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Abstract— In order to facilitate the study of neuron migra-
tion, we propose a method for 3-D detection and tracking of
centrosomes in time-lapse confocal image stacks of live neuron
cells. We combine Laplacian-based blob detection, adaptive
thresholding, and the extraction of scale and roundness features
to find centrosome-like objects in each frame. We link these
detections using the joint probabilistic data association filter
(JPDAF) tracking algorithm with a Newtonian state-space
model tailored to the motion characteristics of centrosomes
in live neurons. We apply our algorithm to image sequences
containing multiple cells, some of which had been treated with
motion-inhibiting drugs. We provide qualitative results and
quantitative comparisons to manual segmentation and tracking
results showing that our average motion estimates agree to
within 13% of those computed manually by neurobiologists.

I. INTRODUCTION

Recent advances in fluorescence microscopy have enabled
biologists to image cellular and subcelluar dynamic processes
in live cells with the use of florescent protein tagging. Neu-
ronal cell migration is one such biological process in which
time-lapse 3-D imaging has played a key role. Recently,
the centrosome, an organelle that plays a role in mitosis,
has been shown to also act as a predictor of neuronal cell
migration and possibly a coordinator of cytoskeletal dynam-
ics in the neuron; moreover, certain drugs have been shown
to inhibit centrosome motion and neuronal migration [1].
Thus, neurobiologists are interested in tracking centrosomes
in a live cell and examining the motion characteristics with
respect to both overall cell motion and the introduction
of various drugs. Due to the slow and laborious nature of
manual analysis, automated computational methods tailored
to specific biological phenomena and imaging modalities
are needed to address the high throughput of these imaging
systems.

Automated tracking of subcellular structures in confocal
imagery has been addressed in the literature [2]; however, the
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Fig. 1. Maximum intensity projections overz of a 3-D centrosome volume
at two different time points: (a)-(b)t = 0 minutes; (c)-(d)t = 40 minutes.
Regions of (a) and (c) delineated by boxes are enlarged in (b)and (d).
Individual centrosomes are indicated with arrows. Migration of the bright
cell soma in the middle of (a) and (c) can be seen by comparing its position
across the two images. Note the relatively low brightness of the delineated
cell in (a) and (c), whose detail can be seen when rescaled in (b) and (d).
The images in (a) and (c) are approx. 80µm in width and height.

appearance and motion characteristics of different structures
vary widely, and thus a method developed for one type of
structure will not likely translate well to other structures.
A particle filtering method, which decouples the traditional
detection and tracking stages, has been proposed by Smal
et al. [3] for tracking microtubules, which appear as small,
elongated bright spots very different in appearance from
centrosomes. This method utilizes probabilistic appearance
models of the microtubules derived from the underlying
physics of microscopic image formation. Rogerset al. [4]
attempt to track subcellular particles of varying size by fitting
a 2-D polynomial model to the appearance of each structure
and discriminating based on the model parameters; however,
because this method allows a great deal of freedom in the
shape of tracked particles, we would expect it to follow many
non-centrosome objects in our data.

In this paper, we propose a method for detecting and track-
ing centrosomes tagged with green fluorescent protein (GFP)



in time-lapse 3-D confocal image stacks. Our approach
consists of detecting candidate centrosomes, computing dis-
criminatory features based on the appearance characteristics
of typical centrosomes to refine this set of detections, and
applying a robust multi-target tracking algorithm known as
the joint probabilistic data association filter (JPDAF) [5]to
link the detections. We show the results of applying our
algorithm to a set of time-lapse 3-D image sequences of
mouse cerebellar granule cells treated with various drugs and
imaged with a spinning disk confocal microscope.

II. TECHNICAL APPROACH

Our approach to automated centrosome motion analysis
may be divided into two stages: (1) detection, and (2)
tracking. The goal of the detection stage is to locate all
centrosome-like objects in each frame of the time sequence.
The tracking stage then attempts to connect these detections
to form coherent tracks. The details of each stage are
illustrated in Figure 1 and outlined below.

A. Centrosome detection

In the detection stage, we first compress the 3-D volume
at each time step into a single 2-D image by computing a
maximum intensity projection along thez-dimension. There
are two reasons for working in 2-D for the detection stage:
(1) computation is greatly reduced compared to 3-D, and (2)
the resolution inz was significantly lower than that ofx and
y in our datasets, which would necessitate interpolation inz
in order to compute certain features. It should be noted that
we later utilize the full volume to compute 3-D centrosome
positions.

We apply a Laplacian filter to this image, which helps
to accentuate small, bright, circularly-shaped regions inthe
image [6]. We apply an adaptive threshold to the filtered
image by first computing the meanµ and standard deviation
σ of the intensity values in a small window of sizeNO×NO

surrounding each pixel. We exclude a smaller window of
sizeNI × NI around the peak in this computation in order
to prevent the peak itself from contributing to the window
statistics. Each pixel location whose valuev is such that

v − µ

σ
> T (1)

for some thresholdT is declared to be a candidate centro-
some location. We usedNO = 30 andNI = 12 in our work.

