
Deep Spatiotemporal Feature Learning with
Application to Image Classification

Thomas P. Karnowski
Image Science and Machine Vision Group

Oak Ridge National Laboratory
Oak Ridge, TN, 37831

Email: karnowskitp@ornl.gov

Itamar Arel, Derek Rose
Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, TN, 37996

Email: itamar@ieee.org, derek@utk.edu

Abstract—Deep machine learning is an emerging framework
for dealing with complex high-dimensionality data in a hierarchi-
cal fashion which draws some inspiration from biological sources.
Despite the notable progress made in the field, there remains a
need for an architecture that can represent temporal information
with the same ease that spatial information is discovered. In
this work, we present new results using a recently introduced
deep learning architecture called Deep Spatio-Temporal Inference
Network (DeSTIN). DeSTIN is a discriminative deep learning
architecture that combines concepts from unsupervised learning
for dynamic pattern representation together with Bayesian in-
ference. In DeSTIN the spatiotemporal dependencies that exist
within the observations are modeled inherently in an unguided
manner. Each node models the inputs by means of clustering
and simple dynamics modeling while it constructs a belief state
over the distribution of sequences using Bayesian inference. We
demonstrate that information from the different layers of this
hierarchical system can be extracted and utilized for the purpose
of pattern classification. Earlier simulation results indicated that
the framework is highly promising, consequently in this work
we expand DeSTIN to a popular problem, the MNIST data set
of handwritten digits. The system as a preprocessor to a neural
network achieves a recognition accuracy of 97.98% on this data
set. We further show related experimental results pertaining to
automatic cluster adaptation and termination.
Index Terms—deep learning; biologically-inspired computing;

online clustering;

I. INTRODUCTION

Deep machine learning (DML) is an emerging framework
for dealing with complex data in a hierarchical fashion which
draws some inspiration from biological sources. Bengio,
in [1], provides a comprehensive overview of deep learning
theory, where a deep architecture is defined as "composed
of multiple levels of non-linear operations, such as in neural
nets with many hidden layers or in complicated propositional
formulae re-using many sub-formulae." The use of multiple
levels of operations can greatly simplify the computational
load of a learning architecture, provided it can be successfully
trained and optimized for the problem at hand. Two fairly
recent deep learning architectures of note are Convolutional
Neural Networks (CNNs) [2] and Deep Belief Networks
(DBNs) [3]. Convolutional neural networks are discriminative
connectionist models designed to operate directly on observed
images without preprocessing. They have been proven robust
against noise and (reasonable levels of) geometric distortion or

transformation in the context of image classification. DBNs
are probabilistic generative models that are composed of mul-
tiple layers of stochastic, latent variables; traditionally DBNs
lack the ability to combine unsupervised learning with super-
vised learning in a manner that allows unlabeled observations
to be learned and represented independently of labeled ones.
Recent work by [4] [5] has made great strides in scaling both
unsupervised and semi-supervised learning in DBNs, though
training of these models remains computationally costly.
In addition, recent neuroscience findings suggest that the

neocortex itself has a hierarchical nature of identical building
blocks or cortical circuits [6]. Such structure facilitates
effective learning and interpretation of sensory information,
particularly in the context of capturing spatiotemporal de-
pendencies. As in deep learning, the core assumption is that
by partitioning high-dimensional sensory signals into smaller
segments and modeling those based on regularities in the
observations, a scalable system emerges which is capable of
dealing with the virtually infinite (though structurally bound)
amount of information mammals are exposed to over time.
Physiologically supported by research in the visual area of
the cortex [7], work in [8] has introduced a distinct generative
Bayesian inference model. Other biologically inspired work
includes [9], [10], [11] among others.
Thus the concept of partitioning large data structures into

smaller, more manageable units, and discovering the depen-
dencies that may or may not exist between such units, is very
promising. However, there remains a need for an architecture
that can represent temporal information with the same ease
in which spatial structure is discovered. Moreover, some key
constraints are imposed on the learning schemes driving these
architectures, namely the need for layer-by-layer training, and
often times pre-training. In this work, we present results from
a novel deep learning architecture, the Deep Spatio-Temporal
Inference Network (DeSTIN). As presented in earlier work
[12] and [13], DeSTIN is a novel discriminative deep learning
architecture that combines concepts from unsupervised learn-
ing for dynamic pattern representation together with Bayesian
inference. In DeSTIN the spatiotemporal dependencies that
exist within the observations are modeled inherently in an un-
guided manner. Each node in the hierarchy models the inputs
by means of clustering and simple dynamics modeling, while



