
  

 

Abstract—In this work we report on a method for lesion 
segmentation based on the morphological reconstruction 
methods of Sbeh et. al.  We adapt the method to include 
segmentation of dark lesions with a given vasculature 
segmentation.  The segmentation is performed at a variety of 
scales determined using ground-truth data.  Since the method 
tends to over-segment imagery, ground-truth data was used to 
create post-processing filters to separate nuisance blobs from 
true lesions.  The segmentation results are used to characterize 
images as “normal” or “abnormal” and results are shown on a 
data set of 86 images. 

 

I. INTRODUCTION 
HE World Health Organization estimates that 135 
million people have diabetes mellitus worldwide and 
that this number will increase to 300 million by the year 

2025 [1]. More than 18 million Americans currently have 
diabetes and the number of adults with the disease is 
projected to more than double by the year 2050 [2]. Visual 
disability and blindness have a profound socioeconomic 
impact upon the diabetic population and diabetic retinopathy 
(DR) is the leading cause of new blindness in working-age 
adults in the industrialized world [3]. Thus, there is a 
significant need to develop inexpensive, broad-based 
screening programs for DR.  
 
An excellent overview of computer aided diagnosis of retina 
images is provided in [4], which summarizes the image 
segmentation as a two-step process: identifying the expected 
physiological features of the retina, and identifying the 
pathology of the retina, including micro-aneurysm 
segmentation, and exudates and hemorrhage segmentation.  
In this paper we focus on the detection of the presence and 
characteristics of lesions, particularly in the region near the 
center of the retina (the fovea).  Our objective is to develop 
algorithms to automatically characterize the retina, 
particularly its lesions and the overall population of lesions, 
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for use in content-based image retrieval applications.  We 
begin by discussing our algorithm approach which is based 
on the morphological reconstruction method of [5] and 
discussing our modifications and feature measurements for 
post-processing including the use of ground-truth data. In the 
results section we discuss the data sets tested and the 
performance of the segmentation algorithms and 
characterization measurements.  We conclude with some 
observations about the performance and expected future 
development. 

II. APPROACH 

A. Morphological Reconstruction Overview 
In [5] the morphological reconstruction method described 

was used to segment drusen.  The algorithm worked 
particularly well for this type of lesion due to its high 
adaptability to local contrast changes.  We were interested in 
applying this algorithm to a variety of lesion types including 
microaneurysms, hemorrhages, and exudates.  We 
summarize the approach taken by [5] as follows.  First an 
image is pre-processed by determining the region of interest, 
usually the fovea area (the center of the eye, where most 
vision receptors are located) and cropping this section.  
Noise filtering is performed by median filtering and 
smoothing filtering.  The regional maxima of order λ and 
regional minima of order γ are determined (they generally 
assume λ ≥ γ ).  These are used to create the relative support 
of each regional maximum, essentially a neighborhood 
surrounding each regional maximum up to nearby regional 
minima.  A synthetic image h(x) is created where the relative 
support is “filled in” by the relative dynamics, in essence the 
difference between the intensity of the regional maximum 
and the intensity of the closest regional minimum.  The 
regional maxima of h(x) of order β are found next, and are 
taken to be the candidate contours of the drusen.   

 

B. Algorithm Modifications 
For our implementation we used a vascular segmentation 
based on [7] to mask out regional minima in the bright 
segmentation step that happened to fall within the 
vasculature.  The idea behind this move was to allow better 
segmentation of lesions that may have vessels running 
through them.  
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We adapted the method to segment dark lesions by inverting 
the image and applying the algorithm as described.  In the 
dark segmentation step, after inversion we remove the 
regional maxima that fall within the vasculature.  However, a 
post-processing step is introduced where blobs are removed 
that are close to the vasculature by masking with a dilated 
version of the vasculature map.  This step was introduced 
because a large number of small dark blobs were created 
around the vasculature due to missed pixels in the 
vasculature segmentation. 

C. Parameter selection 
Some efforts to automate the parameter selection were 
desired.  We selected a variety of settings for (λ,β,γ) which 
we refer to as different scales.  These scale settings were 
compared to our ground-truthed image set with the hope of 
finding optimal scales for different lesion types.   The mutual 
area overlap was chosen as the metric for good 
segmentation, then for each lesion type, the median mutual 
overlap was computed at each scale.  Note that cases where 
the lesion was missed or oversegmented were not included in 
the calculation; only those machine-segmented lesions that 
intersected at least one pixel of a ground-truth lesion were 
used.   