We refine this set of detections by computing two ad-
ditional metrics for each candidate centrosome: (1) object
size and (2) local roundness. Object size is measured by
computing a scale-space representation of the pattern, akin to
the approach of Bretzner and Lindeberg [7]. Specifically, for
each candidate centrosome, we project the pattern onto a se-
quence of 2-D Laplacian-of-Gaussian operators at increasing
σ values. We then find the valueσ0 at which the projection
is minimized (most negative). Ifσ0 /∈ [σL, σH ] for the scale
range defined by the limitsσL andσH , then the detection is
discarded. In this work, we found(σL, σH) = (1, 8) to work
well.
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Fig. 2. Example of centrosome detection: (a) adaptive threshold image just
before comparing toT (Eq. 1); (b) detected candidate centrosomes using
threshold equal to 10. The refined set of detection after roundness- and
scale-based filtering is shown in Fig. 4(c).
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Fig. 3. Examples of roundness metrics computed for two different patterns
using (3).

Because centrosomes typically appear as round sphere-
like objects in our imagery, we use the local roundness of
each candidate detection as a discriminative feature. Local
roundness in 2-D can be defined as the constancy of a
pattern along various concentric circles centered about a
given point. We measure local roundness by first computing
the rotational autocorrelation of the candidate centrosome
pattern as follows. Letf(r, θ) denote the local 2-D pattern
in polar coordinates, centered about the detection location.
We define the rotational autocorrelation functionRff (φ) of
f by the following equation:

Rff (φ) =

∫ 2π

0

∫ r2

r1

f(r, θ)f(r, θ − φ)rdrdθ
∫ 2π

0

∫ r2

r1

f2(r, θ)rdrdθ
, (2)

where r1 and r2 are the inner and outer radii between
which the pattern is considered. Using this function, we
then compute a roundness metricρ given by the following
equation:

ρ = 1 −

√

1

2π

∫ 2π

0

Rff (θ)dθ. (3)

The integral in (3) essentially measures the variance of
Rff (φ) (with an assumed mean of 1). For a perfectly
“round” object, ρ would evaluate to 1, since the variance
would be 0; on the other hand, for a random pattern,Rff (φ)
would approach a delta function andρ would be close to
zero. We compare this roundness metric to a thresholdTρ

and discard the detection ifρ < Tρ. In our work, we used
Tρ = 0.92 and (r1, r2) = (0.2, 4.0) pixels. Examples of
roundness values are shown in Fig. 3.



For each remaining detection, we compute thez-position
by first extracting the column of intensity values at the
corresponding(x, y) location from the original volume. We
then upsample this signal by a factor of 8 and smooth
using sinc interpolation. Thez-position of the centrosome
is then taken to be the location where this signal reaches its
maximum. It should be noted that this approach would fail
to detect multiple centrosomes centered at the same(x, y)
location in the volume, and a more elaborate method should
be used to detect multiple centrosomes at a given(x, y)
location if overlap inz is suspected.

B. Centrosome tracking

Once we have the detections for each frame, we then take
the following approach to tracking the objects. Based on the
assumption that no centrosome will jump by more than a
predefined distanced between any two consecutive frames,
we first partition the set of all detections over the entire
sequence such that the Euclidean distance between any two
detections from different groups is greater thand. We then
apply the well-known JPDAF tracking algorithm [5] to each
group of detections, which is designed to handle multiple
targets, missed detections, false alarms, and measurement
noise.

The JPDAF algorithm requires a user-defined state-space
model that describes the motion of the objects to be tracked.
In our time-lapse sequences, we observed that the motion
of centrosomes seems to be characterized by bursts of
acceleration in (seemingly) random directions. We therefore
employed a Newtonian 3-D motion model that provides
for random acceleration inx, y, and z characterized by
independent Gaussian random variables. The state update
and observation equations for our model are as follows. Let
x denote the state vector

x = [ x y z ẋ ẏ ż ]T, (4)

where ẋ, ẏ, and ż are the velocities in the respective
directions. Then the statexk at timek is updated as

xk = Fxk−1 + Gwk (5)

where
wk ∼ N (0, I3), (6)

F =

[

I3 ∆t · I3

03 I3

]

, (7)

and

G = σa

[

∆t2

2
· I3

∆t · I3

]

+ σn

[

I3

03

]

(8)

where I3 is the 3 × 3 identity matrix and03 is the 3 × 3
matrix of zeros. In (8),σ2

a andσ2
n are the variances of the ran-

dom acceleration and an additional position “noise” factor,
respectively, undergone by each centrosome in thex, y, and
z directions. Strictly speaking, a random acceleration model
alone (supplied by theσa term) should allow for any change
in centrosome position; nevertheless, including theσn term
instinctively provides a better model for describing small
“vibrating” motions observed in many of the centrosomes.