it constructs a belief state over the distribution of sequences
using Bayesian inference. We demonstrate that information
from the different layers of this hierarchical system can be
extracted and utilized for the purpose of pattern classification.
In this work we expand DeSTIN to a popular problem, the
MNIST data set of handwritten digits [14], which is widely
used for various machine learning algorithms.
In the following sections we review core concepts pertaining

to the DeSTIN architecture. We discuss the main learning
mechanisms along with key metrics and parameters for formu-
lating those mechanisms. We then discuss the experimental
configuration for the MNIST data set and show results from
using DeSTIN as a feature extraction engine for the problem
set. Finally, we conclude with discussion and summary of
projected future directions for our work.

II. TECHNICAL APPROACH
We summarize the key elements of DeSTIN here and

refer to [12] and [13] for more detail. The architecture
contains a hierarchy of layers whereby each layer consists of
multiple instantiations of an identical circuit or node. Each
node observes and learns to represent a temporal sequence
of patterns. The lowest layer of the hierarchy processes
temporally changing input data, such as image pixels, and
over time continuously constructs a belief state that attempts
to characterize the sequences of patterns viewed. The second
layer, and all those above it, receive as input the belief states
of nodes at their corresponding lower layers, and attempt
to construct belief states that capture regularities in their
inputs. The architecture thus forms as outputs at each node
hierarchical belief states across all its layers which captures
both spatial and temporal regularities in the data - a novel, key
advantage over existing deep learning schemes. These outputs
can be fed to a supervised learning algorithm (such as a neural
network) to perform classification. In addition, since each
node is identical, the architecture can be mapped to parallel
computational platforms such as graphics processing units.
The overall processing is simple and does not rely on large
amounts of memory which makes it tractable for hardware-
oriented approaches as well. Each node in DeSTIN maps
its current belief and observation to a new belief state that
thus reflects a longer temporal pattern or sequence. Finally,
feedback from the upper-layer (or parent) node is received and
utilized in the formulation of the belief state.
The fundamental belief update rule of DeSTIN was derived

in [12] and is given as

b′(s′) =

Pr(o|s′)
∑

s′∈S
Pr(s′|s, a)b(s)

∑

s′′∈S
Pr(o|s′′)

∑

s′∈S
Pr(s′′|s, a)b(s)

(1)

which maps the current observation o, the belief b (with
argument the system state s) and the belief state or advice
of a higher-layer node a, to a new (updated) belief and
state b′(s′) at the next time step. The denominator term is
essentially a normalization factor. One interpretation of this

equation is that the (static) pattern similarity metric, Pr(o|s′),
is modulated by a construct that reflects the system dynamics,∑

s′∈S
Pr(s′|s, a)b(s). (For shorthand, the latter is denoted as

PSSA.) As such, the belief state inherently captures both
spatial and temporal information and these two constructs are
the main items which must be learned from the data. The
former is learned using online clustering, while the latter is
learned from experience by adjusting of the parameters with
each transition from s to s′ given a. In past implementations,
the advice or belief of the parent node, a, was chosen using
the selection rule of a = argmax bp(s)

s

. The result is a robust

framework that autonomously learns to represent complex data
patterns, such as those found in real-life robotics applications
and whose output can be used as a generic feature extractor
for a supervised learning system.
The online clustering algorithm is the core of the learning

process for each node and includes constructs for improving
performance and modulating the learning rate, as discussed
in [15]. The basic clustering algorithm uses the winner-
take-all (WTA) competitive learning approach, however the
centroids are continuously updated online based on the input
observations. Since the goal is to produce a system which can
scale efficiently with simple hardware, it is assumed the system
cannot iterate with the entire data set in memory while con-
verging to the cluster centroids. Also, a finite, fixed number
of centroids are assumed. In competitive learning clustering
algorithms the learning rate is often adjusted to allow trade
offs between faster learning in early phases of iterations and
stability in later phases. Typically the learning rate is adjusted
so that it is monotonically decreasing, for example a decaying
exponential with the decay as a function of iteration. In past
work we have experimented with adaptive learning rates which
worked well for simple problems. Another option is to choose
a constant learning rate. Regardless, the update rule for the
winning centroid x is achieved by

xt+1 = x− α‖x− o‖ (2)

