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Abstract. In this paper, we present two new index integral representations for connection between Carte-
sian, cylindrical, and spheroidal coordinate systems in terms of Bessel, MacDonald, and conical functions.
Our result is mainly motivated by solution of the boundary value problems in domains composed of both
Cartesian and hyperboloidal boundaries, and the need for new integral representations that facilitate the
transformation between these coordinates. As a byproduct, the special cases of our results will produce
new proofs to known index integrals and provide some new integral identities.

1. Introduction

Hyperboloidal coordinates are of particular importance in modeling of a new class of experimental
arrangements for the measurements of microscopic features of various material samples. In scanning
probe microscopy (SPM), the frequently occurring interaction of a probe with the sample can be modeled
with a geometric hybridity, where a one-sheeted hyperboloid of revolution describes the probe and the
z = 0 plane or another planar boundary describes the sample. In particular when solving the Laplace
equation, the solutions in the hyperboloidal domain can be expressed as integrals involving the conical
functions. Therefore, the ability to express the Cartesian coordinates in terms of an integral involving the
conical functions is of great importance (see[7], [9], and [8] for a detailed discussion). Here, among other
results, we provide a proof of such an integral representation for the coordinate z,

(1.1) z = −πz0

∫ ∞

1
η′ dη′

∫ ∞

0

q tanhπq

cosh πq
P 0
− 1

2
+iq

(0)
[
P 0
− 1

2
+iq

(μ) − P 0
− 1

2
+iq

(0)
]
P 0
− 1

2
+iq

(η′)P 0
− 1

2
+iq

(η) dq,

where z0 is a scale factor that defines the focal distance of the hyperboloid in the spheroidal (μ, η, φ)
coordinate system, and P 0

− 1
2
+iq

denotes the conical functions. This integral expansion comprises the key
element in the study of the Coulomb interaction of the SPM’s probe with a sample surface.

In Section 2, we provide some background formulas and uniform asymptotic expansions for the conical
and MacDonald’s functions in relevant regimes of the parameters. There is an extensive classical literature
for this which we quote, e.g., Prudnikov, Brychkov, and Marichev [10], [11], [12] among others. Section
3 contains statement and the proof of a new particular inverse Kontorovich–Lebedev transform which is
central to the proof of (1.1) and all other applications mentioned in this paper. Our approach is based on
application of Mellin and inverse Mellin transforms. In Section 4 is the proof of integral representation
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(1.1). In fact, we prove a more general result from which (1.1) follows as a special case. In section 5,
we provide some application of the obtained inverse Kontorovich–Lebedev transform to give new proofs
of some already known index integral transforms and also provide some new index integral transforms
emphasizing the broader impact of our result.

Finally, it should be mentioned that for the sake of clarity of our presentation, proofs of some elementary
facts, results, and observations are omitted. In such situations, we have provided sufficient references.

2. MacDonald’s and conical functions

Recall that the MacDonald’s functions are defined by

(2.1) Kiq(α) =
∫ ∞

0
e−α cosh x cos(qx) dx,

where α > 0 and q ≥ 0. For detailed facts regarding MacDonald’s functions and their properties, we refer
the reader to any classical reference in this regard (see, e.g., [1], [4], Vol II, [5]). Here we mention those
results which are used in this work. First of all note that (2.1) implies

(2.2) |Kiq(α)| ≤
∫ ∞

0
e−α cosh x dx ≤

∫ ∞

0
e−α(1+ 1

2
x2) dx =

√
π

2α
e−α.

Another useful estimate (see [15], p.15) is given by

(2.3) |Kiq(α)| ≤
√

π

2α cos δ
e−δqe−α cos δ for all δ ∈ [0, π/2).

Using the well known equivalent expression of Kiq(α) in terms of modified Bessel functions (see [2], p.458),
one can show that for each A > 0

(2.4) Kiq(α) = −q−1Im[eiq ln( α
2
)Γ(1 − iq)] + Eq(α)

for all q > 0 and α ∈ (0, A], where |Eq(α)| ≤ CAα2/
√

q sinh(πq) and the constant CA depends only on A.
For the asymptotic expansion of Kiq(α) (see, e.g., [4] p.88 or [15] p.20) we have

(2.5) Kiq(α) =
√

2π

q
e−

πq
2

[
sin

(
q ln q − q − q ln(

α

2
) +

π

4

)
+ O(q−1)

]
, as q → ∞

uniformly for α ∈ (0, A] with A > 0. From (2.1) we see that Kiq(α) is continuous at each (α, q) ∈
(0,∞) × [0,∞); by (2.2) it is bounded for (α, q) in any set [ε,∞) × [0,∞), where ε > 0; and by (2.4) it is
bounded for (α, q) in any set (0, A] × [ε,∞), where ε, A > 0.

