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Abstract: The first and perhaps most important phase of a surgical
procedure is the insertion of an intravenous (IV) catheter. Currently, this
is performed manually by trained personnel. In some visions of future
operating rooms, however, this process is to be replaced by an automated
system. Experiments to determine the best NIR wavelengths to optimize
vein contrast for physiological differences such as skin tone and/or the
presence of hair on the arm or wrist surface are presented. For illumina-
tion our system is composed of a mercury arc lamp coupled to a 10nm
band-pass spectrometer. A structured lighting system is also coupled to our
multispectral system in order to provide 3D information of the patient arm
orientation. Images of each patient arm are captured under every possible
combinations of illuminants and the optimal combination of wavelengths
for a given subject to maximize vein contrast using linear discriminant
analysis is determined.
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1. Introduction

Biomedical imaging techniques based on wave propagation phenomena in biological tissues are
commonly used to detect and treat diseases but are also used to image non-invasively organs and
biological structures inside the body. Amongst them, optical tomography is a growing imaging
technique offering the advantages to be non-invasive, experimentally simple, repeatable and
inexpensive. Optical tomography uses light which offers at specific wavelengths a large variety
of interaction phenomena, functions of physiological changes at cellular and subcellular levels,
and allows retrieving information on biological systems. Over the last decade, publications
in the field have reported promising results as well as really surprising images of human [1]
or animal organs [2], letting us envision the capabilities of biomedical imaging using light.
However, in this field only few researches investigate subcutaneous veins visualization and
measurement. Using light propagation properties of tissues in the near infrared range of light,
Zeman et al. [3] developed and commercialized, via Luminetx, a device to locate subcutaneous
veins and back project their position on the imaged skin surface for catheter insertion assistance.
The device named VeinViewer works well on patient with clear skin tone and low fat content
which are ideal conditions for near IR propagation onto the tissues. However, performance can
decrease significantly based on poorly understood relations to various physiological parameters.
This technology also provides no estimation of the relative depth or diameter of vessels, which
are key factors in selecting the optimal vein [4]. In preliminary research [5, 6] we have described
experiments to determine the best near-infrared (NIR) wavelengths to optimize vein contrast
for physiological differences such as skin tone and the presence of hair on the arm or wrist
surface but we also noticed a correlation between the skin tone and the projection matrix used
for classification as well as misclassification of some pixels due to reflection events and skin
structure changes. Further investigations on light propagation in biological tissues [7] indicate
that imaging the skin under visible to NIR illuminations will provide interesting reflectance
spectrum variability that can be used to improve our classification method. In this paper we
are presenting an optimization of our localization process by reducing the misclassification rate
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of pixels using different multispectral projection techniques, a broadband illumination source,
and including the influence of the skin surface topography evaluation. The paper is structured as
follows: after presenting our acquisition system and its calibration, computational methods and
algorithms used for the classification process are introduced, followed by the obtained results.
At last a conclusion and future work are discussed.

2. Experimental setup

Our acquisition system is composed of a visible to NIR sensitive CMOS video camera, a NIR
line-generating laser module and a broadband illumination source (Hg arc lamp) associated
with a monochromator for illumination wavelength selection. The equipment is controlled by
a computer to synchronize illumination selection and image capture. In order to avoid UV
radiation injuries to the skin, a high-pass filter at 495nm is inserted between the lamp and the
monochromator. The spectral range of study is comprised between 495nm and 945nm by 10nm
step, the upper limit being determined by the spectral sensitivity of the camera in the near
infrared. A liquid gel light guide is connected on one hand to the output of the illumination
source and on the other hand to a two inches wide collimating probe to maintain uniform
illumination on the surface of the skin. Fig. 1 is a picture of the acquisition system.

Fig. 1. Experimental setup Fig. 2. Triangulation principle

The system calibration consists of three separate steps: (1) image distortion correction by re-
trieving the optical parameters of the camera [8], (2) reflectance image computation using black
and white spectralons as references [9] and (3) parameterization of the triangulation geometry
[10].

3. 3D reconstruction

Our 3D reconstruction process of the skin surface combines active optical triangulation for
range data acquisition, and parametric surface modeling to store the 3D shape of the object.
Active optical triangulation [10] combines a camera and a laser stripe line generator to recreate
a basic geometric system. The camera is aligned along the Z axis and the laser line generator
is positioned at a distance b from the camera with the angle θ relative to the X axis. Assuming
that the considered laser point coordinates (x,y,z) in the 3D baseline has a projection (u,v) on
the image plane, the similar triangles equations gives the mathematical relation between the
measured quantities (u,v,θ ) and the coordinates (x,y,z):

[x,y,z] =
b

f .cotθ −u
[u,v, f ]. (1)
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Experimental parameters i.e. the distance laser/optical axis b, the focal length f and the
laser inclination θ are calculated during the system calibration and remain constant during the
acquisition phase.

In a NIR image of the laser lines on the surface of the skin as on Fig. 3(a), the centerline
of each line is firstly detected using a subpixel operator [11] which basically computes the
zero crossing point of the first derivative of each stripe image row, see Fig. 3(b), and secondly
triangulated using Equation 1. To simplify the three-dimensional surface modeling of the skin,
the triangulated point clouds are associated with a Bézier surface [12]. At the same time the
elevation map of the area of interest and the normal to the surface for each pixel using a specific
ray tracing algorithm [13] are computed [14]. This data will be used later as a feature in the
Linear Discriminant Analysis (LDA).