where α represents the learning rate and o is the observation
or input vector. Also incorporated is a "starvation trace"
mechanism, which is used to include clusters which are
initially too far from observations to be updated. The starvation
trace allows idle or starved centroids to accumulate credit over
time when they are not the selected centroid (and lose credit
when they are the selected centroid). The starvation trace is
initialized to a constant vector of length D where D is the
dimensionality of the observation. For each observation where
centroid x is chosen, the non-selected centroids "accumulate
credit" by having their starvation trace value decreased by a
small constant. The starvation trace is employed to weight
the distance calculation and thus render "starved" clusters a
chance to make movement towards data samples. A summary
description of the algorithm is as follows. The estimated
centroids are initialized to random values. A new observation
is then assigned to a single estimated centroid based on the



minimum distance computed by some similarity value such as
Euclidean distance. This distance metric is weighted by the
starvation trace as:

dx = dist(x, o) = ‖x− o‖{1− starvex} (3)

where starvex is the starvation trace. Thus as the starvation
trace increases, the distance metric appears to decrease and
gives the "starved centroid" an opportunity for updates. The
WTA centroid selection simply performs arg minx dx to
select the winning centroid for updates, however the algorithm
always chooses the labeling centroid as the one with closest
distance (without regard to starvation trace).
A set of metrics of interest are the mean and standard

deviation of the changes made in the centroids over time
which can indicate that the centroids have reached a relatively
stable point, as the mean should reach some constant or near-
constant value while the standard deviation gives a measure
of the spread of the vectors that are drawn to that centroid.
A function of these two values generates a single value which
can be used to either adjust the learning rate or terminate
clustering. These values are all computed on-line and are
given by the following formulas where dx is the distance
between an observation and winning centroid x:

μt+1x = aμtx + (1− a)dx (4)

σt+1x = bσtx + (1− b)‖μtx − dx‖ (5)

where a and b are constants less than 1. Both vectors are
initialized by computing the running mean and standard devi-
ation approximation on the initial N updates, where N = 1

a or
N = 1

b as appropriate. Ideally as the winning centroid comes
to represent the actual centroid the value of the mean change
estimate μx should approach 0 (since dx should become
smaller and smaller) and the value of the change standard
deviation estimate σx should also approach 0 (because both dx
and μ should become smaller and smaller). The combination
of the metrics is expressed as

ρ̂(μx, σx) =
2

1 + e−γ
σx

1+μx

− 1 (6)

and this in turn is also windowed as is μx and σx but with
an initial value of unity. These functions will produce small
values when the centroids are not changing or are changing
relatively small amounts, while periods of large change in
centroids will force ρ̂ to be nearly unity.
As a final note, the belief estimate is computed from the

clustering outputs using the equation

b(s) = 1− ds∑

s′′∈S
ds′′

(7)

This expresion takes the distance of centroid s to the input
vector and normalizes by the sum of the distances to all
centroids so when ds is small (i.e., 0) there is high "belief"
that this centroid is the correct one.

Fig. 1. DeSTIN Hierarchy for the MNIST dataset studies. Four layers are
used with 64, 16, 4 and 1 node per layer arranged in a hierarchical manner.
At each node the output belief b(s) at each temporal step is fed to a parent
node. At each temporal step the parent receives input beliefs from four child
nodes to generate its own belief (fed to its parent) and an advice value a
which is fed back to the child nodes.

III. EXPERIMENTS AND RESULTS
Initial verification of the DeSTIN approach [12],[13] used a

very simple study using three different alphabetic characters.
In this work we present the results of DeSTIN analysis of
the MNIST database of handwritten characters [14]. The
dataset consists of 60,000 training images and 10,000 test
images. The best performance of reported machine learning
methods [16] achieve over 99% accuracy, and even simple
machine learning algorithms such as kNN classifier perform
quite well on the dataset (95% accuracy [2]). A fusion of
several different methods and comparison with humans reveals
the best possible performance is likely 99.8% [17] . For
DeSTIN, the MNIST dataset images were padded from 28 x
28 pixels in size to 32 x 32 pixels. A hierarchy of 4 layers of
sizes 8 x 8 nodes, 4 x 4 nodes, 2 x 2 nodes, and a single node
at the top layer was used as depicted in Figure 1. At the lowest
layer each input node is presented a 4 x 4 pixel region of the
input image. Each layer uses a different number of centroids,
choosing 25, 16, 12, and 10 for each layer. The image is
then shifted through a sequence of 64 different movements
which are offset by a single pixel and form a serpentine pattern
and emulate sacchading of the human vision system. The
movement ranged from (0,0) pixels to (7,7) total pixels, so
the input image was padded to cover boundary regions. The
movement pattern was not optimized and may not be the best
sequence for a complete online system that iteratively derives
a best belief for the input image but served as a good case
for initial study. In addition the "PSSA" computation from
equation 1 was omitted; thus the extracted features are from
the clustering performed at different layers in the hierarchy on
the beliefs computed by equation 7.