Next, we recall some facts regarding the conical functions P 0
−1/2+iq(x) used throughout this paper. The

most general form of the conical functions is given in terms of the hypergeometric function 2F1 by

(2.6) P 0
−1/2+iq(x) = 2F1

(
1
2 − iq, 1

2 + iq; 1; 1−x
2

)
,

where q ≥ 0 and x > −1 (cf. [4], Vol. I, pp.122 or [13] 7-2-5). The conical functions have the alternative
forms

(2.7) P 0
−1/2+iq(μ) =

√
2

π
cosh(πq)

∫ ∞

0

cos(qt)√
μ + cosh t

dt, where − 1 < μ < 1, q ≥ 0,

and

(2.8) P 0
−1/2+iq(μ) =

√
2

π3/2
cosh(πq)

∫ ∞

0
e−κμ Kiq(κ)√

κ
dκ, where − 1 < μ < 1, q > 0.
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Using an alternative representation of P 0
−1/2+iq(η) (cf. [7] eq. 2.36), one gets

(2.9) |P 0
−1/2+iq(η)| ≤ 1, for all η ≥ 1 and q ≥ 0.

Moreover, we have that P 0
−1/2+iq(1) = 1 for all q ≥ 0; P 0

−1/2+iq(η) is continuous and bounded on the set
[1,∞) × [0,∞); Pq(μ) is continuous on the set S = {(μ, q) ∈ (−1, 1] × [0,∞)} and bounded on compact
subsets of S. It follows also that P 0

−1/2+iq(η) and P 0
−1/2+iq(μ) are analytic in q > 0 for fixed η ∈ [1,∞)

and μ ∈ (−1, 1], respectively. For the asymptotic expansions of P 0
−1/2+iq(η) and P 0

−1/2+iq(μ), we mention
two useful equalities for our purposes; namely,

(2.10) P 0
−1/2+iq(η) =

√
2

π sinh ζ
q−

1
2

[
cos(qζ − π

4
) + O(q−1)

]
as q → ∞,

uniformly for ζ ∈ [ε,∞), ε > 0, where η = cosh ζ; and

(2.11) P 0
−1/2+iq(μ) =

1√
2π sin θ

q−
1
2 eθq

[
1 + O(q−1)

]
as q → ∞,

uniformly for θ ∈ [ε, π
2 ], ε > 0, where μ = cos θ. To see these facts and a detailed account on conical

functions and their properties, we refer the reader to any of the classical references [3], [4], [5], [13]. We
also use the following estimates for J0(u) and J1(u).

(2.12) |J0(u)| ≤ C u− 1
2 and |J1(u)| ≤ C u− 1

2 for all u > 0,

where C > 0 is a constant. The estimates given in (2.12) follows from the asymptotic expansions for J0(u)
and J1(u) as u → ∞ (see, e.g., [2] p.518).

Throughout this paper we employ the hyperboloidal coordinates (μ, η, φ) in R
3. Fixing z0 > 0, they

are defined by (see, e.g., [9]).

(2.13) x = R cos φ, y = R sin φ, and z = z0 μη,

where

(2.14) R = z0

√
(η2 − 1)(1 − μ2), −1 ≤ μ ≤ 1, η ≥ 1, and 0 ≤ φ ≤ 2π.

The η = constant and μ = constant level surfaces are confocal hyperboloids and ellipsoids of revolution
about the z–axis, respectively.

3. An Index Integral Representation

For brevity, we will write Pq for P 0
−1/2+iq throughout the rest of this paper.

