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We investigate the dynamics of a microcantilever subjected to the combined forcing from Brownian
motion and delayed self-feedback. Specifically, the excitation of the fundamental mode of the
cantilever by thermomechanical agitation is utilized as delayed external forcing and the resulting
dynamical response is studied as a function of the delay and the coupling strength. A
fluctuation-dissipation theorem is derived from the delay Langevin-like equation and its validity is
discussed. The relaxation time scale associated with the adsorption processes is established and an
experiment to determine the oscillator’s effective temperature is proposed. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2365378�

I. INTRODUCTION

Due to widespread progress in miniaturization, stochas-
tic fluctuations of thermodynamic quantities have become an
increasingly important issue in many micro- and nanoscale
systems. The Brownian motion of a microfabricated silicon
cantilever, for example, has recently drawn significant atten-
tion in connection to sensing and scanning probe
microscopy.1,2 The present work was originally motivated by
the need for increased sensitivity in frequency shift measure-
ments of the resonant oscillations of a microcantilever for
biological and chemical sensing,3 in particular when oper-
ated in a fluid, where the quality factor Q is severely dete-
riorated. Adsorption events occurring at the surfaces of a
microcantilever sensor, which are typically of the order of
10−9 m2, significantly modify the surface free energy. In
view of Shuttleworth’s equation,4 this modification results in
a differential surface tension at the bounding surfaces of the
cantilever. Typically, one side of the microcantilever is
coated with gold and/or other material such as a self-
assembled monolayer of a molecular group, single stranded
DNA, hydrophilic/hydrophobic, antigen-antibody, aptamers,
etc., so as to functionalize that surface, targeting the desired
adsorbate/analyte. This in turn results �for example, by mo-
lecular binding� in a variation in one of the dynamic at-
tributes of the cantilever, such as bending, for which a radius
of curvature can be defined that is proportional to the in-
duced tension as approximated by Stoney’s equation.5 An
important issue herein has been the presence of a thermome-
chanically driven amplitude of the sensor. By taking advan-
tage of such fluctuations in a continuously tuning feedback
system, one can achieve a higher frequency measurement
resolution.6–8 Regardless of the specific character of the ther-
mal bath, when adsorption �reaction� events occur on the
surface of the cantilever, such that a response may be ob-
tained by the frequency or deflection measuring devices, the
desorption �relaxation� process may be of the order of
minutes.9 During this time, nonequilibrium conditions may

prevail, making the very definition of temperature a ques-
tionable proposition. Furthermore, measurements of ex-
tremely small thermal variations due to biomolecular binding
pose a challenging technological problem, due to the minute
dimensions of the system and the small values of the Q fac-
tor. The feedback approach to attaining narrow spectral
peaks as an effort to facilitate precise frequency shift mea-
surements further complicates the extraction of dynamic in-
formation from the measurements. In particular, in light of
the fluctuation-dissipation theorem �FDT�, the measurement
of the temperature of the cantilever in the presence of mo-
lecular binding due to adsorption or diffusion in a liquid may
pose a certain ambiguity due to a possible violation of the
FDT.

To overcome these challenges, we propose the following
approach. Within the assumptions of the FDT, we begin by
theoretically investigating the dynamics of a microcantilever
capable of self-sustained oscillations in the feedback mode.
The external excitation is thermal in origin, e.g., due to the
Brownian motion of the molecules in the surrounding me-
dium. Another source of self-excitation may be internal pho-
non fluctuations that eventually drive the cantilever into one
of its resonance modes. The response of the system is used as
a delayed feedback to provide further enhancement of the Q
factor such that the Fourier amplitude of the signal could be
measured with a spectrum analyzer. We then proceed by dis-
cussing the analytical results such that they may be utilized
in an experimental investigation.

