1 seperately.

2. Example

In this section we treat an example of the generalized Mehler–Fock transform (33), which are
important for applications. Recall from (44) that the function f(η) = e−γη, where γ > 0, has the
classical Mehler–Fock transform; i.e., (33) with m = 0,

J0(q) =
∫ ∞

1

e−γηP− 1
2+iq(η) dη =

√
2

πγ
Kiq(γ), (80)

where, as discussed in (45), Kiq(γ) is the modified Bessel function and it represents the kernel of the
Kontorovich–Lebedev transform (see [11]). This result can be generalized for m ∈ N by considering

f(η) = e−γη(η2 − 1)m/2.

In fact, using relation (2.17.7.1) in [22] we get∫ ∞

1

e−γη(η2 − 1)m/2P−m
− 1

2+iq
(η) dη =

√
2
π

γ−m−1/2Kiq(γ). (81)

However, the latter transformation slightly generalizes (33) and coincides with Jm(q) only for m = 0.
Our goal is to calculate the generalized Mehler–Fock transform (33) of the function e−γη, which as
far as the authors are aware of, is absent in the reference books. It should also be mentioned that
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we only treat the case where n is an even integer. The reason is that it is technically very difficult
to express the Mehler–Fock transforms of e−γη of odd order in terms of suitable special functions.

So let m be an even number, i.e. m = 2n, n ∈ N. Then the corresponding Mehler–Fock transform
(33) becomes

J2n(q) =
Γ(1/2− 2n + iq)
Γ(1/2 + 2n + iq)

∫ ∞

1

d2n

dη2n
[P− 1

2+iq(η)](η2 − 1)ne−γη dη (82)

=
Γ(1/2− 2n + iq)
Γ(1/2 + 2n + iq)

n∑
k=0

(−1)n−k

(
n

k

)∫ ∞

1

d2n

dη2n
[P− 1

2+iq(η)]η2ke−γη dη.

Using the method of integration by parts in (82) together with (73) and (B6), and the asymptotic
behavior of the conical functions near unity [21] given by

lim
η→1+

dl

dηl
[P− 1

2+iq(η)] =
Γ(1/2 + l + iq)

Γ(1/2− l + iq) 2l l!
, l = 0, 1, . . . , 2n− 1

one can deduce from equality (80) that∫ ∞

1

d2n

dη2n
[P− 1

2+iq(η)]η2ke−γηdη =

√
2
π

d2k

dγ2k

(
γ2n−1/2Kiq(γ)

)
(83)

−
2n−1∑
l=0

Γ(iq + 2n− l − 1/2)
Γ(iq − 2n + l + 3/2)

2−(2n−l−1)

(2n− l − 1)!
d2k

dγ2k

(
γle−γ

)
.

Substituting (83) into (36) we obtain the generalized Mehler–Fock transform (33) of the function
e−γη for even m = 2n, given by

J2n(q) = (−1)n Γ(1/2− 2n + iq)
Γ(1/2 + 2n + iq)

[
2n−1∑
l=0

n∑
k=0

(−1)k+1

(
n

k

)
Γ(iq + 2n− l − 1/2)
Γ(iq − 2n + l + 3/2)

× 2−(2n−l−1)

(2n− l − 1)!
d2k

dγ2k

(
γle−γ

)
+

√
2
π

n∑
k=0

(−1)k

(
n

k

)
d2k

dγ2k

(
γ2n−1/2Kiq(γ)

)]
. (84)

Also note that when m = 0, equality (84) becomes (80) as expected.

III. THE CONICAL CASE

In many SPM applications, a cone may be considered as a special case of a very sharp hyperboloid.
It is understood that, from the current manufacturing point of view, the degree of curvature for a
conical probe will be scale-dependent. For example, a perfectly conical probe at the micrometer scale
will indeed be a hyperboloidal (or with other geometries) probe at the nanometer scale. However,
atomically sharp probes have been produced for applications in SPM. Also, powerful numerical
techniques, such as finite elements, are routinely used to compute the potential and field distributions
in geometries such as treated here. The aim of this section is the use of functions with fractional
index, where Mehler-Fock transforms may find potential applications.
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A. The boundary value problem

In the case of a conical model for the probe as shown in Fig. 9, working in spherical coordinates,
the particular solution to Laplace’s equation is separated as

Φ(r) = hm(ϕ) tmν (r) um
ν (θ).