In this section we investigate the validity of a new integral expansion for the Bessel function in terms
of MacDonald and Conical functions of complex lower index −1

2 + iq. More precisely, we give a rigorous
proof regarding the type of convergence and divergence of the integral

(3.1) e−kzJ0(kR) =

√
2
πk

∫ ∞

0
q tanh(πq)Kiq(k)Pq(μ)Pq(η)dq

where k > 0, z = μη ≥ 0 and R =
√

(η2 − 1)(1 − μ2) . In fact, if one considers μ and η as the spher-
oidal coordinates with natural restrictions on their domains, then (3.1) gives a new relation between the
cylindrical and spheroidal coordinates. This relation will be exploited extensively in the later sections.
In particular, we obtain some new index integrals and also give a proof of our integral expansion of the
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Cartesian coordinate z in terms of conical functions discussed in the introduction. Before presenting our
main result, recall that the Mellin transform of the function f(k) is defined by

(3.2) M [f(k)] (s) = F (s) =
∫ ∞

0
f(k) ks−1 dk,

For basic properties of this transform such as existence, uniqueness, and convolution, we refer the reader
to [12], [14], or any classical text on this topic.

Theorem 3.3. For k > 0, the following statements hold.
(a) If μ, η > 0 and μ2 + η2 > 1, then the integral (3.1) converges absolutely.
(b) If μ = 0, η ≥ 1 or η = 0, μ ≥ 1, then the integral (3.1) converges conditionally.
(c) If (μ, η) ∈ (0, 1) × (0, 1) and μ2 + η2 = 1, then the integral (3.1) converges conditionally.
(d) If (μ, η) ∈ [0, 1) × [0, 1) and μ2 + η2 < 1, then the integral (3.1) diverges.

Proof. To prove part (a), we first assume that μ, η ∈ [1,∞) and denote the right-hand side of (3.1) by

(3.4) Iμ,η(k) =

√
2
πk

∫ ∞

0
q tanh(πq)Kiq(k)Pq(μ)Pq(η) dq.

Using asymptotic behavior of the modified Bessel function and conical functions (see formulas (2.5),
(2.10)), it follows that the modulus of the integrand in (3.4) is O(e−

π
2
q); therefore, the integral (3.4)

converges absolutely in this case. Let I∗μ,η denote the Mellin transform of Iμ,η(k)e−k
√

k ; that is,

M
[
Iμ,η(k)e−k

√
k
]
(s) = I∗μ,η(s) =

∫ ∞

0
Iμ,η(k)e−kks−1/2dk

=

√
2
π

∫ ∞

0

∫ ∞

0
q tanh(πq)Kiq(k)Pq(μ)Pq(η)e−kks−1 dq dk.(3.5)

In view of (2.3) and the fact that |Pq(μ)Pq(η)| ≤ 1 (see Section 2), it follows that the integrand in last
equality of (3.5) belongs to L1

(
R

+ × R
+, dq × dk

)
. Therefore I∗μ,η is well defined, the first integral in

(3.5) converges absolutely, and one can interchange the order of integration in the last double integral via
Fubini’s theorem. Now, using the relation (see [12], identity 8.4.23.3)

(3.6)
∫ ∞

0
e−kKiq(k)ks−1dk = 2−s√π

Γ(s + iq)Γ(s − iq)
Γ(s + 1/2)

Re s > 0,

one can rewrite (3.5) as

(3.7) I∗μ,η(s) =
21/2−s

Γ(s + 1/2)

∫ ∞

0
q tanh(πq) Γ(s + iq) Γ(s − iq) Pq(μ) Pq(η) dq.

The following integral representation can be found in [14];

(3.8) Pq(x) =
2
π

cosh(πq)
∫ ∞

0
J0(cy)K2iq(y) dy, where c =

√
x − 1

2
.

Substituting (3.8) into (3.7) with a =
√

μ−1
2 and b =

√
η−1
2 yields

(3.9) I∗μ,η(s) = 23/2−s

π2Γ(s+1/2)

∫ ∞

0

∫ ∞

0

∫ ∞

0
q sinh(2πq)Γ(s + iq)Γ(s − iq)J0(ay)J0(bu)K2iq(y)K2iq(u)dudydq.
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By virtue of the Stirling asymptotic formula for gamma–functions (see [1], [14] ) we have

(3.10)
∣∣Γ(s + iq)

∣∣ = O
(
e−πq/2qRes−1/2

)
as q → ∞.

Therefore taking into account the asymptotic properties of Bessel functions (2.3), together with the in-
equality (2.12), one can easily verify the absolute convergence of integral (3.9). Consequently, we can apply
Fubini’s theorem to interchange the order of integration in (3.9). Now the inner integral with respect to
q can be calculated with the aid of relation (2.16.53.1) in [11]. This implies

(3.11) I∗μ,η(s) =
21/2−3s

Γ(s + 1/2)

∫ ∞

0

∫ ∞

0
J0(ay)J0(bu)

(
y2u2

y2 + u2

)s

K2s

(√
u2 + y2

)
du dy.

