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ABSTRACT 

 
Images of semiconductor defects are maintained in semiconductor yield management systems to diagnose problems that arise 
during the manufacturing process.  A semiconductor -specific content-based image retrieval system was developed by Oak 
Ridge National Laboratory (ORNL) under the auspices of International SEMATECH (ISMT) during 1998-1999.  The system 
uses commercial databases to store image information and uses a customized indexing technology to rapidly retrieve similar 
images.  Additional defect information (position, wafer ID, lot, etc) has now been incorporated into the system through the 
use of additional database tables.  During Fall 2000, the system was deployed in two ISMT member company fabs to 
demonstrate the utility of this approach in managing large databases of images and to show causal relationships between 
image appearance and wafer information such as processing layer, wafer lot, analysis dates, etc.  This paper summarizes the 
results of these field tests and shows the utility of this approach through data analysis conducted on approximately one month 
of historical defect data. 
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1. INTRODUCTION 
 
Images of semiconductor defects are maintained in semiconductor yield management systems to help diagnose problems that 
arise during the manufacturing process.  Engineers frequently turn to these image repositories to examine historical data for 
trends. In concert with this effort, these images are organized into databases and are used, for example, to help train 
automatic defect classification systems.  Anticipated advancements in semiconductor manufacturing will require faster 
manufacturing-process analysis to maintain economic feasibility despite the growth in circuit complexity and the amount of 
data acquired [1]. Since many facilities collect on the order of thousands of images each week, with some state-of-the-art 
facilities ranging up to 25 000, image management, usage, and cataloging is becoming a source of concern for data 
management systems [2]. 
 
A semiconductor-specific content-based image retrieval (SS-CBIR) system was developed by ORNL under the auspices of 
International SEMATECH during 1998-1999.  The system uses commercial databases to store image information and uses a 
customized indexing technology to rapidly retrieve similar images.  The system leverages advances in the field of content-
based image retrieval (CBIR). CBIR is a technology that is being developed to address the needs of a wide variety of fields, 
including remote sensing, art galleries, architectural and engineering design, geographic information systems, weather 
forecasting, medical diagnostics, and law enforcement [3]. CBIR techniques are used to index and retrieve images from 
databases based on their pictorial content [4], typically defined by a set of features extracted from an image that describe the 
color [5, 6], texture [7, 8] and/or shape [9, 10, 11] of the entire image or of specific objects in the image.  This feature 
description is used to index a database through various means such as distance-based techniques, rule-based decision making, 
and fuzzy inferencing [12, 13, 14].  The applications of CBIR to semiconductor manufacturing are discussed in [15, 16].
 
Additional defect information (position, wafer ID, wafer lot number, etc) has been incorporated into the system described in 
[14,15] through the use of foreign keys and additional database tables.  During Fall 2000, the system was deployed in two 
ISMT member company fabs to demonstrate the utility of this approach in managing large databases of images and to show 
causal relationships between image appearance and wafer information such as layer, lot, dates, etc.  This paper summarizes 
the results of these field tests and shows the utility of this approach through data analysis conducted on approximately one 
month of historical defect data. 
 
This paper describes the overall technical approach, including the addition of wafer-related defect data intended to extend the 
context of the system beyond just image management.  Our experimental section discusses the data acquisition and presents 



results for the system, including overall database statistics and experimental methods and results.  We conclude with a 
discussion of the effectiveness of the system and future directions in SS-CBIR development work. 
 
 

2. ARCHITECTURE AND IMPLEMENTATION 
 
Since past papers [15] have discussed the system architecture in detail, we will discuss the additional tables for the defect 
data and the implementation software for the field test.  Although the SS-CBIR field test software was not designed to be a 
complete defect management system, it was necessary to include some defect management system (DMS)-type functionality 
to reach our project goals.  To this end, we envisioned the submission of images to our system as the results of a defect 
detection instrument inspection.  Table 1 shows the information submitted with each image from the manufacturer's DMS.   
 

Value Description 
PATH Name of image file 
DEFECT INDEX Unique defect ID value 
X Coordinate Defect X coordinate on wafer die 
Y Coordinate Defect Y coordinate on wafer die 
X Die Die coordinate in the X direction 
Y Die Die coordinate in the Y direction 
X Size Size of the defect bounding box in the X direction 
Y Size Size of the defect bounding box in the Y direction 
Area Approximate area of the defect measured by bounding box 
"D" Size Alternate defect size measurement; largest of X size, Y size, and square root 

of area 
In Cluster Boolean flag: 1 if defect is a member of a cluster 
Height Measure of the height of the defect, if applicable 
Cluster ID ID number of cluster where defect has membership. 
ID On Wafer ID number of defect on wafer itself (index number) 
Date / Time Date and time associated with inspection of wafer - i.e., 05271999 162840 for 