II. ANALYTICAL RESULTS AND DISCUSSIONS

Under the above assumptions, in a first-order approxima-
tion, the dynamics of the cantilever is described by a second-
order stochastic delay differential equation. For this system
we derive a FDT, and discuss its validity. The FDT was
originally established by Callen and Welton10 as a generali-
zation of the Nyquist relation using a quantum perturbation
theory. Further elaborations and developments were subse-
quently reported by Weber.11 In general, the FDT is violated
in nonequilibrium systems, even in those where the relax-
ation time of a process is much larger than the observationa�Electronic mail: passianan@ornl.gov; http://nanoscale.ornl.gov
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time as, for example, in glassy systems.12 For an adsorptively
modified microcantilever used as a sensor, the relaxation
time scale can be in the range of minutes.9 However, one
may stabilize the cantilever in a stationary situation and per-
form measurements after possible transient effects have died
out. For the dynamics considered in this article, the FDT is
not violated.

Using the FDT, we investigate the parameter domain de-
fined by the delay and coupling strength and determine those
regions where the Q factor is enhanced. Using the microcan-
tilever in those regimes would provide a more efficient sen-
sor. Based on these results, we propose an adsorption experi-
ment from which the temperature of the cantilever may be
obtained as a measure of the effect of desorption.

We model the cantilever by an effective point mass, and
denote the delays by �i� �0,��, the dimensionless feedback
coupling strength by gi� �−� ,��, i=1,2 , . . ., the effective
mass by m, the viscous damping constant by ��0, and the
elastic constant by k�0. The inclusion of thermal white
noise ��t� with ���t��=0 and ���t���t����	�t− t��, and
memory effects, gives a general formulation of the dynamics
of any oscillator, since delays are inherent to any experimen-
tal arrangements, albeit here introduced deliberately. For fi-
nite constant delays, defining the linear operator L=�t

2

+a1�t+a2, with a1=� /m, a2=k /m we can formulate the gen-
eral dynamical equation as

Lz�t� = b0��t� + b1z�t − �1� + b2�tz�t − �2� , �1�

with the average

L�z�t�� = b1�z�t − �1�� + b2�t�z�t − �2�� , �2�

where b1=g1 /m and b2=g2 /m are real constants, and b0

=
 /m with the dimensionless parameter μ used to regulate
the noise level. In the absence of the delays, Eq. �1� reduces
to the ordinary Langevin equation

Lz�t� = b0��t� �3�

for the dynamics of the system. The response z of the linear
dissipative system �3� to a time dependent perturbation ��t�,
is obtained from the Fourier transform of Eq. �3�, z���
=�������� at frequency �, where � is the complex suscep-
tibility. When a microcantilever in thermodynamic equilib-
rium with its surrounding medium at temperature T, oscil-
lates with a mean energy E under the condition of a
generalized resistance R, the FDT yields a generalized ex-
pression for the mean square value of the spontaneously fluc-
tuating force �:

��2� =
2



� R���E��,T�d� �4�

�this is in the absence of any other externally applied
forces10�. The application of the FDT to the dynamics of the
microcantilever at room temperature T at the relatively low
frequencies involved, such that E���=E	kBT ����kBT�,
and for a viscous drag force of −�ż, reduces Eq. �4� to
��2�	�2�kBT /
�
�0

� d�, where kB is Boltzmann’s constant,
and � is Plank’s constant. Taking �0 to be the dc limit, and
by taking the Fourier transform of the Langevin Eq. �3�, one
can calculate the spectral �power� density

��z�2���� =
kBT




I����
�

=
b0

2��2�
�a2 − �2�2 + �a1��2 �5�

of the Brownian motion around the equilibrium position.
When the delays are nonzero, taking the Fourier trans-

form of Eq. �1�, we obtain for the susceptibility

���� = b0�a2 − i�a1 − �2 − b1ei��1 + i�b2ei��2�−1. �6�

Under the open-loop conditions the coefficients a1, and a2

can be determined experimentally, by impulse excitation, for
example.7,8 Under position feedback, the coefficient b1, and
under velocity feedback the coefficient b2 may similarly be
determined. However, if the feedback coefficients and delays
are not known a priori, then one may numerically fit Eq. �6�
to the measured frequency response of the system, and thus
extract these parameters, typically by approximating the ex-
ponentials using a Taylor or Padè expansions. Here, these
coefficients are assumed known, and we will use experimen-
tally determined values7,8 for the simulation of the results.
Thus, using Eq. �6�, we proceed by writing the spectral den-
sity for the delayed system as