On the other hand, relation (2.3.16.1) in [10] gives

(3.12)
(

y2u2

y2 + u2

)s

K2s

(√
u2 + y2

)
=

1
2

∫ ∞

0
t2s−1 e

−
(

t y2+u2

2uy
−uy

2t

)
dt.

The change of variable 1
8 t2 �→ t in (3.12) and substitution of the result into (3.11) brings us to the equality

I∗μ,η(s)Γ
(

1
2 + s

)
= 2−3/2

∫ ∞

0

∫ ∞

0

∫ ∞

0
J0(ay) J0(bu) e

−
(√

8t y2+u2

2uy
+ uy

2
√

8t

)
ts−1 du dy dt

= M
[
2−3/2

∫ ∞

0

∫ ∞

0
J0(ay) J0(bu) e

−
(√

8t y2+u2

2uy
+ uy

2
√

8t

)
du dy

]
.(3.13)

Note also that in the first equality of (3.13) we have interchanged the order of integration since the
modulus of the integrand is dominated by exp

{
−

(√
8t y2+u2

2uy + uy

2
√

8t

)}
for all u, y ≥ 1, t ≥ 0, μ, η ≥ 1

and it is bounded in the neighborhood of zero.
Next, using the translation property of the Mellin transform and the fact that Γ(s) = M [

e−t
]
(s), it

follows that Γ
(

1
2 + s

)
= M [√

t e−t
]
(s). This observation together with the convolution property of the

Mellin transform (e.g. [12], [14]) and (3.5) imply

(3.14) I∗μ,η(s)Γ
(

1
2 + s

)
= M

[√
t

∫ ∞

0
Iμ,η(k)e−k− t

k
dk

k

]
.

Our last application of the Mellin transform is its uniqueness property (see [3], [4]), which in view of (3.13)
and (3.14) gives

(3.15)
∫ ∞

0
Iμ,η(k)e−k− t

k
dk

k
=

2−3/2

√
t

∫ ∞

0

∫ ∞

0
J0(ay) J0(bu) e

−
(√

8t y2+u2

2uy
+ uy

2
√

8t

)
du dy, (t > 0).

Inspired by the fact that the left–hand side of (3.15) represents a modified Laplace transform of the
function e−kIμ,η(k) (see [3], [14]); we show that one can also rewrite the right–hand side of (3.15) in a
similar fashion. We start with a polar coordinates substitution in the right–hand side of (3.15); that is,

(3.16)
∫ ∞

0
Iμ,η(k)e−k− t

k
dk

k
=

2−3/2

√
t

∫ π/2

0

∫ ∞

0
J0(ar sin ϕ) J0(br cos ϕ) e

−
( √

8t
sin 2ϕ

+ r2 sin 2ϕ

4
√

8t

)
rdrdϕ.
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The latter integral in (3.16) can be calculated with respect to the variable r via relation (2.12.39.3) in
[11]. As a result, we have

(3.17)
∫ ∞

0
Iμ,η(k)e−k− t

k
dk

k
= 2 I0(ab

√
8t)

∫ π/2

0
exp

(
−
√

8t
1 + a2 sin2 ϕ + b2 cos2 ϕ

sin 2ϕ

)
dϕ,

where I0(z) denotes the modified Bessel function (see [6]). Letting
√

8t �→ t and substituting u = tanφ in
(3.17), it follows from the relation (2.3.16.1) in [10] that

(3.18)
∫ ∞

0
Iμ,η(k)e−k− t2

8k
dk

k
= 2I0(abt)K0

(
t
√

(1 + a2)(1 + b2)
)

.

In view of the property of Bessel functions J0(iz) = I0(z) (see [6]) and relation (2.12.10.1) in [11], we write
the right–hand side of (3.18) as

(3.19)
∫ ∞

0
Iμ,η(k) e−k− t2

8k
dk

k
=

∫ ∞

0
e−kz J0(kR) e−k− t2

8k
dk

k
, where t > 0.

As a result of the uniqueness theorem for the modified Laplace transform of integrable functions (see [3],
[14]) it follows from (3.19) that

(3.20) Iμ,η(k) = e−kzJ0(kR), for μ, ν ∈ [1,∞).

