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Abstract— In order to facilitate the study of neuron migra-
tion, we propose a method for 3-D detection and tracking of
centrosomes in time-lapse confocal image stacks of live neuron
cells. We combine Laplacian-based blob detection, adaptive
thresholding, and the extraction of scale and roundness featuse
to find centrosome-like objects in each frame. We link these
detections using the joint probabilistic data association filter
(JPDAF) tracking algorithm with a Newtonian state-space
model tailored to the motion characteristics of centrosomes
in live neurons. We apply our algorithm to image sequences
containing multiple cells, some of which had been treated with
motion-inhibiting drugs. We provide qualitative results and
quantitative comparisons to manual segmentation and tracking
results showing that our average motion estimates agree to
within 13% of those computed manually by neurobiologists.

. INTRODUCTION

Recent advances in fluorescence microscopy have enable
biologists to image cellular and subcelluar dynamic preess
in live cells with the use of florescent protein tagging. Neu-
ronal cell migration is one such biological process in which
time-lapse 3-D imaging has played a key role. Recently,

the centrosome, an organelle that plays a role in mitosis,
has been shown to also act as a predictor of neuronal c
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Elg. 1. Maximum intensity projections overof a 3-D centrosome volume

migration and possibly a coordinator of cytoskeletal dynamy two different time points: (a)-(b) = 0 minutes; (c)-(d)t = 40 minutes.
ics in the neuron; moreover, certain drugs have been showagions of (a) and (c) delineated by boxes are enlarged irarh) (d).

to inhibit centrosome motion and neuronal migration [1]

Thus, neurobiologists are interested in tracking centreso

Individual centrosomes are indicated with arrows. Mignataf the bright
cell soma in the middle of (a) and (c) can be seen by comparin@siipn
across the two images. Note the relatively low brightneshefdelineated

in a live cell and examining the motion characteristics witlgell in (a) and (c), whose detail can be seen when rescalebl)iand (d).
respect to both overall cell motion and the introductiorf "€ images in (a) and (c) are approx. & in width and height.

of various drugs. Due to the slow and laborious nature of

manual analysis, automated computational methods tdilore

to specific biological phenomena and imaging modalitieeppearance and motion characteristics of different sirast
are needed to address the high throughput of these imagivgfy widely, and thus a method developed for one type of

systems.

structure will not likely translate well to other structare

Automated tracking of subcellular structures in confocaf particle filtering method, which decouples the traditibna
imagery has been addressed in the literature [2]; however, tdetection and tracking stages, has been proposed by Smal
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et al. [3] for tracking microtubules, which appear as small,
elongated bright spots very different in appearance from
centrosomes. This method utilizes probabilistic appearan
models of the microtubules derived from the underlying
physics of microscopic image formation. Rogetsal. [4]
attempt to track subcellular particles of varying size byt

a 2-D polynomial model to the appearance of each structure
and discriminating based on the model parameters; however,
bfcause this method allows a great deal of freedom in the
shape of tracked particles, we would expect it to follow many
non-centrosome objects in our data.

In this paper, we propose a method for detecting and track-
ing centrosomes tagged with green fluorescent protein (GFP)



in time-lapse 3-D confocal image stacks. Our approach 53
consists of detecting candidate centrosomes, computstg di «®
criminatory features based on the appearance charaicterist ..
of typical centrosomes to refine this set of detections, ancs
applying a robust multi-target tracking algorithm known as **
the joint probabilistic data association filter (JPDAF) {5] ...
link the detections. We show the results of applying our «
algorithm to a set of time-lapse 3-D image sequences 0™ g o oo n
mouse cerebellar granule cells treated with various drags a @) (b)

imaged with a spinning disk confocal microscope.

Fig. 2. Example of centrosome detection: (a) adaptive thidshmage just

before comparing td" (Eq. 1); (b) detected candidate centrosomes using
Il. TECHNICAL APPROACH threshold equal to 10. The refined set of detection after dness- and

Our approach to automated centrosome motion analysig?le-based filtering is shown in Fig. 4(c).
may be divided into two stages: (1) detection, and (2)
tracking. The goal of the detection stage is to locate all
centrosome-like objects in each frame of the time sequence.
The tracking stage then attempts to connect these detsction
to form coherent tracks. The details of each stage are
illustrated in Figure 1 and outlined below.