��z�2���� = �2�kBT
2


m2 
 	�

A2 + B2 , �7�

where 	� is the measurement bandwidth and

A = a2 − �2 − b1 cos ��1 − b2� sin ��2,

B = a1� + b1 sin ��1 − b2� cos ��2. �8�

For b1=b2=0, this result reduces to that of Eq. �5�. The de-
lays may be adjusted such that �1=�2=�, in which case, us-
ing Eq. �7�, we can write for the two important cases of
position and velocity feedback

��z�2����
��z�2�0���

= 1 − u��� + u2��� − ¯ , �9�

where u has been defined as u���=�� / �1+���, and for the
off-resonance case, �� and �� are given by

�� =
1

��2 − a2�2 � ��2b2
2 − 2a1b2�2 cos �� + b2���2 − a2�sin �� , b1 = 0,

b1
2 + 2b1��2 − a2�cos �� + 2a1b1� sin �� , b2 = 0,

� �10�
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and ��=a1
2�2 / ��2−a2�2, whereas at resonance, ��=0, and

�� = �b2
2/a1

2 − 2b2 cos�a2�/a1, b1 = 0,

b1
2/�a1

2a2� + 2b1 sin�a2�/�a1
�a2� , b2 = 0,

� �11�

and ��0 denotes the averaging in the absence of reinjection,
i.e., Eq. �5�. It can be seen that since 0����1, and ����
�1, then �u��1, and thus the right-hand side �rhs� of Eq. �9�
will always be positive as expected. If � is regulated to meet
���1, that is, if for the same delay, the frequencies are
limited to those with a period T long enough to maintain
� /T�1, then A and B may be expanded such that for b2

=0, and weak coupling, small b1, can be written as

��z�2���� = ��z�2�0����1 − b1����� , �12�

where

���� = 2
�1 + a1���2 − a2

�a2 − �2�2 + �a1��2 , �13�

which near resonance takes on the value ��→�a2

	2m� /�. Thus, for b1�0, cantilevers with a higher mass in
less viscous media display less and less Brownian amplitude
the longer the delay. To derive the effect of the Brownian
forcing upon the cantilever with delayed feedback, we derive
first the normal modes of the latter, for the case with b2=0,
and g1=g, as a function of �g ,��. We write the formal solu-
tion for the case

Lz�t� = b1z�t − ��, t � t0, �14�

describing the position-delayed damped Hookian oscillations
of a cantilever as

z�t� = �
n=1

�

Pn�t�e��n+i�n�t, �15�

where �n and �n compose the nth root of the system

�±��� = −
a

2
− � cot� ±��2 csc2 � +

a2

4
− c ,

sin �

�
= −

2

b
��± +

a

2

e�±, �16�

and where Pn�t� is an arbitrary polynomial of degree less
than the multiplicity of the nth root,8 and we have further-
more defined the parameters a=a1�=�� /m, c=a2�2=k�2 /m,
b=−a2g�2. These polynomials are determined from the pre-
functions u�t� on the interval �t0−� , t0�. If the system is vi-
brating in its normal mode when the feedback is engaged at
t0=0 such that �g ,��� �0,0�, the prefunction can be set to
u�t�=u�0�cos �t. We have previously described the experi-
mental realization7,8 of the rhs of Eq. �14�. We note that,
when �=0, Eq. �14� only presents a single oscillation fre-
quency, while for ��0, there is an infinite number of solu-
tions, some oscillatory, the others nonoscillatory �growing or
decaying�. The condition tan �=a� / ��2−c� implies that �+