This proves the assertion of part (a), for μ, ν ∈ [1,∞). Since Pq(z) is analytic in the half-plane Re z > −1,
one can easily see that (3.1) also holds for the cases μ ∈ (0, 1), η ≥ 1 or μ ∈ (0, 1), η ≥ 1. Moreover, in
these cases, the uniform estimates (2.10) and (2.11) imply that (3.1) converges absolutely and uniformly
for arccos μ ∈ [

ε, π
2 − ε

]
, η ≥ 1 or arccos η ∈ [

ε, π
2 − ε

]
, μ ≥ 1, for all k > 0. Finally, we turn our

attention to the last remaining case of part (a); that is, (μ, η) ∈ (0, 1) × (0, 1). Employing the estimates
(2.5), (2.11), and the trivial identity (see [10])

arccos μ + arccos η = arccos
(
μη −

√
(1 − μ2)(1 − η2)

)
,

one observes that for sufficiently large A > 0∫ ∞

A
q tanh(πq)

∣∣Kiq(k)Pq(μ)Pq(η)
∣∣ dq ≤ C

∫ ∞

A

tanh(πq)√
q

e−q(π
2
−arccos μ−arccos η)dq(3.21)

= C

∫ ∞

A

tanh(πq)√
q

e
−q

(
π
2
−arccos

(
μη−

√
(1−μ2)(1−η2)

))
dq,

where C > 0 denotes an absolute constant. Clearly, the last integral in (3.21) converges uniformly if
arccos

(
μη − √

(1 − μ2)(1 − η2)
)
≤ π

2 − ε (ε > 0), which is equivalent to the condition μ2 + η2 > 1. This
completes the proof of part (a).

To prove part (b), we first assume that η > 1. It follows from estimates (2.5), (2.10), and (2.11) that
for sufficiently large A > 0∫ ∞

A
q tanh(πq)Kiq(k)Pq(μ)Pq(η) dq

= O

(∫ ∞

A
eq(arccos μ−π

2 ) tanh(πq)√
q

sin
(
q log

(
2q
k

)
− q + π

4

)
cos

(
q arccosh (η − π

4 )
)

dq

)
,(3.22)
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for all μ ∈ [0, ε], where ε > 0 is sufficiently small, and k > 0. Now the Abel’s test implies the uniform
convergence of the integral (3.22). Therefore, one can let μ = 0 in (3.1) with the aid of an obvious
limiting process, part (a), and continuity properties of the conical functions mentioned in Section 2. For
η = 1, we need some extra argument. In this case Pq(1) = 1; therefore, the estimate (2.10), and thus
(3.22), does not hold. In order to overcome this difficulty, we use (see [6]) the special case identity

Pq(0) =
∣∣∣Γ (

3
4 + iq

2

)∣∣∣−2
for the conical functions in (3.1). This implies, for η > 1,

(3.23) J0

(
k
√

η2 − 1
)

=

√
2
k

∫ ∞

0
q tanh(πq)

∣∣∣∣Γ
(

3
4

+
iq

2

)∣∣∣∣
−2

Kiq(k) Pq(η) dq.

In fact, (3.23) coincides with a particular case of the relation (2.17.27.21) in [12] . A similar argument as
the one given in (3.22) with the asymptotic estimates (2.5), (2.10), and (3.10) imply

(3.24)
∫ ∞

A

q tanh(πq)

|Γ( 3
4
+ iq

2 )|2 Kiq(k)Pq(η) dq = O

(∫ ∞

A
sin

(
q log

(
2q
k

)
− q + π

4

)
cos

(
q arccosh (η − π

4 )
)

dq

)
,

where A > 0 is chosen sufficiently large. An application of integration by parts shows that the right–hand
side of (3.24) is of order

O

(
arccosh η

∫ ∞

A
cos

(
q log

(
2q

k

)
− q(1 − arccosh η) +

π

4

)
dq

log(2q/k)

)
,

for all η ∈ [1, 1+ε], where ε > 0 is sufficiently small. Now the uniform convergence of the integral in (3.23)
follows from Dirichlet test. As a result, we can let η = 1 in (3.23) using the same argument outlined for
the case μ = 0. Finally, noting (3.1) is symmetric in μ and η and R(μ, 0) =

√
μ2 − 1, the case η = 0 and

μ ≥ 1 can be treated in an exact same way as the one given above. This completes the proof of part (b).
Next suppose μ, η ∈ (0, 1). If μ2 + η2 = 1, then trivially arccosμ + arccos η = π