Assuming a constant (tensor) ε, it can be shown (see Section II) that the general solution to the
boundary value problem (18)–(21) is given by

Φ(r) =
∞∑

m=0

hm(ϕ)√
r

∫ ∞

0

um
q (cos θ)wm

q (r) dq, (85)

where, as in the case of prolate spheroidal system in subsection D of Section II, hm(ϕ) is given by
(14) and from equality (27)

um
q (cos θ) = Dm

q ×

{
α(ε)Pm

− 1
2+iq

(cos θ) + Pm
− 1

2+iq
(− cos θ) : ΩI

β(ε)Pm
− 1

2+iq
(− cos θ) : ΩII ,

(86)

where

α(ε) =
εI − εII

εI + εII
, β(ε) =

2εI

εI + εII
, (87)

and

wm
q =

√
rtmq = Am

q cos(q ln r) + Bm
q sin(q ln r). (88)

Absorbing Dm
q from (86) in Am

q and Bm
q in equation (88) , satisfaction of the boundary condition

at the probe requires f(r, ϕ) = Φ(r, θt, ϕ), which after an integration in ϕ and setting

g(r) =
√

r

∫
f(r, ϕ) dϕ

results in

g(r) =
∞∑

m=0

∫ ϕ2

ϕ1

hm(ϕ)
∫ ∞

0

dq um
q (cos θt)wm

q (r). (89)

Now assuming g is a good function, it can be expanded in a Fourier integral

g(r) =
√

r

∫ ϕ2

ϕ1

f(r, ϕ) dϕ =
∫ ∞

0

dq [Cq cos(q ln r) + Sq sin(q ln r)], (90)

with

Cq =
1
π

∫ ∞

0

1
r

g(r) cos(q ln r) dr

Sq =
1
π

∫ ∞

0

1
r

g(r) sin(q ln r) dr.

(91)
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Therefore

Cq =
∞∑

m=0

um
q (cos θt)Am

q

∫ ϕ2

ϕ1

hm(ϕ) dϕ,

Sq =
∞∑

m=0

um
q (cos θt)Bm

q

∫ ϕ2

ϕ1

hm(ϕ) dϕ.

(92)

Thus, although the boundary function f does not have to be ϕ symmetric, it must be defined on
the closed ϕ interval. For ϕ1 = 0, and ϕ2 = 2π we obtain

Am
q =

δ0
mCq

um
q (cos θt)

,

Bm
q =

δ0
mSq

um
q (cos θt)

.

(93)

Before studying a specific form of the boundary function f, we recuperate the potential

Φ(r) =
1√
r

∫ ∞

0

v0
q (cos θ)

v0
q (cos θt)

[
Cq cos(q ln r) + Sq sin(q ln r)

]
dq, (94)

where Cq and Sq are given by the integrals (91),

v0
q (cos θ) =

{
α(ε)P− 1

2+iq(cos θ) + P− 1
2+iq(− cos θ) : ΩI

β(ε)P− 1
2+iq(− cos θ) : ΩII ,

(95)

and

v0
q (cos θt) = α(ε)P− 1

2+iq(cos θt) + P− 1
2+iq(− cos θt).

