
  

  

Abstract—The projected increase in diabetes in the United 
States and worldwide has created a need for broad-based, 
inexpensive screening for diabetic retinopathy (DR), an eye 
disease which can lead to vision impairment.  A telemedicine 
network with retina cameras and automated quality control, 
physiological feature location, and lesion / anomaly detection is 
a low-cost way of achieving broad-based screening.  In this 
work we report on the effect of quality estimation on an optic 
nerve (ON) detection method with a confidence metric.  We 
report on an improvement of the method using a data set from 
an ophthalmologist practice then show the results of the 
method as a function of image quality on a set of images from 
an on-line telemedicine network collected in Spring 2009 and 
another broad-based screening program.  We show that the 
fusion method, combined with quality estimation processing, 
can improve detection performance and also provide a method 
for utilizing a physician-in-the-loop for images that may exceed 
the capabilities of automated processing. 

I. INTRODUCTION 
BROAD-BASED inexpensive screening technique 

for diabetic retinopathy and other diseases of the eye 
will be a vital component of the battle against blinding eye 
disease with the projected growth in diabetes in the next few 
decades.  In the United States alone, more than 18 million 
Americans have diabetes, and the number of adults with the 
disease is projected to more than double by the year 2050 
[1].  We are developing and deploying a telemedicine 
network [2] in the Mid-South region of the United States to 
provide retina screening to patients in walk-in clinics.  All 
images taken are reviewed by an ophthalmologist, but our 
eventual goal is automatic review of the images.  Even with 
full automation, however, the use of a physician-in-the-loop 
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can be used to improve the performance of the system. A 
conceptual diagram of the system is shown in Figure 1.  
After image capture a quality assessment [7] is performed. If 
the image quality is sufficient, the system then locates 
anatomic structures, performs lesion detection and 
population description, and finally performs automatic 
diagnosis using an image database as shown by the lower 
right pathway [9,10].  Even after full database population 
and classification training, a level of physician oversight will 
be required.  Thus, by estimating (and to some degree 
controlling) the quality of the image, the performance of the 
overall system should be improved because images that are 
more difficult for automatic diagnosis will be referred to the 
physician-in-the-loop.  In such a practical system we would 
control attempts at automated processing by ensuring that 
some minimum quality level is achieved, then using the 
confidence measure of ON location to control the variability 
of images submitted for automated processing.  Thus, in this 
paper we show how the quality assessment affects the 
estimate of the ON location using method that features a 
confidence measure.   

The paper is organized as follows.  In the Approach 
section we present an overview of the quality assessment 
method of [7] and the complementary optic detection 
methods used in [16]. We discuss the improvements to the 
complementary detection methods made for this paper.  In 
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Fig. 1.  Overview of system for retina screening.  After image 
acquisition, a quality check is conducted followed by detection of 
physiological structures and the building of a database of labeled 
examples.  After the database is sufficiently mature the disease states 
can be estimated automatically, but even then a level of physician 
review will be required. 



  

the Experiments section, we show how the modified 
algorithm performs in a 2-fold validation test, then we test 
the classifier on a database from our telemedicine network.  
We show how the performance of the method changes with 
the image quality as measured by the method of [7].  We 
conclude with observations and projections for future 
research. 

II. APPROACH 

A. Quality Assessment 
The quality assessment method we use [7] is well-suited for 
a telemedicine network due to its speed and allows quick 
feedback to the camera operator.  The method is summarized 
here.  A segmentation of the vascular tree is conducted using 
the method of [3] and the image is divided into 8 spatial 
regions.  The vessel density is measured in each region and 
an additional set of 2 features based on the saturation of the 
fundus are created.  The training images are manually 
labeled as good or poor quality, then a classifier is trained to 
distinguish them based on the features.  After creating the 
library, an additional set of images was classified and a 
threshold was set by a reviewing ophthalmologist (E. 
Chaum).  Note that this initial threshold is set to provide 
images of sufficient quality to be diagnosed by a human; 
generally, this quality level may not be sufficient for 
automated diagnosis.  In addition, the telemedicine network 
allows the operator to have a “best we can do” setting so that 
if the image quality cannot be improved the image can still 
be submitted.  Finally, in addition to the speed of the 
method, another advantage is the production of the 
vasculature tree segmentation which can then be used in the 
optic nerve detection method. 