2 . Thus from a similar
argument as the one given in (3.21), we have for sufficiently large A > 0∫ ∞

A
q tanh(πq)Kiq(k)Pq(μ)Pq(η) dq = O

(∫ ∞

A

tanh(πq)√
q

sin
(
q log

(
2q
k

)
− q +

π

4

)
dq

)
< ∞

due to the Dirichlet test, which proves the assertion of part (c). If μ2 + η2 < 1, then again a similar
estimate as the one given in (3.21) implies for large A > 0∫ ∞

A
q tanh(πq)Kiq(k)Pq(μ)Pq(η) dq = O

(∫ ∞

A
e
q
(
arccos

(
μη−

√
(1−μ2)(1−η2)

)
−π

2

)
dq

)
→ ∞

as A → ∞, due to the fact that arccos
(
μη − √

(1 − μ2)(1 − η2)
)

> π
2 . This proves part (d) and completes

the proof of the theorem. �
We close this section by pointing out certain limitation of the formula (3.1) with respect to the range

of variables μ and η. To see this note that the uniform asymptotic formula (2.11) remains valid for
θ = arccos μ ∈ (

π
2 , π − ε

]
, where ε > 0 (see [6]). As a result, if for instance we assume μ ∈ (−1, 0) and

η > −1, then in view of of (2.5) it follows that for A > 0 sufficiently large∫ ∞

A
q tanh(πq)Kiq(k)Pq(μ)Pq(η)dq = O

(∫ ∞

A
Pq(η) exp

(
q
[
θ − π

2

])
dq

)
,

where clearly the latter integral approaches infinity as A → ∞. We summarize the above observation in
the following remark.
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Remark 3.25. If either μ ∈ (−1, 0) or η ∈ (−1, 0), then the integral (3.1) diverges.

4. An Integral Expansion for z

In this section, we give a proof of Theorem 4.9 from which the integral expansion (1.1) follows as a
consequence. The main key is provided by Proposition 4.2 below. In fact, Proposition 4.2 is an important
application of Theorem 3.3 and contains the new index integral formula (4.4). Here, we assume some basics
regarding the definition and properties of conical functions Qν(z) of the second kind (see for example [6]
for a detailed discussion). For our purpose, we mention the facts that Qν(z) is analytic in the half–plane
Re z > 1 and has the following uniform asymptotic behavior at infinity (see [1], [6])

(4.1) Qν(z) = O

( √
π

2ν+1

Γ(1 + ν)
Γ(ν + 3/2)

z−ν−1

)
as z → ∞,

which can be easily obtained from Qν ’s representation in terms of the Gauss hypergeometric function.

Proposition 4.2. Let k > 0 and μ, η ≥ 0. Then

(4.3)
√

2
π3/2

∫ ∞

0
e−kzJ0(kR)Kiq(k)

dk√
k

= sech(πq)Pq(μ)Pq(η),

where the integral converges absolutely. Moreover if μj and ηj (j = 1, 2) satisfy either of the conditions
(1) (μj , ηj) ∈ [0, 1) × (1,∞) or (μj , ηj) ∈ (1,∞) × [0, 1),
(2) (μj , ηj) ∈ (1,∞) × (1,∞),
(3) (μj , ηj) ∈ (0, 1) × (0, 1) such that η2

j + μ2
j > 1,

then

(4.4)
∫ ∞

0
q
tanh(πq)
cosh(πq)

Pq(μ1)Pq(η1)Pq(μ2)Pq(η2) dq =
1

π2
√

R1R2
Q−1/2

(
(z1 + z2)2 + R2

1 + R2
2

2R1R2

)
,

where zj = μj ηj and Rj =
√

(η2
j − 1)(1 − μ2

j ).

Proof. First, recall that the Kontorovich -Lebedev(KL) transform of a fucntion f(k) is defined by

(4.5) F (q) =
∫ ∞

0
Kiq(k)f(k)

dk√
k
, q ∈ R,

whenever the latter integral exists. Our proof is based on the Plancherel theorem and Parseval’s identity
for the KL–transform. In brief, the Plancherel theorem states that F defines a bounded (linear) operator
from L2(R+, dk) onto L2

(
R

+, q sinh(πq)dq
)

with its bounded inverse given by

(4.6) f(k) =
2
π2

∫ ∞

0
q sinh(πq)

Kiq(k)√
k

F (q) dq.

