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ABSTRACT: The Feldkamp algorithm is widely accepted as a prac-
tical conebeam reconstruction method for three-dimensional x-ray
computed tomography. We introduce focus of attention, an effective
and simple to implement datadriven preprocessing scheme, for iden-
tifying a convex subset of voxels that include all those relevant to the
object under study. By concentrating on this subset of voxels during
reconstruction, we reduce the computational demands of the Feld-
kamp algorithm correspondingly. To achieve further speed-up, all
computations are distributed across a cluster of inexpensive, dual-
processor PCs. We present experimental work based on mouse data
obtained from the MicroCAT which is a high-resolution x-ray com-
puted tomography system for small animal imaging. This work shows
that focus of attention can cut the overall computation time in half
without affecting the image quality. The method is general by nature
and can easily be adapted to apply to other geometries and modal-
ities as well as to iterative reconstruction algorithms. © 2003 Wiley
Periodicals, Inc. Int J Imaging Syst Technol, 12, 229–234, 2002; Published
online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.
10027
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I. INTRODUCTION
Three-dimensional x-ray computed tomography (CT) is becoming
essential in many applications including nondestructive testing and
reverse engineering of industrial parts for quality control and assur-
ance, characterization and evaluation of simple and composite ma-
terials, and non-invasive imaging in the biomedical sciences for the
purpose of screening small animals for pathologies and mutations as

well as monitoring disease progression and response to therapy.
Although exact conebeam reconstruction algorithms exist, a so-
called approximate algorithm is often preferred in practice (Wang et
al., 1999). When the scanning locus is circular, the filtered back-
projection based Feldkamp algorithm (Feldkamp et al., 1984) is
widely accepted as a practical conebeam reconstruction method.
Computationally, the voxel-driven backprojection constitutes the
most expensive step of the algorithm. A divide-and-conquer scheme
for reducing the time complexity of the backprojection computation
has been proposed (Turbell and Danielsson, 1999), but the speed-up
comes at the cost of an increase in the memory requirements.
Fortunately, the standard Feldkamp algorithm can be parallelized
(Reimann et al., 1996; Laurent et al., 1996) making it possible to
achieve reasonable reconstruction times by distributing the compu-
tation across a cluster of PCs.

The conebeam geometry is such that only the voxels located
inside the axial cylinder inscribed by the image volume need be
considered (Kak and Slaney, 2001). In this article, we show that it
is possible to identify an even smaller, but still convex subset of
voxels that include all those relevant to the object under study. We
call the approach focus of attention, and the general idea behind this
data-driven preprocesing scheme is as follows. Consider shining a
light at an object from a number of different view angles. When
backprojecting the resulting shadowgrams into the image space, the
intersection thereof ideally forms a convex hull. Only the projection
and image data that pertain to this hull need be considered for the
reconstruction, reducing the amount of computation needed. Dis-
tributed computing is accommodated in a straightforward manner.
We have previously presented focus of attention in connection with
iterative, parallel-beam algorithms for 2D positron emission tomog-
raphy (Gregor and Huff, 1997, 1998) and 3D projection magnetic
resonance imaging (Gregor and Rannou, 2001, 2002). This work
was based directly on results from the theory of support functions
(Prince and Willsky, 1990; Karl et al., 1995). Because of the
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divergent nature of the conebeam geometry, we take a slightly
different approach here. This new approach, which is conceptually
simple but of significant practical value, is less noise sensitive and
much easier to compute than its older counterparts. Furthermore,
although developed for conebeam x-ray CT, it is general by nature
and can easily be adapted to apply to other geometries and modal-
ities as well as to iterative reconstruction algorithms.

We present experimental work based on mouse data obtained
from the high-resolution MicroCAT™ (ImTek, Inc.) small animal
imaging system. Originally developed at Oak Ridge National Lab-
oratory (ORNL) in support of the Mammalian Genetics Research
Facility (affectionately known as the “Mouse House”) (Gleason et
al., 1999; Paulus et al., 1999, 2000), the MicroCAT has since been
transferred to industry for commercialization. The proposed focus of
attention preprocessing scheme together with the parallelization of it
and the Feldkamp algorithm has been developed to support research
in which high-throughput micro-CT scanning and reconstruction is
essential.