A. Clustering Metrics
The first experiments used a sampling of the MNIST

training set (every 25th image) and examined the effect of



TABLE I
NUMBER OF UNIQUE VECTORS IN LAYER0 PER ROW,COLUMN FOR CLUSTER METRIC STUDY

0 1 2 3 4 5 6 7

0 1 46 390 1351 2218 1567 431 29
1 120 2145 11680 29383 41219 32262 12306 1687
2 636 9417 40725 81295 98904 79600 34484 5412
3 982 15821 59799 99964 111033 90396 39300 5818
4 925 18497 63472 99299 109267 86724 35705 5068
5 1205 19782 63053 98565 106894 77893 29735 4255
6 857 13428 47881 82299 83252 49171 14828 1794
7 159 3297 15408 29495 27334 12642 2733 275

TABLE II
CLUSTER STOPPING POINTS FOR NODES OF LAYER 0

0 1 2 3 4 5 6 7

0 N N N N N N N N
1 N N N N N N N N
2 N N N 3002 2511 2985 N N
3 N N 3883 2598 2423 2739 N N
4 N N 4808 2715 2383 2980 N N
5 N N 3554 2616 2418 3393 N N
6 N N 4663 2949 3203 N N N
7 N N N N N N N N

TABLE III
CLUSTER STOPPING POINTS FOR NODES OF LAYER 1

0 1 2 3

0 N N 9337 N
1 N 6712 6647 8400
2 N 6751 6642 N
3 N 7092 6898 N

learning rate on the values of μ and ρ for layers 0 and 3.
For layer 0, node (3,4) is reviewed as this node sees the most
variation from the input sequence (see Table I). The top layer
is chosen also as it gives the highest "overview" of the entire
processed sequence. These are plotted in Figures 2 and 3
with the observation number on the x-axis (where there are
64 movements or observations per input MNIST digit) for
learning rates of 0.001 and 0.0001. These plots show that
little is gained in the sense of the clustering stability after
roughly 6000 observations for the first layer. However the
final layer shows that the mean change increases for some
centroids, indicating that they are not in a stable position
but the change relative to the standard deviation indicates
the centroid learning may be reaching a reasonable bounding
value. For the slower learning rate, the value of ρ shows that
the learning takes longer, as expected, since the value of the
largest entry does not reach a comparable level to the faster
rate until around 9000 observations. The value of μ at the top
layer shows more erratic behavior, reaching a plateau around
6000 then increasing throughout the rest of the sequences
before decreasing again after about 10000 observations. This
is likely due to the stabilization of most of the lower level
nodes around 6000 which causes the highest layer to settle

Fig. 2. Top: Mu for learning rate of 0.001. Left is bottom layer, right is top
layer. Bottom: Mu for learning rate of 0.0001. Left is bottom layer, right is
top layer.

Fig. 3. Top: Rho for learning rate of 0.001. Left is bottom layer, right is top
layer. Bottom: Rho for learning rate of 0.0001. Left is bottom layer, right is
top layer.

a bit, but later observations cause additional changes that are
not as well matched and thus the centroids drift again.
An online error was generated by computing the difference

between each input vector and the adjusted, winning centroid.
These plots are shown in Figure 4 for layers 0 and 3 again. A
smoothing window is applied to the plots of size 64. For layer



Fig. 4. Top: error with learning rate at 0.001, with (left) layer 0 and (right)
layer 3. Bottom: error with learning rate at 0.0001, with (left) layer 0 and
(right) layer 3.