B. Examples

In this section we consider two examples of the boundary function which are important in ap-
plications. As our first example, let the boundary function f(r, ϕ) be axially symmetric in ϕ and
behave like Fermi–Dirac distribution in r; that is,

f(r) =
V0

e(r−r0)/γ + 1
, (96)

where r0 is a cut–off radius and γ is a constant. It follows that the potential is continuous on [0,∞)
and is of bounded variation in every finite variation 0 < r1 < r2 < ∞. Thus we can calculate the
functions Cq and Sq from (91). Letting

Dq = Cq + iSq,

it follows from the equations (91) that

Dq =
1
π

(ϕ2 − ϕ1)
∫ ∞

0

V0

e(r−r0)/γ + 1
r−

1
2 eiq ln r dr

=
V0

π
(ϕ2 − ϕ1)

∫ ∞

0

1
e(r−r0)/γ + 1

rs−1 dr, (97)
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where s = 1
2 + iq. Now since

1
e(r−r0)/γ + 1

=

{
1−

∑∞
n=0(−1)ne

1
γ (n+1)(r−r0) r ≤ r0∑∞

n=0(−1)ne−
1
γ (n+1)(r−r0) r > r0,

one can use the uniform convergence argument to obtain

Iq =
(∫ r0

0

+
∫ ∞

r0

) 1
e(r−r0)/γ + 1

rs−1 dr

=
1
s
rs
0 −

∞∑
n=0

(−1)n

∫ r0

0

e
1
γ (n+1)(r−r0)rs−1 dr +

∞∑
n=0

(−1)n

∫ ∞

r0

e−
1
γ (n+1)(r−r0)rs−1 dr

Now rewriting the last integral as
∫ ∞

r0

=
∫ ∞

0

−
∫ r0

0

, we get

Iq =
1
s
rs
0 −

∞∑
n=0

(−1)n

∫ r0

0

(
e−

1
γ (n+1)(r−r0) + e

1
γ (n+1)(r−r0)

)
rs−1 dr

+
∞∑

n=0

(−1)ne
1
γ (n+1)r0

∫ ∞

0

e−
1
γ (n+1)rrs−1 dr. (98)

The last integral in the above equality (see for example [12], p. 610, no. 4) is the Mellin transform
of the function e−ar given by ∫ ∞

0

e−
1
γ (n+1)rrs−1 dr =

γs

(n + 1)s
Γ(s). (99)

A simple change of variable gives∫ r0

0

e−a(r−r0)rs−1 dr =
∫ r0

0

ear(r0 − r)s−1 dr (100)

The last integral is a fractional integrals of Riemann–Louisville type (see [12], p. 605, no. 3) given
by ∫ r0

0

ear(r0 − r)s−1 dr =
1
s
rs
0 1F1(1; s + 1; ar0), (101)

where 1F1(s; s + 1; ar0), denotes the generalized hypergeometric function (see [12] p. 49 ). Finally,
using (99) and (101) we get

Iq =
1
s
rs
0 −

1
s
rs
0

∞∑
n=0

(−1)n
(

1F1(1; s + 1; −1
γ (n + 1)r0) + 1F1(1; s + 1; 1

γ (n + 1)r0)
)

+ γsΓ(s)
∞∑

n=0

(−1)n e(n+1)r0/γ

(n + 1)s
, (102)

where s = 1
2 + iq. Now Cq and Sq can be computed by taking the real and imaginary parts of Iq

respectively. Note that (102) represents the Mellin transform of (Aear + 1)−1, where A = e−r0/γ .
More precisely

Iq = M
( 1

e(r−r0)/γ + 1

)
(
1
2

+ iq), (103)
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where, as mentioned, M stands for the Mellin transform defined by

M(f)(s) =
∫ ∞

0

f(r)rs−1 dr, (104)

for any f such that the above integral exists for at least one value s0 of s. (See [21] p. 1129 or [12]
p. 201.) It is also worth mentioning that, as far as the authors know, in the literature there is only
the Mellin transform of (ear + 1)−1 with a > 0.

As the second example, we examine a Heaviside–like boundary function

f(r) =

{
V0 : 0 < r < r0

0 : r > r0.
(105)

Similar to the first example, we let

Dq = Cq + iSq.