II. FELDKAMP ALGORITHM
Let f denote a 3D image volume to be reconstructed, and let rT � (x,
y, z) be the spatial coordinates of a particular voxel. Furthermore, let
P�(Y, Z) represent a 2D projection with (Y, Z) denoting the spatial
location of a particular detector element. Note that P� � �log(I� �
ID)/(I0 � ID), where I� is the photon flux recorded for view angle �
with an animal present, and I0 and ID are blank and dark current
projections used for normalization purposes. Let x̂�, ŷ�, and ẑ
denote the image axes rotated to line up with the given projection.
Finally, let d denote the distance from the x-ray source to the axis of
rotation, i.e., the ẑ axis of the image volume, and let D be the
distance from the x-ray source to the center of the detector array. See
Figure 1 for an illustration of the variables and their geometric
relations.

Following standard practice, we can make the simplifying as-
sumption that D � d, since scaling by d/D converts data from the
actual geometry to this idealized set-up. This allows us to express
the Feldkamp algorithm (Feldkamp et al., 1984) in terms of the
following weighted, filtered backprojection computation:

f�r� �
1

4�2 �
0

2� d2

�d � r � x̂��2 P̂� �Y�r�, Z�r�� d�,

where

Y�r� �
r � ŷ�

d � r � x̂�
d, Z�r� �

r � ẑ

d � r � x̂�
d,

P̂� �Y, Z� �
d

�d2 � Y2 � Z2 P��Y, Z� �� g�Y�,

and g represents a ramp-like filter kernel. For the results in this
article, we approximate the backprojection and convolution integrals
by Riemann sums, index the filtered projection data via bilinear
interpolation, and use a Shepp-Logan convolution filter kernel.

III. FOCUS OF ATTENTION
The theory of support functions (Prince and Willsky, 1990; Karl et
al., 1995) provides criteria for establishing a consistent mapping
between the projection space and the image space. Our earlier work
on focus of attention for parallel-beam geometries was based ex-
plicitly on these criteria (Gregor and Huff, 1997, 1998; Gregor and
Rannou, 2001, 2002). With reference to Figure 2, consider a 2D
object � and a unit direction vector u�

T � (cos �, sin �) anchored
somewhere therein. The concept of a support value can then be
defined as the maximum distance from the anchor point to any point
contained within the object measured in the direction of the unit
vector. Mathematically,

h�u�� � max
r��

r � u�.

Extention to 3D is straightforward. Now let vector h denote a
collection of support values, and let matrix Q represent determinan-
tal conditions with respect to the support values obtained for neigh-
boring unit direction vectors. Convexity of � then implies that the
vector inequality Qh � 0 must hold. As an example, consider the
case of 2D parallel beam geometry for which we would use the M �
M Toeplitz matrix (Prince and Willsky, 1990):

Q � �
1 � k 0 · · · 0 � k

� k 1 � k 0 · · · 0
0 � k 1 ······ 0 · · · 0
0 ··· 1 � k

� k 0 · · · 0 � k 1
� (1)

Figure 2. Support value h(u�) is a distance measured in the direction
of unit direction vector u�.

Figure 1. Conebeam geometry. The x-ray source and the detector
array rotate around the ẑ axis of the image volume. The projection of
voxel r onto the detector array is given by the intersection of the
orthogonal fans shown in light gray.
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where M is the number of equally spaced unit direction vectors and
k � 1/(2 cos 2�/M). For large M, the implication is that convexity
is guaranteed if all support values are less than or equal to the
average of their neighbors. The extension to a 3D parallel beam
geometry is quite complicated. Suffice it here to say that matrix Q
also in this case captures the local geometric context of each support
value. See the paper by Karl and coworkers (1995) for mathematical
details. Alternatively, the reader may refer to a computationally
oriented treatment of the subject matter given in a recent article by
Gregor and Rannou (2002).

Our previous focus of attention approach for 2D and 3D parallel
beam geometries was to compute a (noisy) support vector estimate,
say h0, by means of moving average based thresholding of the
projection data, and then find the closest (in a Euclidian sense) true
support vector, say h*, by solving the quadratic programming prob-
lem min 0.5�h � h0�2, with the solution appropriately constrained by
the above vector inequality. Having computed h*, we would deter-
mine the corresponding convex hull in the image space, with the end
result being a consistent segmentation that supports the elimination
of equations and unknowns from the linear system of equations that
form the basis for most iterative reconstruction algorithms.