B. Optic Nerve Detection Methods 
Optic nerve detection is a mature field and there are many 

different methods that have been applied to a wide variety of 
data sets (see, for example, [11-15]).  In [16] we discussed 
how two complementary methods (one focusing on the 
vasculature tree, the other on the ON appearance) could be 
used in tandem to produce a confidence measurement.  For 
more background on these methods, we refer to [4,8,16].  
Briefly, we denote these two methods as the feature-based 
likelihood ratio (FBLR) [8] and the Principle Component 
Analysis – Linear Discriminant Analysis (PCA-LDA) 
method [4].   

In the FBLR method, the vasculature of the image is 
segmented and a set of four features are generated at each 
pixel: the brightness of the pixel region and the thickness, 
orientation and density of the vasculature.  A training set of 
labeled ON centers is used to estimate the parameters of a 
Gaussian distribution describing the ON regions and the 
non-ON regions.  We also use the hand-segmented training 
set to estimate the ON center probability density function 
(PDF).  The Gaussian parameters and the PDF are used to 
compute a likelihood ratio using maximum a posteriori 

(MAP) estimation. 
The complementary method, the PCA-LDA method, is 

based on the model-based method of [11] which uses 
principal component analysis (PCA) to capture the 
information content of a training set of optic nerve images.  
“Candidate regions” of a retina image are projected to PCA 
space and then used to reconstruct the regions.  The pixel 
with the smallest residual error is chosen as the ON location.  
In [4], we extended the method to include LDA.  After 
generating the PCA coefficients for the training set, the 
reconstruction distances were calculated for the entire image 
of all training images.  Up to twenty different pixels were 
chosen to comprise a data set in PCA space, including the 
ON, the five smallest reconstruction distances (which 
comprise a set of training examples which are non-ON but 
score well on the reconstruction distance metric), and up to 
14 randomly selected pixels in the candidate region.  The 
vectors corresponding to these twenty pixels were projected 
back to PCA space.  After repeating this process for all 
images in the training set, LDA was employed to compute a 
transform to a one-dimensional space.  This feature was then 
used to formulate a MAP likelihood ratio modelling the 
feature as a Gaussian random process.  

C. Confidence Measures in Optic Nerve Location 
In [16] we showed empirically, on two different data sets, 

how limiting the number of automatically screened images 
by thresholding the distance between the estimates of 
complementary methods could improve accuracy.  In this 
work, we extend this by training the PCA-LDA approach on 
specific failed images by the complementary vascular-based 
method.  The data set of interest is divided randomly into a 
training set and a test set (2-fold validation).  During the first 
of the two tests, the FBLR classifier is trained, then tested 
against its training set.  We record the images where the ON 
is incorrectly identified (the classifier places the ON location 
greater than one ON radius from the true location).  During 
the PCA-LDA training, those locations are chosen as an 
example of a “non-ON” location.  We refer to this as 
“directing” the LDA towards the images that give the FBLR 
method trouble.  This is an intuitive and straightforward 
modification to the method and essentially comes “for free” 
in that we simply choose different examples of the non-ON 
areas to train the LDA classifier; the main goal is to prevent 
the two methods from picking the same wrong location.   

III. EXPERIMENTS 
In this section we describe the experimental results using 

the directed complementary method on two different data 
sets.  We first describe the data sets, then the improvements 
found from the directed LDA.  We then discuss how 
changing the quality threshold improves the performance of 
the algorithm. 

A. Data Sets 
Three data sets were used in this study.  The first data set 



  

was used to build a classifier and study the effect of the 
improvements to the fusion method.  This set, which we will 
call Chaum370, was composed of 370 retinal images 
representing 18 different retinal pathologies and normal 
(non-diseased) retina.  These images were originally 
captured at a resolution of 12 microns per pixel.  Note that 
this image set (supplied by E. Chaum) represents an actual 
population from an ophthalmology practice and has a large 
number of abnormal retinas (326 abnormal or 88%).  