(a) (b) (c) (d)

Fig. 3. (a) image of the laser lines on the surface of the skin, (b) centerlines detected using
a supbixel operator are in red, (c) Laser line on the forearm and (d) its 3D reconstruction.

4. Image Processing and Linear Discriminant Analysis

Multispectral imaging is commonly used to obtain reflectance measurements of an object in
several spectral bands. As a result, each pixel of the image is expected to have specific intensity
values over the light spectrum, corresponding to the so called spectral signature. Multipsectral
imaging has found applications in the medical community, such as in dermatology or neuro-
surgery [15]. In our experiment, the skin is imaged from 495nm to 945nm by step of 10nm,
giving a total of 46 images of the same scene. Different locations from hand to forehand were
acquired for different patients. These aspects are currently being studied better location ver-
sus morphology/skin tone/bodymass index and are of special interest for young children where
blood test are carried out on the top of the hand.

To analyze this 46-dimensional dataset a multispectral dimension reduction technique, which
consists in projecting the initial dataset in a lower dimensional subspace where spectral infor-
mation is more compact, and less correlated, was used. As stated before, our goal is to locate
subcutaneous structures for various skin tones. This problem can be seen as a two class classi-
fication problem: vein/not-vein or a three class problem vein/skin/other. To reduce our dataset,
two well-known linear dimension reduction techniques: Principal Component Analysis (PCA)
[16] and Linear Discriminant Analysis (LDA) [16] were tried. Then, the resulting image corre-
sponding to the projection of the initial data set onto the subspace spanned by the eigenvector
of the first eigenvalue [14] was processed using the Stegers algorithm [17] to detect the veins
as well as their respective width. The final goal being to select the optimal vein (size of the
veins/catheter) in a short amount of time, Stegers algorithm was preferred to other algorithms
as those used for retinal vessel segmentation [18, 19].

The surface orientation obtained after the triangulation and the normal of the surface is also
added to the data set leading to a 47 input feature vectors. For the LDA, which requires a
prior class identification in order to establish the projection matrix, the mask was automatically
provided after processing the PCA image (see Fig. 4). Two labeling masks were used: (a) a two
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class mask vein / background, and (b) a three class mask vein / skin / background [20]

(a) (b) (c) (d)

Fig. 4. Example of the masks used for the LDA process. (a) Manually generated 2 class
mask. (b)Aumatically (based on the PCA and Steger Algorithm) generated 2 class mask
(c) Manually generated 3 class mask. (d)Aumatically (based on the PCA and Steger Algo-
rithm) generated 3 class mask

Figure 5 is an example of some of the obtained results after projecting the data by LDA
then extracting the veins. The first row corresponds to a two class problem where the mask
for the class in manually defined by the operator and serves as a reference. The second row is
for the two class problem with mask automatically generated from the PCA image. Third row
corresponds to the 3 class problem with manually defined mask. Fourth row corresponds to
the three class problem with mask automatically generated from the PCA image. This process
was carried our over a panel of 20 patients having different skin tones and different body mass
indexes. The results were similar showing that the 2 class problems with mask automatically
generated and the input feature set including the 3D information provides results very close to
those obtained with the manual mask. We also found out that the projection matrix for a specific
skin tone can also be used for another patient of similar skin tone (based on the appearance
compared to the Macbeth chart), however the opposite is not reliable [6]. Further experiment
on a larger data set need to be run to see the influence of the body Mass index for similar
skin tone patients. Moreover, based on our prior experiment on our restricted data set, it was
not possible to isolate preponderant wavelength by looking at the eigenvalues obtained during
the LDA. This point will be adressed when our database will be larger aiming at creating an
“average” projection matrix which will be tested on similar skin tone (based on the appearance
compared to the Macbeth chart) patients with various body mass index.

5. Conclusion

We showed in this paper a complete vision system providing multispectral as well as 3D infor-
mation of the arm surface for automatic veins detection. The LDA projection of the multispec-
tral images in the NIR and visible spectrum associated with 3D information of the arm topogra-
phy lead to reliable results for automatic veins detection. However our long-term goal being to
develop a fully-automated, vision-guided robotic system for needle insertion and catheteriza-
tion, furthermore examination of the optimal wavelength combinations for different skin tone
and/or presence of hair still need further investigation. We are also currently increasing our
database to further validate the obtained results.
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(a) Sample images of a dataset captured - from left to right - at 555nm, 655nm, 755nm, 855nm

(b) LDA projections examples - from left to right - 2-class manual, 2-class auto, 3-class manual, 3-class auto

(c) Detection of the vascular centerlines on the LDA projection of NIR Data

(d) Detection of the vascular centerlines on the LDA projection ( NIR Data + 3D information)

(e) Detection of the vascular centerlines on the LDA projection ( NIR Data + Visible Data)

(f) Detection of the vascular centerlines on the LDA projection ( NIR Data + Visible Data + 3D information)

Fig. 5. Comparison of the vascular centerline detection using Steger’s algorithm for differ-
ent input features and class masks: (first column) two class problem - vein/not vein - where
the mask is manually defined; (second column) two class problem with mask automatically
generated from the PCA image; (third column) three class problem - vein/skin/other -with
mask manually defined; and (fourth column) three class problem with mask automatically
generated from the PCA image.
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