Improving resolution in microscopic holography by
computationally fusing multiple, obliquely illuminated
object waves in the Fourier domain

Jeffery R. Price, Philip R. Bingham, and C. E. Thomas, Jr.

We present a computational method to increase the effective NA of a holographic microscopy system
operating in air. Our optical system employs a reflection Mach—Zender architecture and computational
reconstruction of the full complex (phase and amplitude) wavefront. Based on fundamental diffraction
principles, different angles of incident illumination result in different diffracted orders of the object wave
being imaged. We record, store, and computationally recombine these object waves to expand the spatial
frequency response. Experimental results demonstrate an improvement in the effective NA of our system
from 0.59 to 0.78. © 2007 Optical Society of America

OCIS codes:

1. Introduction

The idea of computer-based hologram reconstruction
was proposed over four decades ago.! Dramatic in-
creases in both computing power and digital imaging
devices in intervening years, however, have made
practical applications a reality. For example, Takeda
et al.?2 introduced a fast Fourier transform (FFT)
method for topography and interferometry using a
digital imaging device. Schnars? showed how to com-
putationally reconstruct both intensity and phase
from digitally sampled holographic interferometry im-
ages that were captured with a CCD imager. Cuche
et al.* demonstrated the recovery of both phase and
magnitude information for holographic microscopy
using the Fresnel approximation, FFT processing,
and a Mach—Zender architecture similar to what we
use in this work.

Our current application domain is semiconductor
inspection.>7 In this regard, intensity imaging alone
is often not effective enough at detecting critical
semiconductor defects. By employing holography to
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measure phase information, differences in material
and/or height can be detected that cause little or no
change in the image intensity. Spatial resolution,
however, is limited by the optics as well as the need
to operate in air to preserve the semiconductor sur-
face. Though theoretically limited to a NA of 1.0 in
air, achieving a high NA without significant aberra-
tions is challenging considering the coherent light
sources required for interferometry.

In this work we describe a technique for increasing
the effective NA of a microscopic holography system
operating in air. The system we employ is based upon
the Mach—Zender architecture and uses image plane
recording. An angle is introduced between the refer-
ence and the target beam to create linear fringes and
we use Fourier-domain reconstruction as in Takeda
et al.?2 The specific contributions of this paper are

® Fourier and spatial domain models relating re-
constructed object waves in microscopic holography
that have been acquired with different illumination
angles,

® A method for estimating parameters that might
vary between reconstructed object waves acquired at
different times under different illumination angles,

® A technique to computationally recombine mul-
tiple reconstructed object waves, acquired under a
variety of illumination angles, that increases spatial
resolution, and

e Experimental verification of the proposed tech-
nique demonstrating an improvement in our system
from a physical NA of 0.59 to an effective NA greater
than 0.78.
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The remainder of this paper is organized as fol-
lows. In Section 2 we review some fundamental
principles of optical resolution as well as the basic
equations of holography in the context of our optical
system. In Section 3 we introduce our technique
for computationally combining multiple complex
wavefronts—acquired under different illumination
angles—to produce a higher-resolution resultant
image. We demonstrate our technique in Section 4
by using a semiconductor test wafer that contains a
pattern beyond the optical resolution of our system.
We close in Section 5 with some summary com-
ments.

2. Principles

First, in Subsection 2.A below, we review some fun-
damental principles relating resolution to diffraction
and NA. Next, in Subsection 2.B, we describe the
principles of holography used in this paper and in-
troduce the requisite notation.

A. Diffraction, Numerical Aperture, and Resolution

To better elucidate the contributions of this paper, we
first recall some fundamentals of diffraction, NA, and
resolution. For a given microscope objective the nu-
merical aperture, NA, is defined as NA = n sin 0,
where n is the index of refraction of the medium in
which the objective is operating, and 6 is the half-
angle of the maximal cone of light that the objective
can receive. As we are operating in air, we will as-
sume n = 1 henceforth. For a repeating pattern (e.g.,
a grating) of period d, the angle of diffracted order M,
by, 1s related to the incident angle of the illumina-
tion, ¢; by the well-known grating equation

A
sinch+sin<bi=Ma, (D

where \ is the wavelength of light. According to
Abbe,® we must observe at least the zero and first
diffracted orders to accurately resolve a repeating pat-
tern. Combining the expression for NA and the grating
equation, with ¢; = 0° and M = 1, the resolution limit
(minimal period) for repeating lines in air is given by

dmin = N/NA. (2)