D.  Post-processing 
Processing is performed after the segmentation step to 
remove nuisance blobs.  In [5] some simple rule-based 
methods were used based on features of the blobs.  In our 
case, we attempted to use ground-truth data to design 
classifiers to separate lesions into nuisance and actual lesion 
classes.  However, ground-truthing is a laborious manual 
task and inevitably did not always correlate well with 
machine segmentations.  For example, confluent drusen that 
were close together were often grouped together as a single 
lesion during ground-truthing, but machine segmentation 
typically separated them into smaller, yet still distinct and 
well-defined groups (see Figure 1 as an example).  As 
another example, it was not uncommon for some lesions to 
be inadvertently omitted during the ground-truth process.  
This led to issues where the post-processing classifier could 
become confused because, for example, a machine-
segmented microaneurysm that was not identified as a 
ground-truth lesion would present the classifier training set 
with an ambiguous example.  To mitigate these issues, two 
steps were taken.  First, only the images that were classified 
as “normal” with no lesions were used for examples of 
nuisance blobs.  Second, only machine segmented lesions 
that had significant mutual area overlap with ground-truth 
lesions were chosen as examples of actual lesions.  The 
machine segmented lesions that closely matched the ground-
truth lesions were selected by hand as good “positive” 
examples of actual lesions by reviewing the machine 
segmentation results on abnormal images.  Finally, note that 
it is possible that even with these steps, ambiguity could be 
introduced in the ground truthing such as failing to label 
lesions on an image classified as “normal”.   

To characterize each lesion, a set of 43 gray-scale features 
were measured on each machine-segmented lesion.  The 
extension to color is straightforward but our initial data set 
was gray-scale only so we restricted our development to 
intensity levels.   The data was projected using principle 
component analysis to retain 90% of the information, then a 
simple Bayesian classifier using a Gaussian probability 
density function was created to distinguish between the two 
classes of “nuisance blob” (NB) and “actual lesion” (AL), 
with different classifiers trained for the dark and bright 
blobs.   

III. EXPERIMENTS 
The data set for this work was a subset of those images used 
in [6, 8] and was composed of 86 retinal images.  These 
images were ground-truthed with lesions hand-drawn in the 
macular region.  The entire set of 370 images were ground-
truthed by one of us (E.C.), but for this work we restricted 
the set to those 86 that were either normal with no lesions, or 
abnormal and contained only lesion types of interest (soft 
and hard drusen, exudates, cotton wool spots, hemorrhages, 
flame hemorrhages, and microaneurysms).  The images were 
captured at a resolution of 12 microns per pixel.  Note that 
this image set represents an actual population from an 
ophthalmology practice, so we should point out that these 
represent individuals who have sought medical attention and 
are likely more advanced with respect to their DR and AMD 
variability than real broad-based screening data may 
encompass.  Of the 86, 27 were normal, 35 had AMD in 
various stages, and the remaining 24 were NPDR or PDR in 
various stages. 
 

 
 
Fig. 1.  Example of ground truth image with discrete drusen grouped 
together.  The machine segmentation algorithm tends to break these 
up into discrete lesions. 
 



  

The initial parameter selection process was performed on 
the set of 86.  The chosen parameters were then used for the 
remaining experiments.  However, the actual tests of post-
processing were performed by using hold-one-out analysis 
whereby a single image is removed from the data set, the 
classifiers are retrained on the remaining data, then the held-
out image is tested.  All experiments were performed using 
software created in the MATLAB programming environment 
on a standard desktop PC. 

A. Parameter Selection using Mutual Overlap 
The parameters of (λ,β,γ) used shown in Table I below.  To 
save processing time, the larger scales were created by 
resizing the image itself so that an additional parameter, s for 
image resize factor is included as well.  This effectively 
increases the size of the reconstruction kernels without 
requiring a corresponding increase in the processing time. 