Then equations (91) together with (104) imply

Dq =
V0

π
(ϕ2 − ϕ1)

∫ r0

0

rs−1 dr =
V0

πs
(ϕ2 − ϕ1)r0

s. (106)

where s = 1
2 + iq. Taking real and imaginary parts, we have

Cq =
√

r0

π
√

1 + 4q2

(
cos(q ln r0) + 2q sin(q ln r0)

)
Sq =

√
r0

π
√

1 + 4q2

(
sin(q ln r0)− 2q cos(q ln r0)

)
. (107)

IV. CONCLUSIONS

Nanoscience is generally regarded as highly cross-disiplineary. We presented a rather general
motivation for the use of index transforms of the Mehler-Fock kind, and special functions with
fractional index such as conical functions in modeling problems relevant to nanoscience. While our
presentation primarily targeted the solutions to the Laplace equation in hyperboloidal and conical
domains, the main results of the forward and inverse Mehler-Fock transform may be applied to other
problems that lend themselves to modeling in these geometries. Furthermore, for Laplace’s equation
in hyperboloidal geometry, the nature of the eigenvalues were discussed, as these are closely related to
the surface modes of the modeled structures. The examples treated demonstrate how experimentally
realistic potential distributions on a hyperboloidal probe may be tackled with the general form of
the Mehler-Fock transform. Index transforms such as presented here appear to have stayed aloof
from modeling of nanostructures. The presented material can therefore open new venues in the
investigation of nanostructure modeling. Optical, electronic, and mechanical response of many
structures can be advantageously investigated in the spheroidal geometry following the results here.
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APPENDIX A

As an example of a modeling domain consider the region Ω defined by:

Ω = {(x(ζ, θ, ϕ), y(ζ, θ, ϕ)) : ζ ∈ [0, 2.5] ∧ θ ∈ [0, π] ∧ ϕ = 0},

and displayed in Fig. 6. Thus, fixing θ or µ = µc yields the surface of a hyperboloid of revolution
with a boundary in the xz–plane presented by:

(x, z) = z0

(√
(η2 − 1)(1− µ2

c) , ηµc

)
,

which can easily be rearranged to give:(
z

µc

)2

−

(
x√

1− µ2
c

)2

= z2
0 , (A1)

or

z(x) = ±z0µc

√
1 +

x2

z2
0 (1− µ2

c)
, (A2)

which represents in xz plane two symmetrical hyperboloids with focal points z = ±z0. Similarly
equation (4) maps, for fixed ζ or η = ηc, the surface of an ellipsoid with a trace in the xz–plane
given by: (

z

ηc

)2

+

(
x√

η2
c − 1

)2

= z2
0 ,

or

z(x) = ±z0ηc

√
1− x2

z2
0 (η2

c − 1)
,

which represents in the xz–plane the contour of an ellipsoid with focal length z0.
From equation (A1) we get the inverse transformation to (4) as:

η =

[
1
2

(
1 +

R2

z2
0

)
+

√
1
4

(
1 +

R2

z2
0

− z2

z2
0

)] 1
2

,

µ = ±

[
1
2

(
1 +

R2

z2
0

)
−

√
1
4

(
1 +

R2

z2
0

− z2

z2
0

)] 1
2

,

ϕ = arctan
(y

x

)
,

(A3)

where R =
√

x2 + y2, which for a particular hyperboloid θ = θt is written as:

R = z0 sin θt

√
η2 − 1. (A4)
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From the transformation properties of (4) one can derive the metric coefficients for the spheroidal
system as:

g =

 g11 0 0
0 g22 0
0 0 g33

 = z2
0


η2 − µ2

η2 − 1
0 0

0
η2 − µ2

1− µ2
0

0 0 (η2 − 1)(1− µ2)

 , (A5)

with the surface element of a hyperboloid as:

dA2 =
√

g11g33 dηdϕ, (A6)

which using (A5) gives:

dAµ = z2
0

√
(η2 − µ2)(1− µ2) dηdϕ. (A7)

Integrating the differential surface element (A7) over an arbitrary and finite region of the hyperboloid
µ = µt, and 1 ≤ η ≤ η0 we get:

A(η0, µt) = πz2
0

√
1− µ2

t

[
η0

√
η2
0 − µ2

t −
√

1− µ2
t + µ2

t ln

(
1 +

√
1− µ2

t

η0 +
√

η2
0 − µ2

t

)]
, (A8)

which can be used for averaging purposes.
Expressing the unit vectors in terms of Cartesian unit vectors:

ēi =
1
√

gii

∂r̄

∂ui

=
1
√

gii

∂

∂ui

[
z0

√
(η2 − 1)(1− µ2)(cos ϕēx + sinϕēy) + z0ηµēz

]
, i = 1, 2, 3,

(A9)

yields the following orthogonal unit vectors for spheroidal unit vectors:

ēη(η, µ, ϕ) =

√
η2 − 1
η2 − µ2

[
µēz +

η
(
1− µ2

)√
(η2 − 1)(1− µ2)

(cos ϕēx + sinϕēy)

]
,

ēµ(η, µ, ϕ) =

√
1− µ2

η2 − µ2

[
ηēz −

µ
(
η2 − 1

)√
(η2 − 1)(1− µ2)

(cos ϕēx + sinϕēy)

]
,

ēϕ(η, µ, ϕ) = [− sinϕēx + cos ϕēy] ,

(A10)

as shown in Fig. 7. The unit vector ēη points in the direction of the tangent to the hyperboloid at
the crossing point with the corresponding spheroid and perpendicular to ēµ which is parallel to a
tangent of the spheroid. Noting the special cases:

ēη(η, 0, 0) = ēx,

ēµ(η, 0, 0) = ēz,
(A11)

appropriate for transition between the hyperboloidal and Cartesian boundaries.
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The Laplacian in this coordinate system is easily derived from the general expression for ∇2 in
curvilinear coordinates:

∇2 =
1
√

g

∑
i

∂

∂xi

(√
g

gii

∂

∂xi

)
, i = 1, 2, 3, (A12)

where g = |g|. Using (A5) and (A12), the Laplacian reads:

∇2 =
1

z2
0(η2 − µ2)

(
∂

∂η

[
(η2 − 1)

∂

∂η

]
+

∂

∂µ

[
(1− µ2)

∂

∂µ

]
+
[

1
1− µ2

+
1

η2 − 1

]
∂2

∂ϕ2

)
. (A13)

APPENDIX B

Pm
− 1

2+iq(cos θ) = (−1)m 2m+ 1
2

π(2m− 1)!!
1

sinm θ

Γ( 1
2 + m + iq)

Γ( 1
2 −m + iq)

∫ θ

0

cosh qx

(cos x− cos θ)
1
2−m

(B1)

|Pm
− 1

2+iq(x)| ≤

(√
x2 + 1
x + 1

)m
Γ(m + 1/2)

Γ(1/2)
coshπqP 0

− 1
2
(x) (B2)

P 0
− 1

2+iq
(cos θ)

P 0
− 1

2+iq
(cos θt)

≤ 1, 0 ≤ θ ≤ θt (B3)

2π

coshπq

[
P− 1

2+iq(0)
]2

=
∫ ∞

0

dη√
η2 + 1

[
P 0
− 1

2+iq(iη) + P 0
− 1

2+iq(−iη)
]

(B4)

From these integral representations and the definition of Zm
q , one can easily deduce that

Pm
− 1

2+iq(z) = Pm
− 1

2−iq(z).

An integral representation appropriate for numerical evaluation of these functions can be obtained
by considering the following substitution :

x = 2arcsin
(

sin y sin
θ

2

)
,

which transforms the integration region in (B1) as

x = 0 → y = 0, and x = θ → y =
π

2
,

Since

dx =
2 cos y sin θ

2√
1− sin2 y sin2 θ

2

dy,

cos x = 1− 2 sin2 y sin2 θ

2
,
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we arrive at the result by Kölbig [31].
Van Nostrand [32] derives the following orthogonality relation for the conical functions with ar-

gument 1 ≤ η < ∞ : ∫ ∞

1

Pm
− 1

2+iq(η)Pm
− 1

2+iq′(η) dη =
Zm

q

q tanh πq
δ(q − q′), (B5)

The conical functions of higher azimuthal order can be generated by successive differentiations of
the zero order function:

Pm
− 1

2+iq(µ) = (−1)m(1− µ2)m/2
dmP 0

− 1
2+iq

(µ)

dµm
,

Pm
− 1

2+iq(η) = (η2 − 1)m/2
dmP 0

− 1
2+iq

(η)

dηm
.