Consider Fig. 1(a), for example, with normal illumi-
nation (sin ¢; = 0) where both the +1 and —1 dif-
fracted orders fall outside the receiving cone of the
objective; this pattern cannot be resolved. In Fig. 1(b),
however, we illustrate oblique illumination that re-
sults in the objective receiving both the 0 and +1
diffracted orders, though not the —1 order. If we were
to consider the mirror of Fig. 1(b), with the opposite
angle of incident illumination, the objective would
receive the —1 order but not the +1 order. An effec-
tive increase in the NA could be achieved if the in-
formation from these two illumination conditions
could be combined; that is our goal in this paper.
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Fig. 1. Relationship between NA, resolution, diffracted orders,
and oblique illumination. The acceptance cone of half-angle 6 is
indicated by the dashed lines. Illumination and zero-order diffrac-
tion are indicated with double lines, while the first diffracted or-
ders are indicated with solid single lines. (a) Illumination is
normally incident upon the specimen, and both the +1 and —1
diffracted orders are outside the acceptance cone. (b) Oblique illu-
mination causes the +1 diffracted order to fall within the accep-
tance cone.

B. Microscopic Holography

The holographic imaging system we employ, as illus-
trated in the schematic of Fig. 2, is based upon the
Mach—Zender interferometer. For this system, the
field intensity at the CCD camera is given by the basic
hologram equation.® Assuming a unity-normalized in-
cident amplitude, this can be written

Ieon(x) = 1+ |a(x)|2 + 2a(x)cos[ 2mc x + d(x) ], (3)

where a(x) is the amplitude component, which is a
function of the object reflectivity, and ¢(x) is the
phase component, which is a function of the object
topography and the material’s complex index of re-
fraction. The index x is a two-vector, x = (x; x5)7,
where (-)” represents the transpose. We refer to the
¢ = (c; cy)" term as the carrier frequency, which is a
function of the relative angle between the object and
the reference waves at the CCD imaging plane. A
small region of an example hologram image is shown
in Fig. 3; note the diagonal fringes that correspond to
the cos() term above.
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Fig. 2. Simplified schematic of digital holography system used in
our experiments. Note that the beam expander is mounted on a
bidirectional motorized stage.



Fig. 3. Small region (21.6 pm X 21.6 pm) of an example hologram
image. Note the fringe pattern, aligned diagonally from the top left
to the bottom right that is a result of interference between the
object and reference waves.

The quantity we desire to measure in this process
is the true object wave, f (x), which is defined by

f(x) = a(x)e’*™. (4)

Our observation of this object wave, however, is res-
olution limited by the optical components of the sys-
tem. Explicitly indicating some potential sources of
variation, the observed object wave component, f(x),
of a recorded hologram in the form of Eq. (3) can be
written

f(x) = pa(x)cos[2mc x + vy + d(x)] * w(x),  (5)
where the “+” operator indicates convolution, v is the
initial phase offset, w is the fringe contrast (which
may vary between acquisitions with random fluctu-
ations of illumination intensity), and

W(x) = w(x)e ™" (6)

represents the point spread function (PSF) of the ob-
jective optics, w(x), modulated to the carrier fre-
quency. Assuming the absence of aberrations, w(x) is
defined by the NA of the objective optics. The Fourier
transform W(u) of w(x) has a flat, circular passband
centered on u = 0 (assuming normal illumination).
The radial bandwidth of this aperture in the Fourier
plane corresponds to the resolution limit of the holo-
graphic imaging system.

In Fig. 4, we show the log-magnitude of the FFT for
an example hologram in the form of Eq. (3). The
center bright region represents the autocorrelation,
denoted by 1 + |a(x)|?in Eq. (3). The bright regions
in the upper-right and lower-left quadrants are the
sidebands and correspond to the cos [2mc’x + d(x)]

Fig. 4. Log-magnitude FFT of an example hologram. The center
corresponds to the autocorrelation term while the upper-right and
lower-left sidebands result from the fringe pattern. The object
wave is reconstructed from just one of the sidebands.

term from Eq. (3) that is a result of the interfering
object and reference waves. In this example, normal
illumination was used resulting in the sidebands be-
ing centered on the carrier frequency, ¢, which is
represented by the bright center dot in each side-
band. The complex object wave is encoded in each
sideband; it is reconstructed from one of the side-
bands using appropriate FFT-domain processing.”
Since the quantity of interest is fully represented by
a single sideband, we will henceforth display only a
single sideband in FFT illustrations.