=0, i.e., there are no growing modes. Figure 1 displays the
distribution of the n roots �n= ��n+ i�n�, n=1,2 , . . . of Eq.
�16�, corresponding to the state of the oscillator in �15�. Fig-
ure 1�a� displays the roots for a fixed delay at various gain

settings, while Fig. 1�b� shows the roots for a fixed gain at
several delay settings. In the �� ,g� plane, we thus search for
the solutions in the vicinity of the nondelayed �b1=b2=0�
eigenvalue �0= �−1.25+76.0i��103. The distribution of the
roots around this value �point 1.0+ i� is shown in Fig. 2.
Figure 3 shows the behavior of such eigenvalues �, and �
=2
f for each �g ,��. The division of the �� ,g� domain by
negative and positive regions of the real part of the roots
suggest that for the corresponding oscillations one can ex-
pect suppression or amplification. Only �conjugate� solutions
near the imaginary axis are stable. In particular, from the
frequency distribution f�g ,��, one may infer that for low
coupling strength g, delay controlled frequency tuning oc-
curs primarily around T0 /4 and 3T0 /4, for which, as seen
from � distribution, the amplitude of the oscillations remains

FIG. 1. Infinite complex roots � of the delayed system of Eq. �2�, for some
values of �a� g parameter at fixed delay �=T0 /3, and �b� � parameter at fixed
gain g=1.0. The roots migrate from Re���→−� to Re���→ +� with in-
creasing gain as seen in �a�, or Re���→0 with increasing delay as in �b�. For
g→0 these roots degenerate to the nondelayed value of �= �−1.25+76.0i�
�103.

FIG. 2. Distribution of the roots in the vicinity of the nonretarded eigen-
value. Both axes have been scaled with the corresponding nonretarded
eigenvalue.
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relatively unaltered. We also note that a fast transition from
amplification to suppression is feasible for delays around
T0 /2, which for low gain occurs with a minimum frequency
shift.

Using the results of this analysis and depending on the
available experimental conditions, we can then choose the
most convenient delay times and forcing amplitudes in order
to enhance the quality factor Q. Furthermore, one may take
advantage of these results in the following gedanken experi-
ment. Under the open loop conditions, using a spectrum ana-
lyzer, the noise spectrum, i.e., the spontaneously fluctuating
position of the cantilever, can be measured at the resonance
frequency �0 to yield ��z�2���0�=�=kBT /
��0

2. Using this
experimental information and the functional relationship
T���= �
��0

2 /kB��, the temperature can be inferred if the dis-
sipation factor is known. However, if the FDT is not valid,

then T does not represent the “true” temperature of the can-
tilever. Thus, denoting the outcome of this measurement S,
its deviation �e=T−S from a parallel measurement of the
temperature of the bath T provides a measure of how far the
system is from the equilibrium. Now, if equilibrium prevails
initially, turning the reinjection on, for example, such that
b1�0 and b2=0, one may monitor how �e varies and possi-
bly changes sign as a result of moving the experimental pa-
rameters in the �� ,g� plane. Sign changes are expected as a
result of suppression �“cooling”� or amplification of oscilla-
tions. Thus, for a fix �, and scanning g, the first measurable
deviation �e provides a threshold gth for the system’s affinity
to memory. The depth of this memory may be adjusted in the
interval �� �nT0 , �n+1�T0�, with n=0,1 ,2 , . . .. Exposing the
system to the environment under investigation, adsorption
events may modify this affinity, and thus shift gth. It is there-
fore plausible to convey dynamic information akin to the
adsorptive processes by also tuning � and trace out a trajec-
tory in the �� ,g� plane. A different analyte concentration or
composition may map out different trajectories, which, upon
availability, augmented by �e would shed light on nonequi-
librium nature of the associated processes.

III. CONCLUSION

In view of FDT, when b1=b2=0, the temperature of the
cantilever may be obtained from spectral density measure-
ments. On the other hand, in the case of feedback, the correct
temperature may not be obtained from the spectral density
alone. However, in the stationary state, this is not due to a
violation of the FDT, and one may account for the tempera-
ture deviation by using the calculation of Eq. �7� to account
for the contribution of the delay mechanism.
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