A. Centrosome detection 5 10 15 5 10 15

In the detection stage, we first compress the 3-D volume @p =098 (b) p=0.91

at each time step into a single 2-D image by computing @g. 3. Examples of roundness metrics computed for two diffepatterns
maximum intensity projection along thedimension. There using (3).

are two reasons for working in 2-D for the detection stage:

(1) computation is greatly reduced compared to 3-D, and (2)

the resolution inz was significantly lower than that aof and Because centrosomes typically appear as round sphere-
y in our datasets, which would necessitate interpolation in like objects in our imagery, we use the local roundness of
in order to compute certain features. It should be noted thggch candidate detection as a discriminative feature.|Loca
we later utilize the full volume to compute 3-D centrosomdoundness in 2-D can be defined as the constancy of a
positions. pattern along various concentric circles centered about a

We apply a Laplacian filter to this image, which helpsgiven point. We measure local roundness by first computing
to accentuate small, bright, circularly-shaped regionthn the rotational autocorrelation of the candidate centrasom
image [6]. We apply an adaptive threshold to the filtere@attern as follows. Le¥(r,6) denote the local 2-D pattern
image by first computing the meanand standard deviation in polar coordinates, centered about the detection lacatio
o of the intensity values in a small window of si2&, x N, ~ We define the rotational autocorrelation functiti ;(¢) of
surrounding each pixel. We exclude a smaller window of by the following equation:
size N; x N around the peak in this computation in order 21 pr

X P P T £ 0)f(r,6 — $yrdrdd

to prevent the peak itself from contributing to the window Ry(9) L )
statistics. Each pixel location whose valués such that Jo " [ 12 (r, 0)rdrdd
VTHE 1) where r; and r, are the inner and outer radii between
o which the pattern is considered. Using this function, we

for some threshold" is declared to be a candidate centrothen compute a roundness metrigiven by the following
some location. We uselfp, = 30 and N; = 12 in our work. ~ equation:
We refine this set of detections by computing two ad- 1 27
pilf %/0 Rff(ﬂ)da

ditional metrics for each candidate centrosome: (1) object (3)
size and (2) local roundness. Object size is measured by

computing a scale-space representation of the pattemmi@ki The integral in (3) essentially measures the variance of
the approach of Bretzner and Lindeberg [7]. Specifically, foRs;(¢) (with an assumed mean of 1). For a perfectly
each candidate centrosome, we project the pattern onto a $®und” object, p would evaluate to 1, since the variance
quence of 2-D Laplacian-of-Gaussian operators at inangasiwould be 0; on the other hand, for a random pattétp; (¢)

o values. We then find the valug, at which the projection would approach a delta function andwould be close to
is minimized (most negative). By ¢ (o1, ox] for the scale zero. We compare this roundness metric to a threstgld
range defined by the limits;, andoy, then the detection is and discard the detection jf < T,. In our work, we used
discarded. In this work, we foun@,oq) = (1,8) towork T, = 0.92 and (r1,72) = (0.2,4.0) pixels. Examples of
well. roundness values are shown in Fig. 3.



For each remaining detection, we compute thgosition The observatior;, = [ 2’ ¢’ 2’ | our state-space model is
by first extracting the column of intensity values at thegiven by
correspondingx, y) location from the original volume. We z, = Hxy + vy 9)
then upsample this signal by a factor of 8 and smooth
using sinc interpolation. The-position of the centrosome Wwhere
is then taken to be the location where this signal reaches its
maximum. It should be noted that this approach would faind

vi, ~ N(0,02 13), (10)

to detect multiple centrosomes centered at the same) 100000
location in the volume, and a more elaborate method should H=10 102000 (11)
be used to detect multiple centrosomes at a givery) 001000

location if overlap inz is suspected. The variables’, v/, andz’ are the observed 3-D coordinates

B. Centrosome tracking of the centrosome, and?, is the variance of the measure-
ent noise resulting from small errors in locating the cente

Once we have the detections for each frame, we then ta
the centrosome.

the following approach to tracking the objects. Based on the

assumption that no centrosome will jump by more than fi \1\_/6 |rt1;;uajl\|[ze ihe tr?clge_r r\1At”tht sts_rtlntg ;ocatlonshby se-
predefined distancé between any two consecutive frames,ec ing the V' (at most) brightest objects from each group

we first partition the set of all detections over the entir f detections Il<n thﬁ first framﬁ of the sequer?c_e (w_e found
sequence such that the Euclidean distance between any y 8:‘]'63512’0;' (\;\;?[h)rﬁ'::(; rﬁaﬁte;a{ﬁlgt artozgtk:) ilittlmoef |rr:]slgr;td
detections from different groups is greater thanWe then q el d'g ina th I'kpl'h d fhp i f 'Iyd det
apply the well-known JPDAF tracking algorithm [5] to each etection, indicating the likelihood of having failed tot

group of detections, which is designed to handle multipl

gqe target in the current frame. In our implementation, we
targets, missed detections, false alarms, and measurem%eﬁve a track if this probability is greater than 0.5 for fou
noise.

consecutive frames. In future work, the initializationgsta
The JPDAF algorithm requires a user-defined state-spagzeay be improved by utilizing more than just the first frame
model that describes the motion of the objects to be tracke