3. Improving Resolution by Combining Obliquely
llluminated Object Waves

We now turn our attention to the central focus of this
paper. Recalling the discussion of Subsection 2.A and
the system schematic of Fig. 2, we can simply achieve
and accurately control oblique illumination in our
system by translating the illumination arm relative
to the beam splitter, as illustrated in Fig. 5. In Fig. 6
we show log-magnitude FFTs of the sideband compo-
nents for a test object under different oblique illumi-
nation conditions. Noting that zero spatial frequency
is represented by the brightest spot (the carrier fre-
quency), it is evident from this figure—and expected
from the discussion in Subsection 2.A above—that
each differently illuminated hologram observes a dif-
ferent region (with some overlap) of the object wave’s
Fourier components (diffracted orders). Our goal is
to combine these observations to produce a higher-
resolution object wave representation.

When multiple holograms of a given object are re-
corded at different times with different illumination
angles, several quantities from Eq. (5) can vary be-
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Fig. 5. Recalling the system schematic in Fig. 2, the motorized
stage can be used to move the beam expander to achieve and
accurately control oblique illumination.

tween successive shots. These include fringe contrast
(n), initial phase offset (y), and carrier frequency (c).
Additionally, it is possible that physical limitations
(e.g., vibration and stage drift) can cause the object to
shift spatially with respect to the imaging system. We
represent these potential sources of disturbance as
follows. Suppose that N + 1 holograms of a given
object have been recorded; the object wave component
of the kth hologram is given by

hi(x) = wa(x + Axy)cos[ 2mcix + vy,
+ dx + Axy) | # Wy (x), (7

Fig. 6. Log-magnitude sideband FFTs of a test object under dif-
ferent oblique illuminations (normal illumination is shown in the
center). All images are centered on the carrier frequency (the
bright spot in each square image center). Data were acquired from
a sample with a grating-like pattern beyond the optical resolution
of the system. Note the appearance of the first diffracted order
bright spots in the oblique-illumination examples. (See Section 4
for details.)
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fork =0, ..., N, where Ax, indicates possible spatial
shifting and where

lI)k(x) — [wk(x)]ejZ‘n'c;;x — [w (x)ejZqux]ej2wc£x. (8)

Regarding Eq. (8), we note that the Fourier trans-
form, W,(u), of kth effective aperture, w,(x), is just
W(u — q;). In other words, in the Fourier domain, we
represent the kth obliquely illuminated aperture as
the normally illuminated aperture (£ = 0) shifted by
g, We assume henceforth that £ = 0 always corre-
sponds to normal illumination.

The kth observation, g,(x), of the high-resolution
object wave, f(x), is reconstructed by modulating £, (x)
by the estimated carrier frequency and low-pass fil-
tering the result. This yields

gr(x) = }Lke”’“eﬂﬂcz"[a(x + Axy)e A wk(x)ejQWAch

= pue e P f(x + Axy) ] oy (x)e N, 9)

where Ac;, indicates potential error in the estimation
of the carrier frequency. Equation (9) can be ex-
pressed in the Fourier domain as

Gu(u) = },Lkeme7j2”Ac’zAxkej2”“TM"F (u — Acp))Wy(u — Acy).
(10)

We now consider the computation of an optimal esti-
mate of the true object wave using the set of observa-
tions described by Egs. (9) and (10) for 2 = 0, ..., N.

A. Normalizing Fringe Contrast and Phase Offset

We first assume that any spatial shift between shots
is negligible, so that Ax, = 0. Additionally, we assume
that carrier error is negligible, so that Ac, = 0. In
practice, these assumptions are met by appropriate
preprocessing that includes subpixel image registra-
tion and sub-bin location of the carrier frequency.
Under these conditions, we may then rewrite Egs. (9)
and (10) more simply as

8i(x) = e Mf(x) *wy(x), (11)
Gi(u) = me"F(u)Wy(w), (12)

respectively.

To address variations in fringe contrast and phase
offset, we first define images g, o(x) and g, ,(x) as fol-
lows. The image g;(x) is constructed from g,(x) by
keeping only the frequencies common to both g,(x)
and gy(x). Similarly, the image g,,(x) is constructed
by keeping only the frequencies of gy(x) common to
both g,(x) and g,(x). The region of common frequen-
cies can be visualized as the product of Wy(u) and
W, (u) in the Fourier domain, as illustrated in Fig. 7.
Recalling Eq. (11), g, ¢(x) and g, ,(x) are defined math-
ematically by



Carrier
Frequency

(

Fig. 7. Shaded region represents the common frequency content
for g;(x) and g,(x) used when estimating fringe contrast and phase
offset. In the Fourier domain this region is defined by the product
Wo(u)Wy(w).