The conebeam geometry is divergent in two dimensions. This
makes the above constrained optimization approach difficult to
apply. However, as we now proceed to show, it is possible to
achieve the desired focus of attention result without explicitly ex-
pressing and using a constraint matrix. In order to do that we relax
the goal of computing the tightest possible 3D convex hull that
envelops the object. We aim instead to determine the tightest fitting
axial cylinder that has a convex cross-section. We furthermore solve
the associated 2D support function estimation problem by means of
a shape-based method. The 3D convex hull ultimately used for focus
of attention is thus obtained by stacking identical copies of a 2D
convex hull that we compute as follows.

We first apply moving average based thresholding to determine
the minimum and maximum values of Y to be considered for each
2D projection. That is,

Y�
� � argminY �

w
P��Y, � � � �1

Y�
� � argmaxY �

w
P��Y, � � � �1

where the summations indicate that we threshold on basis of the
activity within a sliding window of width w and �1 is a user-defined
threshold parameter. Note that the computation determines mini-
mum and maximum values of Y without regard to Z. See Figure 3 for
an illustration. Now let fB denote a cross section of the image
volume that results from backprojecting the corresponding binary
versions of the projections. Specifically,

fB�rxy� �
1

2� �
0

2�

B��Y�rxy�� d�,

where

B��Y� � � 1 if Y�
� � Y � Y�

�

0 otherwise ,

and rxy is the (x, y)-subvector of r. Furthermore, let f�	 be a
thresholded version of fB with �	 denoting the set of non-zero
pixels. That is,

f�	�rxy� � � 1 if fB�rxy� � �2

0 otherwise

where �2 is a user-defined threshold parameter. We then compute the
support vector for f�	 and use it to determine the (small number of)
pixels that potentially must be added to �	 in order to obtain �, the
desired convex hull. That is,

� � 
rxy : rxy � u� � h�	�u�� for 0 � � � 2�}

where

h�	�u�� � max
���	

�xy � u�.

See Figure 4 for an illustration of cross-section image fB and
associated raw and convex � point sets.

This concludes the preprocessing part of the focus of attention
scheme. During image reconstruction, the backprojection is com-
puted only for the convex 3D subset of voxels {r : rxy � �}. Since
we do not alter the original projection data in any way, the corre-
sponding values of the reconstructed image, f(r), are identically the
same for the Feldkamp algorithm whether we apply focus of atten-

Figure 3. Moving average based thresholding of the individual pro-
jection data columns produces a ragged seg-mentation as illustrated
by the black outline in the white region. The proposed focus of
attention method uses the extreme values indicated by the light gray
regions.

Figure 4. Cross section of reconstruction hull. (a) Example of fB, the
image that results from backprojecting the thresholded projections,
(b) point set �	, which exhibits several concavities, and (c) derived
convex hull � on basis of which background voxels are eliminated
from the reconstruction.
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tion or not. The integrity of interior object voxels is thus not
compromised even if we were to exclude some of the peripheral
object voxels. Background voxels may, of course, be assigned
different values in the two cases.

This new approach to focus of attention is less noise sensitive
and much easier, and thus faster, to compute than its older counter-
parts. Robustness and speed is achieved by not first computing a
support vector estimate that merely initializes a constrained qua-
dratic programming problem, but instead directly extracting a true
support vector from an easy to compute cross-section image that
allows all projection threshold boundaries to be considered simul-
taneously.

With respect to the two user-defined threshold parameters, then
we use �1 � 0.05 and �2 � 0.95 for the results in this article.
Regarding the former threshold, then one would set it to 0.0 for ideal
data. But because we deal with real data, which is noisy, we use a
small, nonzero value to prevent the moving average based thresh-
olding of the projection data from terminating prematurely since that
might have the effect of greatly enlarging the cross-section of the
convex-hull. Regarding the latter threshold, we point out that a value
of 1.0 by definition leads to �	 � �. By using a slightly smaller
value, we ensure that �	 � � with a moderate enlargement of the
convex hull cross-section being the conservative result.

IV. DISTRIBUTED COMPUTING
Several cluster implementations have been reported for the Feld-
kamp algorithm, typically emphasizing a clever communication
scheme. One approach (Reimann et al., 1996) had a master node do
all the weighting and filtering of the projections before sending the
data to the other nodes each of which then performed the back-
projection for its assigned image subvolume. Another approach
(Laurent et al., 1998) distributed the projections across all nodes,
had each node weight and filter its projection data, and then used a
send-receive scheme that allowed each node the opportunity to
ultimately backproject all projection data for its assigned image
subvolume.