The second data set consisted of 141 images collected 
from the first clinic in our telemedicine network [2].  These 
were collected over the first month of operation and 
consequently include several images of sub-optimal quality.  
All images were referred to screening by a general 
practitioner in the clinic.  All images were collected with the 
same camera, a non-mydriatic Zeiss VisuCam Pro, and 
indeed all clinics in the telemedicine network will use the 
same camera model.  All images were collected with a 45 
degree field of view, in color, with a resolution of roughly 6 
microns per pixel.  For the ON location processing, the 
green plane of all images was extracted and resized to a 
scale consistent with the first data set.  Finally, images of the 
left eye were flipped so that the optic nerve was always on 
the right side of the image.  Based on an ophthalmologist 
review, 97 (or 68%) of these were judged “normal” with a 

recommended “treatment” of a follow-up in 6 months. 
Since we are still in the early stages of our telemedicine 

network, the final dataset, dubbed Abramoff748, is 
composed of 748 images from a much larger data set 
supplied by Dr. M. Abramoff [5,6].  We selected a subset 
captured at 45 degree field of view, a common resolution of 
roughly 200 microns per pixel and macula-centered.  This 
set represents a broad-based screening effort and is more 
representative of the type of set automatic screening would 
encounter in practice.   

The quality of the first set was not assessed, but generally 
it is very high as these images were hand picked to form an 
initial library for our research.  This is not the case for the 
other data sets and it is instructive to examine the quality of 
the images.  In Figure 2a we show a histogram of the image 
quality from the telemedicine set.  We see that there is a 
large number of relatively poor quality images in our data 
set.  Figure 2b shows the quality value as a function of 
image number, which is proportional to time (larger image 
numbers means new images).  Some smoothing (a median 
filter over six adjacent values) has been applied in the 
second curve and we see that generally the image quality 
improves as the camera operators in the clinic become more 
skilled at using the camera.  The quality of the Abramoff748 
set is shown in Figure 3 and is generally good overall 
although there are some lower quality images. 

B. Improvements to Complementary Methods 
To determine how the improved complementary method 

increases the ability to detect the ON, we performed a two-
fold validation study using the Chaum370 data as discussed 
in the Approach section.  During the testing phase, the ON is 
found with both methods and the distance is measured 
between them.  A threshold is tested in increments of 1/10 
the radius of the ON and images where the distance between 
methods exceeds the threshold are rejected as problematic.  
The non-problematic images are then evaluated by 
averaging the ON location estimates and the performance 
measured in terms of detections within one ON radius.  In 
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Fig. 2.  Image quality of the telemedicine set.  (a) Histogram of image 
quality  (b)  Image quality over time.  We see that the image quality 
improves over time as the operators become more skilled.  

Fig. 3.  Histogram of the image quality estimate of the Abramoff748 
data set as measured by the quality estimator of [7] trained on an 
archive of images from the Zeiss VisuCam Pro camera. 



  

Figure 4 we show the improvement obtained in the 
complementary method when the LDA method is directed 
toward the problematic cases for the FBLR method.  In this 
figure we compare the results for non-direction with 
direction and we find that the former results in higher 
performance and more images successfully screened.  In 
[16] we found empirically that a threshold of 1.5 ON radii 
gave good results and here we have 100% performance with 
increased fraction screened at this level.  Note that the 
higher threshold is not significant, since it is the distance 
between the estimates of the two complementary methods, 
but the higher performance at the target 1.5 threshold (both 
in terms of fraction screened and fraction correct) is the key 
metric of improvement here.  

