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 Abstract– New developments have been made in optical 
motion tracking for awake animal imaging that measures 3D 
position and orientation (pose) for a single photon emission 
computed tomography (SPECT) imaging system. Ongoing 
SPECT imaging research has been directed towards head motion 
measurement for brain studies in awake, unrestrained mice. In 
contrast to previous results using external markers, this work 
extracts and tracks intrinsic features from multiple camera 
images and computes relative pose from the tracked features 
over time. Motion tracking thus far has been limited to 
measuring extrinsic features such as retro-reflective markers 
applied to the mouse’s head. While this approach has been 
proven to be accurate, the additional animal handling required to 
attach the markers is undesirable. A significant improvement in 
the procedure is achieved by measuring the pose of the head 
without extrinsic markers using only the external surface 
appearance. This approach is currently being developed with 
initial results presented here. The intrinsic features measurement 
extracts discrete, sparse natural features from 2D images such as 
eyes, nose, mouth and other visible structures. Stereo 
correspondence between features for a camera pair is determined 
for calculation of 3D positions. These features are also tracked 
over time to provide continuity for surface model fitting. 
Experimental results from live images are presented. 
 

I. INTRODUCTION 

OLLABORATION between Oak Ridge National Laboratory 
(ORNL), Thomas Jefferson National Accelerator Facility 

(Jefferson Lab), and the University of Maryland has continued 
in the development of an advanced high-resolution SPECT 
instrument to image awake, un-anesthetized small animals. 
Previous work has been described here [1]-[3]. Animal brain 
studies are sensitive in that anesthetic agents or physical 
restraints can affect the results. Functional imaging studies can 
now be performed on animals without anesthetics, significant 
restraints, or extensive training. The technology can be 
extended directly to clinical applications on human patients 
unable to remain still (e.g. Parkinson’s patients, Alzheimer’s 
patients, small children) during a scan. 
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The optical measurement and motion tracking system 
provides 3D position and orientation (pose) during the single 
photon emission computed tomography (SPECT) imaging 
scan. The tracking apparatus is an integral part of the scanner 
and is designed to measure the pose at real-time rates with 
sub-millimeter accuracy. The pose data is time synchronized 
for post processing of SPECT list mode data to enable 
correction of motion blur during 3D image reconstruction. 

New developments are continuing in the optical tracking 
system. In contrast to previous results using external markers 
[2], intrinsic features are now being extracted and tracked 
from multiple camera images to compute relative pose over 
time. Motion tracking thus far has been limited to measuring 
extrinsic features such as retro-reflective markers applied to a 
mouse’s head. While this approach has been proven to be 
accurate, the additional animal handling required to attach the 
markers is undesirable. A significant improvement is achieved 
by measuring the pose of the head without extrinsic markers 
using only the normal external surface appearance. This 
approach is currently being developed with initial results 
described here. The intrinsic features measurement first 
extracts discrete, sparse natural features from 2D images such 
as eyes, nose, mouth and other visible structures. Stereo 
correspondence between features for a camera pair is then 
determined for calculation of 3D positions. These features are 
also tracked over time to provide continuity for surface model 
fitting. 

II. TRACKING SYSTEM 
The current tracking system uses optical imaging to view an 

animal enclosed in a transparent burrow located between the 
gamma detector heads developed by Jefferson Lab. Up to 
three cameras along with concentric infrared (IR) ring lights 
provide multiple views of the animal’s head. The lights are 
synchronized and pulsed to freeze motion while minimizing 
reflections. The multiple camera image acquisition system 
acquires images of the awake animal through a range of 
motions accommodated by the burrow. The camera 
redundancy significantly reduces loss of tracking where a 3D 
measurement can be calculated when a marker is visible from 
only two of three cameras. 

Fig. 1 shows the existing SPECT system along with a close-
up of the optical tracking cameras and mouse burrow. As 
shown, three cameras are mounted in the rear of the scanner 
facing the front of the transparent tubular burrow containing 
the animal. The cameras are raised above the centerline of the 
burrow and angled to look down on top of the head of the 
animal. The LED ring light is mounted around each camera’s 

C

2009 IEEE Nuclear Science Symposium Conference Record M05-13

9781-4244-3962-1/09/$25.00 ©2009 IEEE 2557

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on March 23,2010 at 15:20:19 EDT from IEEE Xplore.  Restrictions apply. 



 

lens. Previously, retro-reflective markers wer
animal’s head and illuminated by the ligh
software on the tracking computer performs im
feature segmentation, reflection rej
correspondence, 3D measurement, and pose
pose data is also time stamped as is the detec
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Fig. 1 Front view of scanner is illustrated show
hardware and configuration with respect to SPECT gam
up shows the cameras, illumination hardware, and mouse
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Fig. 2 Tracking system functional block
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Fig. 3 Feature tracks extracted from a live mouse 
shown for left and right stereo pairs. The tracked featur
connecting matching points from consecutive images. F
using the Shi-Tomasi method and tracked using Lucas-K

 

C. Stereo Correspondence 
Correspondence of features between stere

performed next along with filtering to remov
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correspondence includes normalized corre
matching methods for efficient computation
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Fig. 4 A stereo image pair is shown with matchin
normalized correlation. The images have been rectified
are shown connecting several points between the two im
near the center of each image is a reflection of the illum
tube. 
 

D. 3D Measurement 
From each feature match set, an optim
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case of rectified images, the optimal triangul
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and left camera respectively. The
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where cx, cy, are the optical cent

camera and �#$%is the optical cente
camera. Tx is the x-axis separation 
and f is the focal length which is th
Dividing through by W gives the ab
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Fig. 5 3D measurements are plotted for 
head from live mouse images shown in F
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E. Pose Calculation 
 

Tracking the 3D features over ti
methods enables the determination 
model from the previous point set. P
translation and rotation needed
measurement relative to this rigid 
points through sequential images p
pose measurement through ca
transformation between sequential 

0
10

20
30

40

0

10

20

30

40

50

Y (mm)

Z
 (

m
m

)

          (1) 

ge coordinates of the right 
e variable d is the image 
n then be used to calculate 
es vector given camera 

 
 �$���
"!& �! '(

((
) �
�����,       (2) 

er coordinates of the right 
er x-coordinate of the left 
distance between cameras 

he same for both cameras. 
solute 3D coordinates. 

set of live mouse stereo 
e points correspond to the 
ge pair.  

 
corresponding features of mouse 
ig. 4. The plot of extracted 3D 

eference frame. 

me using robust statistical 
and fit to the partial head 

Pose is calculated as the 3D 
d to align the current 

body model. Tracking of 
provides continuity in the 
alculation of the 3D 

image pairs. At least 3 

-20

-10

0

10

20

-10
X (mm)

2559

Authorized licensed use limited to: Oak Ridge National Laboratory. Downloaded on March 23,2010 at 15:20:19 EDT from IEEE Xplore.  Restrictions apply. 



 

point tracks are needed in order to
transformation. Fig. 6 illustrates the cal
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translation is calculated using Horn’s me
method is applicable to any number of points 
 

Fig. 6 The 3D points from each of two consecutiv
These two sets of points are used to calculate the 3D tran
 

IV. LIVE MOUSE RESULTS 
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Fig. 7 Calculated pose coordinate axes are shown 
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V. SUMMA
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