8ro(¥) = 9'7_1~{er(?)Wo(u)}
F Y e F (w)Wy(w)Wo(u)}

= (@) * wi(x) * wo(x), (13)
Box(x) = F HGo(u)Wi(w)}
= F Yo F(u)Wo(u)Wy(u)}
= e (%) wo(®) * 0y(x), (14)
for k. = 1,...,N, where ¥ indicates the Fourier-

transform operation.
Once the images of Eqgs. (13) and (14) have been
constructed, we compute the complex ratio image:

8ro(%X) _ Mkem
Sor(*) e

Xe (%) = (15)

Without any noise or disturbance terms, x,(x) would
equal (wze”)/ e’ for all x. Considering noise, how-
ever, we compute

Xk = 8x{xk(x)}’ (16)

where ¢,{-} indicates the sample mean. Note that

. M
|Xk| za 5
)A(k ej'Yk

We then multiply each object wave g.(x) o G,(u)
by (%) ! to yield

(R) 7 '8(%) = poe”"f(x) * wy(x), (17a)
or in the Fourier domain,
(Re) 'Gr(w) = poeF(u)W(u). (17b)

After this normalization, each object wave is scaled
by (approximately) the same complex constant, we’.
We can therefore drop this constant from further no-
tation and just write

&r(x) = f(x) * wi(x), (18)
Gi(u) = F(u)Wy(u), (19)

where, for notational convenience, we have elimi-
nated the common normalization factor (¥;) *. Equa-
tions (18) and (19) serve as the starting point for
estimating the high resolution image as will be de-
scribed in Subsection 3.B.

We also tested three alternate approaches for esti-
mating fringe contrast and/or phase offset. These
included (a) a method similar to that described above,
but in the frequency domain; (b) using only the car-
rier frequency FFT ratios, i.e., H;(c,)/H,(c,) where
H,(u) is the FFT of the kth hologram; and (c) using
the ratios of the FFT value at the carrier to the FFT
value at zero frequency, i.e., H,(c;,)/H,(0) (this gives
only fringe contrast). Though these alternative meth-
ods are more computationally efficient (requiring less
FFTs), none proved as robust as the method de-
scribed above in detail.

B. Estimating the Object Wave

We employ a linear, minimum mean-square error
(LMMSE) estimator to compute the object wave. Re-
calling Eq. (19), suppose that we are examining a
given frequency bin in the FFT domain so that u is
fixed and can be dropped from the notation. For the
given bin, we write

where N, represents observation noise. For the
LMMSE estimate, we seek coefficients {B,}r_, to
satisfy

B=arg min s{lF—ﬁ'|2}, (21)
B

where B indicates the (N + 1)-point column vector
whose kth element is B, &{-} indicates the expected

value, and the estimate F' is given by

Assuming that the observation noise between succes-
sive image captures is uncorrelated, i.e., that

2 3 —
__Jon ifl=~Fk
ANNL} = {0 it #

the estimator coefficients are given by
2 -1
oNn
B= (M(W) +— I) W, (23)
OF

where W is the (IV + 1)-point vector defined by {W},
= W,, the &N + 1) X (N + 1) matrix M(W) is defined
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by {(M(W)},.,, = W,,W,, and o3 = {FF*} is the signal
power for the given frequency bin. Letting

2
(0
= (24)

2
OF

represent the ratio of noise power to signal power,
solving Eq. (23) yields

Wi

(S W)+ 20)

Br =

fork =0, ..., N. Note that 7 is just a regularization
term.

In summary, we compute the estimated high-
resolution object wave by fusing the observed
low-resolution object waves in the FFT domain accord-
ing to

. N
F(u) =2 Bu()Gi(), (26)
where

3 Wi(u)
P = (S, W) + )

(27)

Note that we have now explicitly indicated the de-
pendence on the frequency index u. In our current
implementation, the regularization term J(u) is left
constant across all frequencies u and its value is cho-
sen to match the system characteristics.

4. Experimental Results

In this section we provide experimental results dem-
onstrating the effectiveness of the proposed tech-
nique. Our holography system, as illustrated in the
schematic of Fig. 2, employs a A\ = 532 nm laser and
a 100X objective with NA = 0.59. The CCD is a
1024 X 1024 array with 12.0 wm square pixels yield-
ing an effective pixel size of 120 nm and a field-
of-view of approximately 123 pm X 123 pm when
combined with the 100X magnification. Recalling Eq.