Moreover, the following Parseval type identity holds

(4.7)
2
π2

∫ ∞

0
q sinh(πq)F1(q)F2(q)dq =

∫ ∞

0
f1(k)f2(k) dk,

where F1 and F2 denote KL–transforms of f1 and f2; respectively. For the mentioned facts and further
properties of KL-transform, we refer the reader to [14] and/or [15].

Now, suppose 0 < μ ≤ 1 and η ≥ 1. The asymptotic behavior of Bessel functions (2.12) implies that
e−kzJ0(kR) belongs to L2(R+; dk). Consequently, from the integral representation (3.1) and (4.6), it
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follows that (4.3) holds and the integral converges absolutely in this case. Furthermore, one can easily
observe that the absolute and uniform convergence of integral (4.3) remains true for μ ≥ 0 and η ≥ 0.
Thus, the validity of (4.3) carries over to μ, ν ≥ 0 with the aid of properties of conical functions Pq and
the uniform convergence of the integral in (4.3).

Next, for j = 1, 2, let Fj(q) = sech(πq)Pq(μj)Pq(ηj). Then under either of the conditions (1), (2), or
(3), the asymptotic behavior of pq (see (2.10), (2.11)) implies that Fj ∈ L2

(
R

+, q sinh(πq)dq
)
. Thus, in

view of the Parseval’s identity (4.7) and the index integral (4.3), we have that

(4.8)
∫ ∞

0
q
tanh(πq)
cosh(πq)

Pq(μ1)Pq(η1)Pq(μ2)Pq(η2) dq =
∫ ∞

0
e−k(z1+z2) J0(kR1) J0(kR2) dk.

Finally, the relations (2.12.38.1) and (2.12.8.2) in [11] imply the equality of the right–hand sides of (4.8)
and (4.4). Also note that in view of the asymptotic behavior of Pq, either of the conditions (1), (2), or
(3) guarantees the absolute and uniform convergence of the integral (4.4). This proves the proposition.

�

Now we are in the position to state the main result of this section.

Theorem 4.9. Fix z0 > 0. Let z1 = z0 μ1η1 and z2 = z0 μ2η2 denote the spheroidal coordinates rep-
resentation of the z–coordinates of two points in R

3, where 1 < ηj < ∞ and 0 ≤ μj < 1 (j = 1, 2).
Then

(4.10) z2 − z1 = πz0

∫ ∞

1

∫ ∞

0
q

tanh(πq)
cosh(πq)

Pq(0)
[
Pq(μ1)Pq(η1) − Pq(μ2)Pq(η2)

]
Pq(η) dq ηdη.

Proof. Recall from (2.14) that Rj = z0

√
(η2

j − 1)(1 − μ2
j ), where j = 1, 2. By the identity (4.4) of Propo-

sition 4.2

(4.11)
∫ ∞

0
q
tanh(πq)
cosh(πq)

Pq(0)Pq(η)Pq(μj)Pq(ηj) dq =
√

z0

π2
√

(η2 − 1)Rj

Q−1/2

(
z2
j + z2

0(η
2 − 1) + R2

j

2z0

√
(η2 − 1)Rj

)
,

where j = 1, 2. Therefore, the identity (4.10) is equivalent to

(4.12) z2 − z1 = z
3/2
0
π

∫ ∞

1

η
(η2−1)1/4

[
1√
R1

Q−1/2

(
z2
1+R2

1+z2
0(η2−1)

2z0

√
η2−1 R1

)
− 1√

R2
Q−1/2

(
z2
2+R2

2+z2
0(η2−1)

2z0

√
η2−1 R2

)]
dη.

To prove (4.12), we reduce the problem via the change of variable u = z0

√
η2 − 1 to the equivalent identity

(4.13) z2 − z1 =
1
π

∫ ∞

1

√
u

[
1√
R1

Q−1/2

(
z2
1 + R2

1 + u2

2R1u

)
− 1√

R2
Q−1/2

(
z2
2 + R2

2 + u2

2R2u

)]
du.