We take a simpler and easier to implement approach here. Each
node is made responsible for reconstructing a particular image

subvolume, the axial width of which is automatically determined by
the node’s rank in the computation. The corners of the bounding box
corresponding to the image subvolume are projected out to the
detector space to determine the subset of the projection data needed
locally. This data is then weighted, filtered, and backprojected
without the need for communicating anything with the other nodes.
A small overhead is incurred by having some projection data being
weighted and filtered on several nodes but the associated cost is
somewhat offset by not having the nodes exchange the rather large
projection data sets. When adding the focus of attention preprocess-
ing to the computation, a global reduction operation is used to
determine and broadcast the value of Y�

� and Y�
�. This data exchange

takes place in logarithmic time and is thus fast.

V. EXPERIMENTAL RESULTS
We have implemented the described algorithms in C using the LAM
implementation of MPI to handle the distributed computing aspects.
Our cluster consists of thirty inexpensive dual-processor PCs, each
equipped with 500 MHz Pentium IIIs and 512 Mbytes of memory.
The PCs are interconnected via 100 Mbps FastEthernet.

Our experimental work is based on mouse data. We used a
MicroCAT II (ImTek, Inc., Knoxville, TN), which was configured to
have a conebeam angle of 18.26°. Projections were acquired for
every 1° up to a full 360° rotation of the gantry. Each 2048 � 4088
projection was filtered and downsampled to 512 � 1022 with a
resulting effective detector element size of 161.8 	m. This config-
uration supports the reconstruction of a 512 � 512 � 1022 image
volume with cubic 120.9 	m voxels. Higher resolution projections
and images are possible by not downsampling the data as was done
here.

To illustrate the image quality as well as to provide a visual
indication of the computational savings associated with the focus of
attention (FOA) method, Figure 5 shows a coronal and a transaxial
slice of a reconstructed mouse image. The mouse received an
intraperitoneal injection of a water-soluble iodinated contrast agent
prior to being scanned. The cross-section of the reconstruction hull
covers 78,038 pixels or 2.63 times fewer than the 205,887 pixels
covered by the indicated inscribed circle that defines the imaging

Figure 5. Reconstruction example. (a) Annotated 512 � 1022 coronal image and (b) 512 � 512 transaxial image. The light gray regions
surrounding the mouse data indicate voxels not considered during reconstruction. The bright spot to the left in (b) is the tail. The dashed black
lines superimposed in both images indicate the inscribed circle normally used to define a computational region-of-interest.
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field of view normally considered. In the following, this inscribed
circle is used to cut back on the computational cost when FOA is not
being used.

Figure 6 provides a log-log plot of the wall-clock time required
for a complete reconstruction as a function of the number of dual-
processor PCs used. First, we notice that FOA based reconstruction
times (lower plot) are about half of those without FOA (upper plot).
Secondly, we see that a 7-minute reconstruction time is obtained
when using FOA and all available dual-processor PCs. To place this
result in context, extrapolation indicates that a single processor
implementation without FOA would take on the order of 13�
hours—or 120 times longer. The achieved reduction in wall-clock
time is thus quite substantial.

Tables I and II provide the average amount of time a processor
spent on the tasks listed. As above, N refers to the number of
dual-processor PCs used; the corresponding number of CPUs is
twice that. We see that the time spent on handling the projection
data, i.e., loading it from disk, normalizing, weighting and filtering
it, does not vary significantly with the cluster size. We also see that
the cost associated with FOA is quite small since the projection data
handling takes about the same time whether this computation is
included or not. With respect to the time spent on backprojection, we
see that FOA results in a factor 2.48 gain in speed. This is in close
agreement with the above 2.63 ratio of voxels considered.

Linear regression on the wall-clock timing data indicates that
near-linear speed-up is achieved even when using a relatively large
number of processors. As more and more processors are included,
however, the time associated with the projection data handling
begins to account for a larger and larger percentage of the overall
time thereby effectively causing the speed-up to eventually taper off
and become sublinear. The reason for this behavior is that our
current load balancing scheme is based entirely on the amount of
work imposed by the backprojection computation. We are looking
into ways of incorporating the projection data handling cost as well.

Before closing, we note that a tighter convex hull could be
computed by allowing axial variation of its cross section, i.e., by
using the individual Y projection boundary values as opposed to the
minimum and maximum values only. The increase in computational
cost associated therewith is small and most likely worth it. We are

therefore looking into this issue as well. An important part of this
work will be to develop a scheduling scheme that ensures good load
balancing among the processors.
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