I case a detection was missed in that frame.
In our time-lapse sequences, we observed that the motion 1. DATA

of c?ntr?somes seems | to be d cha;gctetrlzed Vl:\)/y tl;urstfs 01Elmage data was collected from nine separate experiments,
acceleration in (seemingly) random directions. We theee O where each experiment was designed to capture time-lapse

employed a Newtonian 3-D motion model that provides; i 0ery of a culture of cerebellar granule neurons

for random acceleration i, y, and = characterized by (cGNs) over the course of several hours. The CGNs were
independent Gaussian random variables. The state upd ured in conditions that supported cellular motilityyda

and observation equations for our model are as follows. L%ﬁw expression vector was introduced to the CGNs to encode

x denote the state vector the centrosomes. At specified times during the experiment, a
x=[zyzayz]", (4) sequence of 3-D volumes of siz&2 x 512 x 15 voxels was
L . . . . imaged using a Marianas spinning disk confocal microscope.
where z, g, and z are the velocities in the respectiveThg regolution of the volume was 0.15/pixel in z andy
directions. Then the state; at time is updated as and 1um/pixel in z, resulting in an imaged volume of size

xp = Fxp_1 + Gwy (5) 80 x80x15 um.
Sequences of 20 3-D frames were acquired at a rate of
where one frame per 16 seconds, and such sequences were captured
wi ~ N(0,I3), (6)  at timest < 0, t = 10 min, t = 40 min, and¢ = 60 min,
I; At-I4 where a treatment was (in some cases) introduced to the cells
L { 05 I3 } ) (") " at timet = 0. Two different treatments were used in these

d experiments: Jasplakinolide, a cell permeable actinl&tahi
an A2 and Blebbistatin, a cell permeable Myosin Il inhibitor. ke
5 13 I3 .
G =o0, +0on (8)  drugs were used to study the role of the actin cytoskeleton
_ _ _ _ _ in centrosome and somal motility. Each of these drugs was
whereI; is the 3 x 3 identity matrix and0; is the 3 x 3 used in three of the experiments. In order to create a control

matrix of zeros. In (8)¢7 ando, are the variances of the ran- set, three additional experiments were conducted in which
dom acceleration and an additional position “noise” factoho drug was introduced.

respectively, undergone by each centrosome imthg and

z directions. Strictly speaking, a random acceleration rhode IV. RESULTS

alone (supplied by the, term) should allow for any change We applied our algorithm to sequences from the nine
in centrosome position; nevertheless, including dheterm  experiments described above. In order to illustrate thpudut
instinctively provides a better model for describing smalbf our algorithm, we first show examples of computed
“vibrating” motions observed in many of the centrosomes.centrosome tracks for a 20-frame sequence prior to being
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Fig. 5. Plots of centrosome average speed and peak speedeverzer all
centrosomes in each treatment type: versus experiment timécfagsults
produced by the new algorithm; (b), (d) manual results. Timether-axis
are denoted by 1¢(< 0), 2 (¢ = 10 min), 3 ¢ = 40 min), and 4 { = 60
min).
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Fig. 4. Centrosome tracks from a single sequence: (a) whélenein 3-D; :
(b) zoomed view of a single track in 3-D; (c) track startingrgsiprojected to sf’:\mple ar.]d track the populatlon such that our aggregate
onto z-y plane and superimposed on first frame of sequence. Shadows 4ROtion metrics agree with manually generated aggregate
shown on ther-y plane for shape emphasis. results to within 13% for average centrosome speed and

to within 34% for peak centrosome speed. In these studies,
such metrics are of greater importance from an experimental
standpoint than the individual tracks themselves. Thus, we

TABLE |
TOTAL NUMBER OF CENTROSOMES TRACKED

Treatment believe that our proposed algorithm would be useful to neu-
Blebbistatin | Jasplakinolide| control set]  rghjplogists in analyzing the large volumes of data neagssa
Proposed algorithm 552 318 395 ; ; ;
Manual segmentafion £E5 T £ for advancing the study of neuronal migration.

In order to more fully study cell migration from a bi-
ological perspective, it is necessary to examine not only

treated with Blebbistatin. 3-D centrosome tracks withia th CENtrosome motion but also the motion of the cell bodies
volume are shown in Figs. 4(a) and 4(b). In Fig. 4(C)themselves. In this work, we focused only on centrosome
we show the initial centrosome positions in they plane motion; thus, it will be of interest in future work to perform

superimposed onto the maximum intensity projection (ovefutomatic segmentation and tracking of cell somas in the
2) of the first frame of the sequence. same time-lapse imagery. Furthermore, centrosome motion

We compared the results of our algorithm with thosshould be correlated with the motion of their respective om
generated from manual segmentation and tracking of it order to make observations about predictive behavior and

centrosomes by neurobiologists. Because manual data ab@GYelop biological models.
individual centrosome positions was not available, we were REFERENCES
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