0, we see that the error decreases fairly rapidly to a roughly
constant level. For the top layer, we see that a sort of minimum
error is reached rather early in the sequence but the smoothed
error increases to a significantly larger amount than layer 0.
The minimum error is likely where the online clustering has
reached a good match relative to the immature response of
the lower layers. The higher upper level error can be partially
explained from the smaller number of centroids (10 instead of
25) at this layer. With the lower learning rate, we see a similar
behavior for layer 0 although the error decline is slower. The
top layer in the slower learning rate case shows an increase in
the error after reaching a sort of plateau as seen in plots of μ
as well. The error then begins to decline gradually.
In a final experiment the learning rate was adaptively

modified the learning rate and criteria studied to automati-
cally terminate clustering. In this schema, we evaluated the
innermost nodes of the initial layer and all nodes of subsequent
layers. (As shown in Table I, the edge nodes of layer 0 do not
show as much variation.) The learning rate was initialized to
0.001 for layer 0 and 0.0001 for subsequent layers. The mean
across all centroids for ρ was computed at each observation.
When the mean value was less than 0.05, clustering terminates
for the node. When half the nodes were terminated the entire
layer clustering was stopped. The learning rate for the next
layer was then reduced to 0.001 and an additional 1000 non-
monitored digit presentations were performed followed by
renewed monitoring of the value of ρ. This process was
repeated until the top layer clustering was terminated. The
clustering termination point is shown in Tables II and III for
each node. Note that "N" denotes a node that either was not
included or did not finish clustering before half the candidate
notes completed. The top layer stopped at 14050 digits and
layer 2 stopped at 10984 and 11043 digits (nodes (0,1) and
(1,0)). The resulting error plots are shown in Figure 5. The
first layer response is as expected, with the error dropping
quickly to a fairly constant value. The second layer response
is more complex as the error increases initially then slowly

Fig. 5. Error rates for node (3,4) of layer 0, node (1,2) of layer 1, (0,1) of
layer 2, and (0,0) of layer 3 using the adaptive learning rate and automatic
termination of clustering.

drops, settling out around digit presentation 5000. In fact,
the clustering of layer 0 stops adapting after digit presentation
4808, so layer 1 adapts slowly with the slow learning rate,
then the increase in the learning rate does not seem to change
the response much. Layer 1 has its clustering frozen at
presentation 8400 and we see that shortly afterward layer 2
reaches a relative constant value. However, the first 4000 or so
presentations to layer 2 have a very low error rate. In this case,
analysis of the data showed that the reponse was dominated by
a single cluster which closely matched the output of layer 1,
but was somewhat meaningless because layer 1 had not begin
to adapt. Once layer 1 adapts, we see that the error of layer
2 begins to increase to a peak around presentation 4000 and
then it declines as layer 1 stabilizes. A similar phenomena
is shown for the top layer, although its adaptation is not as
pronounced after approximately presentation 12000.

B. Supervised Learning
For the next experiment we used the adjustable clustering

stop criteria described in the previous section. After clustering
terminated for all layers, the entire training set and testing set
was presented to the DeSTIN network and the output belief
states at each of the 64 movements was saved. These were
temporally sampled with a period of 12 and the training set
was used to train a neural network using the MATLAB Neural
Network toolbox. The neural network used two hidden layers
of 40 nodes each and was trained by using the training set
split into a true training set (using 70% of the input images)
and a validation set of 30% to prevent overtraining. The data
set consisted of the nodes of the top 3 layers and the bottom
inner nodes (excluding nodes on the edge of the image). Ten
different network training sequences were used and the results
were combined in a simple voting scheme, with ties resolved
by taking the class with the maximum summed neural network
response. The resulting composite performance was 97.98%
accuracy (2.02% error) as shown in Table IV. We note that our
experimental results are significantly better than a basic kNN



TABLE IV
CONFUSION MATRIX FOR MNIST DATA SET

0 1 2 3 4 5 6 7 8 9 Perf

0 975 1 0 0 0 0 2 1 1 0 99.49%
1 0 1126 1 1 0 1 2 1 3 0 99.21%
2 5 2 1011 4 1 0 0 8 1 0 97.96%
3 0 0 4 988 0 4 0 4 10 0 97.82%
4 0 0 1 0 963 0 4 1 2 11 98.06%
5 2 0 1 4 0 873 4 2 4 2 97.87%
6 3 2 1 0 1 8 939 0 4 0 98.02%
7 1 3 11 2 0 0 0 1004 2 5 97.66%
8 3 0 4 6 4 4 1 5 941 6 96.61%
9 2 3 1 4 6 2 0 4 9 978 96.93%

classifier applied to the image data, but are not at the state-of-
the-art for this data set. Furthermore, running the same neural
network configuration and voting scheme on the raw image
pixels produced a performance of 96.35% so we are confident
DeSTIN is serving as a beneficial feature extractor. Overall,
our results are encouraging and represent a significant step in
validating our approach over our initial test case. We suspect
better performance could be obtained by sampling more of
the movements but our overall focus is more on the online
learning and autonomous aspect of the architecture so we do
not believe this would be useful for our ultimate goals for the
architecture and research.