 
The results of the mutual area overlap on the 86 data set 

are shown in Figures 2 for the bright lesions and dark 
lesions.  The bright scale 5 is effective at capturing the 
content of the bright lesions, although hard drusen seem to 
work better at scale 4.  Bright scale 6 seems to do the best 
job of segmenting microaneurysms, but we also see that 
scale 5 is effective as well at hemorrhages.   Flame 
hemorrhages worked best at scale 3, but they were regarded 
as somewhat minor to the other types so we focused on scale 
5 bright, and scale 5 and 6 for the dark lesions.  We elected 
to create a single machine-segmented image by using a 
combination of parameters: scale 5 bright blobs, the scale 5 
dark blobs, and then scale 6 dark blobs that do not overlap 
with scale 5 dark blobs.  This combination was arrived 
through a somewhat heuristic process based on the overlap 
between ground-truth and machine-segmented lesions. 

B. Post Processing Performance 
The post-processing performance in terms of removing 
nuisance blobs had a maximum sensitivity/specificity of 90% 
/ 90% for both the bright and dark lesions.  This was 
measured by performing the hold-one-out analysis on an 
image-by-image basis.   The PCA projection reduced the 
feature dimensionality from 43 to 6 and 7 for bright and dark 
blob classifiers respectively.  Receiver operating 
characteristics curves are shown in Figure 3 for the bright 
and dark blob cases.  Some example images are shown with 
the ground truth, machine segmented, and post-processed 
results from left to right.   

 
 

 

C. Classification of Images into Abnormal/Normal 
We were interested in how the performance of the lesion 
segmentation post-processing would affect the overall 
classification of images into normal / abnormal classes 
(where AMD and DR are combined into the abnormal state).  
The image retrieval context of [8] was used in this 
experiment with a value of σ=0 meaning no data is rejected 
due to ambiguity between classifications.  Each image was 
characterized using a “lesion population” feature vector 
comprised of 34 values which were essentially histograms of 

TABLE I 
PARAMETERS FOR MORPHOLOGICAL RECONSTRUCTION AND SCALES 

Scale λ,β,γ Size 
1 29 0.25 
2 15 0.25 
3 5 0.25 
4 1 0.25 

5 1 0.5 
6 1 1 
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Fig. 2.  Mutual overlap with different scales.  Top: Bright lesions 
Bottom: Dark lesions (including microaneurysms) 
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Fig. 3.  ROC curve for classification of nuisance blob / automatic 
lesion for bright (blue) and dark ( magenta ) blob types.  Both curves 
showed best performance at 90% sensitivity and 90% specificity (or 
10% false alarm). 
 



  

the lesions characteristics such as area, intensity, contrast.  In 
addition, 6 features were measured as well on non-lesion 
background.  Clearly, if the post-processing leaves too many 
nuisance blobs, normal example images will appear to have 
many lesions but the hope is that their overall population as 
measured by the lesion population features will allow some 
discrimination between normal and abnormal.  

Eight different combinations of NB/AL sensitivity / 
specificity were tested.  The best achieved sensitivity / 
specificity in the two-class problem of normal and abnormal 
was 88% / 67%.  When the features were simply the number 

of bright and dark lesions, the best performance was slightly 
better, at 88% / 70%. Both results suggest that some level of 
robustness to segmentation inaccuracies can be attained.  We 
are optimistic this performance will be improved with more 
realistic data sets (such as those from a more general 
population). 

IV. CONCLUSIONS 
In this work we used the morphological reconstruction 
method of [5] to perform segmentation of a variety of bright 
and dark lesion types on retina images.  We used ground-
truth data to design post-processing classifiers that separated 
the machine-segmented results into nuisance and actual 
lesion classes.  Our results were encouraging with respect to 
removing nuisance blobs, but additional efforts will be 
needed to determine how effective this approach will be 
overall in predicting retina health in our content-based image 
retrieval context.  Future work includes extension to color 
imagery, better classification features for the post-processing 
steps and application to a larger, more realistic screening 
data set [10,11]. 
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Fig. 4.  Example of ground truth, machine segmented, and 
postprocessed image. (Top) Ground truth lesions (Middle) 
Segmentation without post-processing.  Some blobs are clearly 
oversegmented but some may be legitimate lesions (Bottom)  
Postprocessed result.  Many oversegmented blobs are gone but some 
false positives remain, such as the elongated blob at the middle / 
bottom of the image. 
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