May 27th, 1999, at 16:28.40 (24-hour clock) 
Tool Tool performing inspection 
Layer Step ID The layer, or step ID, associated with the inspection 
Recipe The recipe for the inspection 
X Origin (Die) The X origin of the coordinate system on the wafer (to relate the defect 

coordinates to actual physical values) 
Y Origin (Die) Y origin of the coordinate system 
Wafer Orientation Orientation of the wafer 
Wafer Slot Boat slot where wafer is located 
Lot ID ID value for the wafer lot 
Wafer ID ID value for the wafer 
Device The device type for the wafer lot 
X Pitch The distance between die streets in the X direction 
Y Pitch The distance between the die streets in the Y direction 
SEM Class The classification as assigned by ADC from an SEM inspection instrument, if 

applicable, of the defect image 
Optical Class The defect classification as assigned by ADC from an optical inspection 

instrument, if applicable 
Engineer Class The engineer-assigned defect classification, if applicable 
Cluster Class The classification, if applicable, of the cluster where the defect has 

membership 
Modality The modality of the image - 0 for optical, 1 for SEM 

 

Table 1 Defect information submitted with each image for the SS-CBIR field test 



 
 
During our design process, we conceived an entity relationship diagram for our database design.  The entities include the 
Image, including the file name associated with the image along with the feature values that describe its content; the Defect, 
including the classification of the defect, its location on the wafer and die, etc; the Inspection, data describing a single act of 
taking one wafer and running it through an inspection on a defect detection instrument; the Wafer, an entity containing a set 
of die and possibly one or more defects; and associated tables of defect classifications and inspection tool types.  The tables 
were embodied in a software object coded in the SS-CBIR Dynamic Link Library (DLL).  
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Figure 1  Statistical mask.  Values derived 
from experimental database of over 10,000 
images and given as fractions of image 
width and height. 

In addition to the core SS-CBIR DLL, the SS-CBIR system included an 
ORACLE database, a set of interface DLLs and executables, and 
graphical user interfaces.  For our testing purposes, a batch process 
developed by the fab personnel was run to generate data in format 
suitable for inclusion into the SS-CBIR database.  A Windows NT 
service executable periodically checked for output from the batch 
process.  When new output was detected, the service added the image 
and associated defect data to the SS-CBIR database.  Each image 
underwent a segmentation to separate the defect from the background 
on the image.  Since reference images were not available for the 
images, and previously generated image masks were not available, our 
implementation was forced to use a technique called "statistical 
masking" to separate defects from their background.  Simply stated, the 
statistical mask was created by averaging all masks from a database of 
over 10,000 images acquired from ISMT member companies during 
previous work.  The statistical average of these masks proved to be 
basically an ellipse of a certain size centered in the image (figure 1).  This mask is clearly a gross approximation of reality.  
This approach prevented our system from using several vital image description parameters, including defect shape and defect 
image area.  In addition, this mask approach caused inaccuracy in other defect descriptors (texture and color) by possibly 
incorrectly identifying the area where these values should be measured. Of course, in some cases useful information could be 
measured about the defect from the statistical mask. A random sampling of 1024 images from each site revealed that 
approximately 20% of the images had defects that were fairly centered and covered by the statistical mask.  Some suggested 
remedies to this situation are discussed in the conclusion. 

σx = 0.5 
σy = 0.5 
σw = 0.17
σh = 0.19 

 
Screen shots of the user interfaces are shown below. These include an interface showing the overall state of the system (the 
"control panel"), the status of the submission of images and defects to the database (the "modifier"), and a GUI for retrieving 
images based on several different criteria including image content (the "retriever").  Very little user interaction is required for 
the control panel and modifier GUIs.  The retriever, on the other hand, is the main mechanism for the user to test and 
experiment with the SS-CBIR system.  Images can be imported as query images using a cut-and-paste operation or file open 
browser dialog boxes.  Once an image is imported into the system, a mask is generated for the defect; several options were 
delimited, although our experiments at present were limited to the statistical mask.  Queries are performed by simply 
selecting the image areas of interest (defect texture, defect color, background color, etc), and optionally a set of layers or lots 
which limits the query to images with these characteristics.  Returned images are displayed in ranked order in a gallery.  
Clicking each returned image shows its lot, layer, file name, classifications, etc. The returned gallery can be exported to an 
HTML file. In addition, paretos (histograms with bins ordered by the highest response) are presented for the returned results.  
These paretos can be exported to comma-separated value files for use with other analysis tools. 
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3. EXPERIMENTAL RESULTS 

ware was installed on PCs at two member company sites and configured to run in batch mode.  
 exported the results of the previous day's inspections from the fab defect management system 
ed value (CSV) file.  This file contained essentially one line per inspection image.  Each image 
; multiple images of the same defect were possible, however, and do occur in the data less  than 
ine contained the image file name, wafer number, wafer lot, layer, etc as required by the database 
riodically the SS-CBIR software checked for the existence of this file.  When the file was updated, 
 the database along with its associated data.  Table 2 shows the database statistics for each site 
ective month of data collection. 

tify the performance of the field test system, especially under the limited time frame of the testing, 
ults into three areas:  system performance, retrieval accuracy, and anecdotal support. 