The observationzk = [ x′ y′ z′ ] our state-space model is
given by

zk = Hxk + vk (9)

where
vk ∼ N (0, σ2

mI3), (10)

and

H =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 . (11)

The variablesx′, y′, andz′ are the observed 3-D coordinates
of the centrosome, andσ2

m is the variance of the measure-
ment noise resulting from small errors in locating the center
of the centrosome.

We initialize the tracker with starting locations by se-
lecting theN (at most) brightest objects from each group
of detections in the first frame of the sequence (we found
N = 6 to work well). For each target at each time instant,
the JPDAF algorithm computes the probability of missed
detection, indicating the likelihood of having failed to detect
the target in the current frame. In our implementation, we
retire a track if this probability is greater than 0.5 for four
consecutive frames. In future work, the initialization stage
may be improved by utilizing more than just the first frame
in case a detection was missed in that frame.

III. DATA

Image data was collected from nine separate experiments,
where each experiment was designed to capture time-lapse
3-D imagery of a culture of cerebellar granule neurons
(CGNs) over the course of several hours. The CGNs were
cultured in conditions that supported cellular motility, and
an expression vector was introduced to the CGNs to encode
the centrosomes. At specified times during the experiment, a
sequence of 3-D volumes of size512×512×15 voxels was
imaged using a Marianas spinning disk confocal microscope.
The resolution of the volume was 0.157µm/pixel in x andy
and 1µm/pixel in z, resulting in an imaged volume of size
80 × 80 × 15 µm.

Sequences of 20 3-D frames were acquired at a rate of
one frame per 16 seconds, and such sequences were captured
at timest < 0, t = 10 min, t = 40 min, andt = 60 min,
where a treatment was (in some cases) introduced to the cells
at time t = 0. Two different treatments were used in these
experiments: Jasplakinolide, a cell permeable actin stabilizer,
and Blebbistatin, a cell permeable Myosin II inhibitor. These
drugs were used to study the role of the actin cytoskeleton
in centrosome and somal motility. Each of these drugs was
used in three of the experiments. In order to create a control
set, three additional experiments were conducted in which
no drug was introduced.

IV. RESULTS

We applied our algorithm to sequences from the nine
experiments described above. In order to illustrate the output
of our algorithm, we first show examples of computed
centrosome tracks for a 20-frame sequence prior to being
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Fig. 4. Centrosome tracks from a single sequence: (a) whole volume in 3-D;
(b) zoomed view of a single track in 3-D; (c) track starting points projected
onto x-y plane and superimposed on first frame of sequence. Shadows are
shown on thex-y plane for shape emphasis.

TABLE I

TOTAL NUMBER OF CENTROSOMES TRACKED

Treatment
Blebbistatin Jasplakinolide control set

Proposed algorithm 552 318 395
Manual segmentation 559 471 542

treated with Blebbistatin. 3-D centrosome tracks within the
volume are shown in Figs. 4(a) and 4(b). In Fig. 4(c),
we show the initial centrosome positions in thex-y plane
superimposed onto the maximum intensity projection (over
z) of the first frame of the sequence.

We compared the results of our algorithm with those
generated from manual segmentation and tracking of the
centrosomes by neurobiologists. Because manual data about
individual centrosome positions was not available, we were
only able to compare aggregate velocity measurements.
There are two main factors that account for discrepancies
between the results: (1) the manual measurements were
performed on 2-D projection images rather than the 3-D
volumes themselves, thus ignoring one dimension of motion;
(2) the manual segmentation discarded centrosomes that were
not contained within the soma. Table I shows the total
number of centrosomes tracked over all sequences for each
treatment. Our algorithm tended to reject many low-contrast
centrosomes that were identified in the manual segmentation,
resulting in fewer tracked centrosomes on average. We
computed average velocity and peak velocity averaged over
all centrosomes at each time step for the different treatment
types, shown in Fig. 5 for comparison.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm for detecting and tracking
centrosomes in 3-D time-lapse imagery. Although we tracked
fewer centrosomes than were tracked manually, we were able
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Fig. 5. Plots of centrosome average speed and peak speed averaged over all
centrosomes in each treatment type: versus experiment time: (a), (c) results
produced by the new algorithm; (b), (d) manual results. Times onthex-axis
are denoted by 1 (t < 0), 2 (t = 10 min), 3 (t = 40 min), and 4 (t = 60

min).

to sample and track the population such that our aggregate
motion metrics agree with manually generated aggregate
results to within 13% for average centrosome speed and
to within 34% for peak centrosome speed. In these studies,
such metrics are of greater importance from an experimental
standpoint than the individual tracks themselves. Thus, we
believe that our proposed algorithm would be useful to neu-
robiologists in analyzing the large volumes of data necessary
for advancing the study of neuronal migration.

In order to more fully study cell migration from a bi-
ological perspective, it is necessary to examine not only
centrosome motion but also the motion of the cell bodies
themselves. In this work, we focused only on centrosome
motion; thus, it will be of interest in future work to perform
automatic segmentation and tracking of cell somas in the
same time-lapse imagery. Furthermore, centrosome motion
should be correlated with the motion of their respective soma
in order to make observations about predictive behavior and
develop biological models.
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