0 2 4 6 8 10 12 00
Fig. 8. Reconstructed phase of semiconductor test wafer from a
single hologram using normal illumination. Though the defect in
the center is detectable, there is no evidence of the beyond-
resolution 680 nm repeated pattern. The x and y scales are in
micrometers, grayscale and height are in radians, where 2w cor-
responds to A = 532 nm.

832 APPLIED OPTICS / Vol. 46, No. 6 / 20 February 2007

2

1.5

1

0.5
12!

0 2 4 6 8 10 12 00

Fig. 9. Reconstructed phase of semiconductor test wafer using
(vertical) oblique illumination. Note that horizontal component of
the 680 nm pattern is now apparent owing to the principles
discussed in Subsection 2.A. The x and y scales are in micrometers,
grayscale and height are in radians, where 27 corresponds to
A = 532 nm.

(2), we note that the Abbe resolution limit for our
system is d,;, = 532 nm/0.59 = 902 nm.

For our experiments, we imaged a semiconductor
test wafer containing a 2D repeated pattern of period
680 nm in both the horizontal and vertical directions.
This pattern is composed of 220 nm diameter vias
(voids), 1500 nm deep, etched in SiO,. We note that
the 680 nm period is well below the resolution limit of
902 nm. We used simple arctan(-) phase reconstruc-
tion with no unwrapping (most optical path lengths
in our data are within a 532 nm range). In Fig. 8 we
show the reconstructed phase front for a single holo-
gram with normal illumination. The dark spot in the
center of the image corresponds to a single defective
via that is partially filled with SiO, (i.e., the etching
was incomplete). Though this defect can be detected,
the 680 nm periodic pattern is not resolved. In Fig. 9,
however, we show the reconstructed phase for a sin-
gle hologram acquired with oblique illumination. As
represented earlier in Fig. 1, the oblique illumination
allows us to acquire one of the first diffracted orders,
and the periodic pattern (in the horizontal direction)
can be seen. We acquired five different holograms for
this test wafer, one with normal illumination and
four with oblique illumination; the log-magnitude
FFTs of the corresponding sidebands were shown

Fig. 10. Log-magnitude of computationally combined FFTs, com-
puted using the method described in Section 3. Note the presence
of the positive and negative first diffracted orders in both the
horizontal and vertical directions.
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Fig. 11. Phase of semiconductor test wafer computed from com-

putationally combining five reconstructed object waves (one nor-
mally illuminated and four obliquely illuminated) as described in
Section 3. Note that the 680 nm pattern can be resolved in both the
horizontal and vertical directions. The x and y scales are in mi-
crometers, grayscale and height are in radians, where 2w corre-
sponds to A = 532 nm.

previously in Fig. 6. Using the method of Section 3,
we combined these FFTs, and the result is shown in
Fig. 10. It is evident in the figure that both diffracted
orders in both directions are present. We show in Fig.
11 the phase of the corresponding object wave, where
the 680 nm pattern is resolved in both the horizontal
and vertical directions. The regularization parame-
ter, H(u) from Eq. (27), was set to a constant value of
0.01 for these experiments, and the PSF of the optical
system [W(u) from Subsection 2.B] was modeled in
the discrete Fourier domain with an eighth-order,
radially symmetric Butterworth filter.10

With the capability of resolving 680 nm repeated
patterns, the effective numerical aperture, NA,, has
been increased to

NA,=0.782 (=532 nm/680 nm) (28)

from the objective NA of 0.59. This corresponds to an
effective increase of 16° in the opening angle, from
36° to approximately 52°. Recalling the discussion
from Subsection 2.A as well as Fig. 1, the potential
resolution improvement afforded by the proposed
technique is represented by the increase in the effec-
tive opening angle. Since the zero diffracted order
must always be passed, it is easy to see that the
increase in effective opening angle is limited to the
lesser of twice the opening angle of the objective or
90°. Hence with objective optics whose opening angle
is >45° (i.e., NA > 0.707), it is practically possible
with this technique to achieve very close to the max-
imum theoretical NA of 1.0 in air.

5. Conclusions

We have presented a method for increasing the res-
olution of a micrscopic holography system operating

in air. Several holograms are recorded using normal
and oblique illumination on the object, resulting in
different Fourier regions of the object wave being
imaged. The reconstructed object waves are then
computationally recombined in the FFT domain re-
sulting in a new object wave estimate with higher
resolution. Experimental results on a gratinglike pat-
tern with a 680 nm period demonstrated an increase
in the effective NA of our system from 0.59 to greater
than 0.78.

Prepared by Oak Ridge National Laboratory, man-
aged by UT-Battelle, LLC, for the U.S. Department of
Energy under contract DE-AC05-000R22725.
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