 
Value 
Addition Mean 
Addition Median 
Addition Maximum 
Addition Minimum 
Daily Rate  
Retrieval Time (128 
images) 
Retrieval Time per 
database image 

 
System Performance 
We report results pertaining 
fab user.  First, the time to a
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retrieval time.  The image re
for each database.  The time
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main difference between the
while site 1 images were 640
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Value SITE 1 SITE 2 
Number of DEFECTS 59593 76653 
Number of WAFERS 3856 3336 
Number of LOTS 1375 1021 
Number of STEP / 
LAYERS 

99 164 

Number of IMAGES 62594 78953 
Oldest DATE 10-7-2000 9-14-2000 
Latest DATE 11-6-2000 11-1-2000 

Table 2 Database statistics for site 1 and 2
Site 1 Site 2 
0.834 seconds 0.476 seconds 
0.765 seconds 0.328 seconds 
6.0 seconds 3.813 seconds 
0.312 seconds 0.016 seconds 
103598 images 181590 images 
7.5 seconds 7.25 seconds 

0.12 ms 0.09 ms 

to system timing and robustness in this section.  There are two times of interest in general to the 
dd images to the database is important because the SS-CBIR system should be basically invisible 

to the underlying defect detection and inspection 
activity.  Second, retrieval time is important 
because of usability issues and engineering 
response time.  Histograms showing the 
distribution of times to add images for site 1 and 2 
are shown in figure 3.  These times were 
measured on a common machine using data 
collected and returned to ORNL.  The machine in 
use was a 750 MHz Pentium III PC.  Both 
histograms show a distinct bimodal appearance. 
This is due to basically both sites having two main 
types of images, optical and SEM, with different 
sizes.  (all images were collected in jpg format).  

 and minimum times to add the images to the database are recorded in table 3, along with image 
trieval time was measured by requesting 128 returned images and measuring the system response 
 to load images from a network and display them is not included in this total.  Both these sets of 
e rate of performance, allowing an overall daily input of well over 100, 000 images a day.  The 
 timing for the sites is the image size; most images from site 2 were jpg images sized 320 x 240, 
 x 480 or 480 x 480. 

r critical factor for fabrication facilities.  Our testing was all done in a non-critical mode on our 
pact on the fab infrastructure was the required daily batch dump of the defect data and network 
images. The systems ran effectively at both sites until testing was completed.  



Histogram of Image Addition Times for Site 1
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Histogram of Image Addition Times for Site 2
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Figure 3 Histogram of image addition times for sites 1 and 2.  Bimodal distributions are due to two fundamental 
imaging modalities (SEM and optical) at each site. 

 
Retrieval Accuracy and Effectiveness 
The retrieval accuracy for a large database of images is difficult to quantify.  One approach taken in the past [15] involved 
assigning a grade to each retrieval result to determine overall system effectiveness.  While this approach has value, we 
elected not to pursue such a subjective measure for this work.  Instead, we will show illustrative examples of the types of 
images in the database, some effective retrieval results, then quantify our system based on how our retrievals match query 
images based on additional, non-visual information.  
 
Image Examples 
Figure 4 shows random image retrievals from site 1 and site 2.  We see here that site 1 contains a relatively large number of 
SEM images, while site 2 contains relatively more optical images.  Both have significant numbers of both types of imagery.  
 

In figures 5 and 6 we show some examples of good queries from both image databases.  In all images, the query image is the 
first image visible, in the upper left of the image. The first query (5a) shows a SEM image of a complex background of metal 
circuit lines with a small round particle well-centered in the field of view.  The returned imagery match this query image very 
well.  The next image is an optical microscopy image. The defect is difficult to detect in most of these images.  This shows 
how the statistical mask can possibly confuse the system because the "defect" area masked out has a very definite texture and 
color, very similar to the background if not indistinguishable.  Image 5c shows a nice SEM image of a pit or scratch; again, it 
is well centered and a fairly good match for the statistical mask.  The results of site 2 all show optical images.  Note that the 
query image 6a has found multiple images of the same defect for some of the results. 