If R1 = R2 and z1 = z2, there is nothing to prove. So we may assume that either R1 	= R2 or z1 	= z2.
Recall relation (2.18.3.9) in [12] ,

(4.14)
∫ ∞

0
xα−1Q−1/2

(
a2+b2+x2

2ax

)
dx =

√
πa
2 Γ

(
1
4 + α

2

)
Γ

(
1
4 − α

2

)
(a2 + b2)(2α−1)/4 P 0

α−1/2

(
b√

a2+b2

)
,

which is valid for a, b > 0 and Re α < 1
2 . Clearly, in our case α = 3/2 and a direct application of (4.14)

is not possible. However, one can still use this result if we look more carefully into the right–hand side of
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(4.13). So let us denote the integrand in (4.13) by I(μ). Then the the asymptotic relation (4.1) imply

I(μ) =

⎧⎪⎪⎨
⎪⎪⎩

O
(
u

(
1

(z2
1+R2

1+u2)1/2 − 1
(z2

2+R2
2+u2)1/2

))
= O (u) , as u → 0,

O
(
u

(
1

(z2
1+R2

1+u2)1/2 − 1
(z2

2+R2
2+u2)1/2

))
= O

(
u−2

)
, as u → ∞.

Consequently, integral (4.13) converges absolutely. This means that one can extend (4.14) in the case of
(4.13) from Re α < 1

2 to α = 3
2 . Therefore, we can set α = 3

2 in the right–hand side of (4.14). Finally,
taking into account the fact Γ(−1/2) = −2

√
π together with expression for the Legendre polynomial

P1(z) = z, we obtain

1
π

∫ ∞

1

√
u

[
1√
R1

Q−1/2

(
z2
1+R2

1+u2

2R1u

)
− 1√

R2
Q−1/2

(
z2
2+R2

2+u2

2R2u

)]
du

= (R2
2 + z2

2)
1/2P1

(
z2√

R2
2 + z2

2

)
− (R2

1 + z2
1)

1/2P1

(
z1√

R2
1 + z2

1

)

= z2 − z1.

This proves (4.13) and hence the identity (4.10). �

Corollary 4.15. The integral representation (1.1) follows from Theorem 4.9 by letting η1 = η2 and μ2 = 0
in (4.10).

5. Further Applications and Remarks

In this section, we show some applications of the index integral (3.1). Furthermore, we discuss how
special cases of (3.1) and its corollary; namely, Proposition 4.2, coincide with known integral formulas in
literature.

The first application of (3.1) is a new index integral formula.

Corollary 5.1. If k > 0, then the following identity holds.

(5.2)
∫ ∞

0

q tanh(πq)∣∣∣Γ (
3
4 + iq

2

)∣∣∣2 Kiq(k) dq =

√
k

2
.

Proof. Note Pq(1) = 1 and J0(0) = 1. Now use part (b) of theorem 3.3 by letting η = 1 in (3.23). �

In view of part (a) of theorem 3.3 with η = 1, we obtain the following index integral

(5.3)
∫ ∞

0
q tanh(πq)Kiq(k)Pq(μ) dq =

√
πk

2
e−kμ (k, μ > 0),

which coincides with relation (2.17.26.15) in [12]. Another application of theorem 3.3, part (a), with μ = 1
gives the value

(5.4)
∫ ∞

0
q tanh(πq)Kiq(k) dq =

√
πk

2
e−k (k > 0),

which is the limit case of the relation (2.16.48.15) in [11].
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Furthermore if μ = η ≥ 1√
2
, then parts (a) and (c) of theorem 3.3 imply

(5.5)
∫ ∞

0
q tanh(πq)Kiq(k)[Pq(μ)]2 dq =

√
πk

2
e−kμ2

I0

(
k(μ2 − 1)

)
,

which represents the corrected version of relation (2.17.29.4) in [12] .
Finally we conclude this section with the following two new index integrals.

Corollary 5.6. Under the assumptions of proposition 4.2, the following holds.

(1) If we let either of the parameters μj or ηj (j = 1, 2 ) equal 1, say μ1 = 1, then

(5.7)
∫ ∞

0
q
tanh(πq)
cosh(πq)

Pq(η1)Pq(μ2)Pq(η2) dq =
1
π

1√
(η1 + z2)2 + R2

2

.

(2) If μ1 = μ2 = η1 = η2 = a, where a ∈
(

1√
2
,∞

)
\{1}, then we have the index integral

(5.8)
∫ ∞

0
q
tanh(πq)
cosh(πq)

[Pq(a)]4 dq =
1

π2|a2 − 1|Q−1/2

(
a4 + 2a2 − 1

(a2 − 1)2

)
.

Moreover, the limit case a = 1 in (5.8) coincides with the known integral value (see [13] and also
[14] ) ∫ ∞

0
q
tanh(πq)
cosh(πq)

dq =
1
2π

.
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