C. Performance and Quality 
In the second set of tests, the ON location classifier 

trained from the previous section was tested on the dataset 
of images from the telemedicine network and the 
Abramoff748 set.  In Figures 5 and 7 we show the effect of 
screening for quality on ON detection.  Images with quality 
below the tested threshold were removed from the dataset 
and then the ON location of the remaining images was 
estimated.  We show results for quality level of 0 (meaning 
we attempt ON location on all images) and 0.4, which was 
the level set for acceptance of the image in the telemedicine 
network.  We see in both data sets as the quality level 
increases, the success of the algorithm improves in that the 
fraction screened with confidence and successful estimates 
increase.  In our case, setting the level to 0 resulted in 141 
images screened, and of those, we rejected 16 as having too 
low confidence in their ON locations at the 1.5 ON radii 
threshold level.  Of the remaining 125, we correctly 
estimated the ON location on 123 images.  With the quality 
level set to 0.4, we screened 82 images and rejected 2 of 
those as having too low ON confidence at the 1.5 level; the 
positions of all 80 remaining were correctly estimated in that 
case.  The rejected images, in fact, were clearly not macula-
centered (one example is shown in Figure 6).  We use this 
image to illustrate the point that while the ON location is 

 
Figure 7.  ON Location estimates using the trained classifier from the 
Chaum370 set on the Abramoff data set.  

 
Figure 5.  ON location estimates using the trained classifier from the 
Chaum370 set on the images from the telemedicine network.  Two 
quality levels are assessed: 0 quality (meaning all images are submitted) 
and 0.4 quality, which is the level chosen manually as the threshold for 
image submission in the telemedicine network.  
 

Figure 6.  Example of image where ON detections were not consistent, 
resulting in a rejection.  In this case, although the ON is clear, the use 
of the prior biased the results toward macula-centered images and this 
image is clearly out of the operating range (the macula is not visible).  

 
Figure 4.  Improvements due to directing the LDA toward erroneous 
locations found in the FBLR method.  We see the fraction screened and 
correct curves are both higher for the directed method over the 
undirected method.  



  

clear, the use of the prior is intended to not only facilitate 
ON location but also to help ensure that the system operates 
with a suggested operational range, since clinically 
significant retinopathy requires observation of the macula.  
The results in the Abramoff748 case were comparable, with 
748 images screened with quality threshold of 0 resulting in 
confident ON detections in 728 cases with 720 correct, and a 
threshold of 0.4 resulting in 552 screened with confident ON 
detections in 545 cases with 537 correct.  As a final note, if 
the ON confidence threshold is moved back to 0.7 ON radii, 
the quality threshold of 0.4 gives 100% correct 
classifications with 83% and 84% screened in the 
telemedicine and Abramoff748 data sets. 

D. Discussion of Practical Considerations 
This work shows that there are three key thresholds of 

consideration in the estimate of the ON location.  First, the 
quality level must exceed some basic threshold before it is 
deemed acceptable for submission to the network.  As 
mentioned earlier we do allow for a “best we can do” mode 
where the operator can submit the image regardless of its 
quality.  Many of the initial submissions fell into this 
category but later submissions improved and “best we can 
do” submissions become much less frequent.  Second, once 
an image is received, another, higher quality level threshold 
may be necessary to deem the image of sufficient quality for 
automatic screening.  Finally, the confidence of the ON 
detection can be judged by the complementary method 
which has another third threshold, although it is not a quality 
level but rather a “degree of agreement”.  Images which fail 
that final metric may still be evaluated but would best be 
passed to the reviewing physician.  One can imagine other 
thresholds of interest; for example, since we assume the 
images are macula centered, images with estimates of the 
ON location that stray too far from the ideal or mean 
position may be flagged for manual review as well.  

IV. CONCLUSION 
In this work we discussed some practical issues in the 

implementation of a telemedicine network with a goal of 
automatic retina screening.  We showed how a 
complementary method for optic nerve detection, which was 
initially described in [16], can be improved through directed 
training and through the use of quality estimates, which is 
important because it provides a practical threshold for 
manual image review.  We would like to recognize that there 
may well be room for improvement in image screening so 
that (for example) the state of the retina can be assessed 
even when the image quality is sub-optimal, but in our case 
we seek to improve the initial image capture as much as 
possible and therefore we believe our approach is sound.  
For future work we will continue to implement these aspects 
of the processing in our telemedicine network and also 
incorporate lesion detection and disease stratification 
estimation, which has been shown [9] to be susceptible to 

image quality. 
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