(B6)

In writing equations (B6), we have adopted the sign convention of references [21] and [33], as opposed
to the alternative convention that does not include (−1)m term. From equation (B6) we can derive
the following:

dPm
− 1

2+iq
(±µ)

dµ
=
−mµ

1− µ2
Pm
− 1

2+iq(±µ)∓
P− 1

2+iq(±µ)√
1− µ2

(B7)

where the negative argument relation results upon θ → θ − π. Similarly

dPm
− 1

2+iq
(η)

dη
=

mη

η2 − 1
Pm
− 1

2+iq(η) +
P− 1

2+iq(η)√
η2 − 1

(B8)

from these relations we can easily derive the necessary recursion relations, which have been used to
evaluate the higher order functions as the explicit evaluation of these functions, for higher m 6= 0, 1,
using an integral representation becomes less effective. This deterioration was observed by Wronskian
check. Evaluating (B7) for µ → 0, gives

dPm
− 1

2+iq
(µ)

dµ

∣∣∣∣∣
µ−0

=
dPm

− 1
2+iq

(−µ)

dµ

∣∣∣∣∣
µ−0

. (B9)

The following Wronskian defined for functions with argument µ:

Wm
q = Pm

− 1
2+iq(µ)

dPm
− 1

2+iq
(−µ)

dµ
− Pm

− 1
2+iq(−µ)

dPm
− 1

2+iq
(µ)

dµ

=
2Zm

q coshπq

π
√

1− µ2
,

(B10)

will be used to check the precision of the numerical evaluation of Pm
− 1

2+iq
(µ).
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FIG. 1: In the macroscopic picture, the effect of forces become measurable at small distances d = |r1 − r2|
between the two objects O1 and O2. Such force exchange allows O1 to probe O2 or vice versa.
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FIG. 2: In the microscopic picture, at small d ∝ 10−9 m, the atomic structure in the surface region of the
two objects O1 and O2 become important. Surface modes find many applications in the submicrometer
realm.
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FIG. 3: Modeling based on an image of a SPM probe (right) in spheroidal geometry by a one-sheeted
hyperboloid (left).
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FIG. 4: Tunneling at small |r1 − r2|: Light propagating (indicated by the black arrow) initially in medium
O1 only tunnels to O2 when |r1 − r2| ∝ λ, and increase to full transmission for |r1 − r2| → 0 . The
processes of total internal reflection (TIR) and frustrated total internal reflection (FTIR), and the final full
transmission are shown.
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FIG. 5: Cartesian tunneling geometry with a finite gap d but an infinite extent z → ±∞. A photon of
wavelength λ incident at an angle θ propagates from O2 to O1 by tunneling. The εi, i = 1− 5 characterizes
the different media involved, and a, and a′ are the thicknesses.
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FIG. 6: Prolate Spheroidal Coordinate System. The projection of the confocal hyperboloids of revolution
and the corresponding orthogonal spheroids of revolution onto the ϕ = 0 plane, where ϕ is the azimuthal
coordinate. An arbitrary point in this system is identified with r̄ = (η, µ, ϕ). The surface of a particular
hyperboloid is represented by fixing µ = cos θ where θ is the angle between the asymptote to the hyperbolid
and z axis, while fixing η = cosh ζ represents the surface of a particular spheroid of revolution with η being
related to the radial distance.
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FIG. 7: Unit vectors of the modeling coordinate system, see (A10), and the special values (A11).
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FIG. 8: Two truncated confocal hyperboloids represent the physical system of a coated probe O1. A third
confocal hyperboloid defines the surface of the second object O2 to be probed. The εi, i = 1−5 characterize
the media involved.
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FIG. 9: The conical boundary can be used as a limiting case for a hyperboloid. Here εI defines the
electrodynamic nature of the environment, while εII characterizes that of the material (shaded) domain.