IV. CONCLUSION

We have presented the concept of a deep learning spatio-
temporal inferencing architecture which is well-suited for
imaging applications. Since earlier work on this architecture
focused on a simple test problem, this work has focused on
testing our concepts on the more complex MNIST data set.
Our results show the system is capable of extracting features
suitable for input to a standard neural network architecture
and delivers good performance. There are still several open
issues. We would like to determine a less heuristic grounds
for cluster termination or adaptive learning rate application. In
addition, for future work, we seek to expand the inferencing
to a more on-line, continuous system which can more readily
focus the results in a temporal sense to a final, stable estimate
of the hidden state. While we do not foresee the absence of
a supervised classifer for the final output, we believe we can
make progress towards autonomous learning that can easily
be mapped to supervised labels through more computationally
simple supervised learning methods.

ACKNOWLEDGMENT

The authors would like to thank Max Mueller, Bobby
Coop and Steven Young of the University of Tennessee -
Knoxville Machine Intelligence Laboratory and Ryan Kerekes
and Ethan Farquhar of the Measurement Science and Systems
Engineering Division of Oak Ridge National Laboratory for
help in performing the neural network evaluations.

REFERENCES
[1] Y. Bengio, Learning deep architectures for AI. Now Publishers Inc,

2009.
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[3] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[4] H. Lee, R. Grosse, R. Ranganath, and A. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions,” in Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 2009, pp. 609–616.

[5] H. Lee, Y. Largman, P. Pham, and A. Ng, “Unsupervised feature learn-
ing for audio classification using convolutional deep belief networks,”
Advances in neural information processing systems, vol. 22, pp. 1096–
1104, 2009.

[6] D. Felleman and D. Van Essen, “Distributed hierarchical processing in
the primate cerebral cortex,” Cerebral cortex, vol. 1, no. 1, p. 1, 1991.

[7] T. Lee, D. Mumford, R. Romero, and V. Lamme, “The role of the
primary visual cortex in higher level vision,” Vision research, vol. 38,
no. 15-16, pp. 2429–2454, 1998.

[8] D. George, “How the brain might work: A hierarchical and temporal
model for learning and recognition,” Ph.D. dissertation, Stanford Uni-
versity, 2008.

[9] T. Dean, G. Carroll, and R. Washington, “On the prospects for building
a working model of the visual cortex,” in Proceedings of the National
Conference on Artificial Intellligence, vol. 22, no. 2. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007, p. 1597.

[10] J. Miller and P. Lommel, “Biomimetic sensory abstraction using hierar-
chical quilted self-organizing maps,” in Proceedings-SPIE the Interna-
tional Society for Optical Engineering, vol. 6384, 2006, p. 638.

[11] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411–426,
2007.

[12] I. Arel, D. Rose, and T. Karnowski, “A Deep Learning Architecture
Comprising Homogeneous Cortical Circuits for Scalable Spatiotemporal
Pattern Inference,” in NIPS 2009 Workshop on Deep Learning for Speech
Recognition and Related Applications, 2009.

[13] I. Arel, D. Rose, and R. Coop, “DeSTIN: A Scalable Deep Learning
Architecture with Application to High-Dimensional Robust Pattern
Recognition,” in Proc. of the AAAI 2009 Fall Symposium on Biologically
Inspired Cognitive Architectures (BICA), 2009.

[14] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 2009.

[15] S. Young, I. Arel, T. Karnowski, and D. Rose, “A Fast and Stable Incre-
mental Clustering Algorithm,” in 2010 Seventh International Conference
on Information Technology. IEEE, 2010, pp. 204–209.

[16] K. Labusch, E. Barth, and T. Martinetz, “Simple method for high-
performance digit recognition based on sparse coding,” IEEE Trans-
actions on Neural Networks, vol. 19, no. 11, pp. 1985–1989, 2008.

[17] D. Keysers, “Comparison and Combination of State-of-the-art Tech-
niques for Handwritten Character Recognition: Topping the MNIST
Benchmark,” Arxiv preprint arXiv:0710.2231, 2007.