   
(a) (b) 

 

Figure 4 Examples of random images from (a) site 1 and (b) site2 
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Figure 5  Examples of visually-good queries from site 1 
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Figure 6  Examples of visually-good queries from Site 2 



Non-Visual Data Analysis 
We  have modeled the retrieval system as a sort of nearest-neighbor classifier for the step/layer, lot, and optical classifications 
(SEM classifications had too many unclassified results to make a similar comparison meaningful).  The experiments were 
performed as follows.  For each site, we sampled 1024 images and submitted them as query images returning 64 results.  We 
then counted how many times the most common occurrence in the results matched the query image.  For example, we 
determined the layer/step with the most common occurrence in the first 4, 8, 16, 32, and 64 returned images.  If the most 
common occurrence matched our query image, the query was assigned a value of 1.0 (for success).  Situations where no one 
value had a majority (ties) were assigned a value of 0.5 for unknown.  We would like to note the following: 
 
• The system did not use a very accurate defect - background segmentation mask; while the statistical mask is "better than 

nothing", its drawbacks are obvious. 
• Queries which seek to find similar step/layers, optical classifications, etc. are very easy to implement in database query 

language, and basically get 100% performance 100% of the time.  Our queries for these experiments are based solely on 
image content and have value based on how they can match images visually, which can supersede lots, layers, and other 
additional information traditionally used to source yield problems. Our goal is to show that visually similar defects and 
images have a definite relationship to non-image information, not to design a step/layer classifier. 

• Due to the large number of images, the queries were conducted by a random sampling of 1024 images from both 
databases.  In some cases, a "correct" retrieval was not possible because there were not many examples from that 
particular lot or layer in the database. 

• For the optical classifications, we threw out results that contained "not classified" results. 
 
The following charts show the results of this pseudo-classification test.  Each chart contains weighted and unweighted results 
for sites 1 and 2, with classifiers using the first 4, 8, 16, 32, and 64 results.  Unweighted results are computed by finding the 
number of correct classifications for a given layer/step, lot, or optical ADC class, then averaging these.  This number 
considers all layer/steps, lots, and optical classes equally and does not depend on the number of occurrences of each class.  
Weighted results are computed by determining the number of correct answers and adding these, then dividing by the total 
number of queries.  The performance drops as more neighbors are considered  because most queries did not return a majority 
of the query class.  Our analysis does not attempt to explain this phenomena, but one likely reason for this result is the variety 
of image content from a given layer or lot.  (See figure 8 in the "Anecdotal Support" section for an example of this.)  An 
additional obvious explanation is that images are ordered by their similarity to the query image, and the more dissimilar an 
image appears, the less likely it is that it has common non-image characteristics.  The results average in the 60% at 4 nearest 

SS-CBIR as Layer/Step Classifier
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SS-CBIR as Lot Classifier
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SS-CBIR as Optical Classifier 
(with Statistical Masking)
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Figure 7  Results from SS-CBIR system as a classifier.  (a) Layer/Step; (b) Lot; (c) Optical ADC 



neighbors, then drop approximately 8% per classifier group to around 30-20% for the last group.  The weighted results 
perform slightly better. 
  
Anecdotal Support 
Our feedback from the member company participants was encouraging.  The main point of criticism was the lack of a better 
masking technique.  Besides that, the users felt the system would be extremely valuable for multiple uses when integrated 
into a more fab-ready software package.  Performance was perceived in a very positive manner with respect to speed. 
 
In addition to simple image searching, technologists had several creative ideas for the use of this system in an integrated 
package.  One application mentioned was using the system to find libraries and examples of defect images.  An image could 
be submitted for query.  When the image results were received, filtering them by layer or lot could be performed, and then the 

 
(a) 

 

 
(b) 

Figure 8  (a) Randomly selected images from layer "X" (b) Result of query using desired 
image (upper left), from layer "X" 



resulting gallery exported for use as an example page.  Figure 8 shows such a case.  The query results are shown in (b). Of 
the pictured 32 images, 27 are from the layer of interest; the remaining are from 9 other layers.  Part (a) shows a random 
sampling of images selected solely on the basis of their layer.  These random samples are from an overall set of 1692 images 
from layer X.  This illustrates, albeit anecdotally, how SS-CBIR is an effective tool to locate similar-appearing images across 
layers as well as within a single layer due to its sensitivity to image content. 
  

4. CONCLUSIONS 
 
The results of the field test experiments showed the feasibility for image retrieval in the semiconductor fabrication 
environment for use with yield engineering practices.  The system as designed was robust and operated in an expedient 
manner. The results of SS-CBIR queries are informative visually. The results of the "SS-CBIR as classifier" experiment are 
encouraging and show a definite relationship between image visual content and non-image (defect and wafer) data.  
 
One of the largest issues in the field test experiments was the absence of definitive defect masks. This problem prevented fab 
engineers from effectively testing the system for usefulness.  There is a potential solution to this problem.  Masks are 
generally created by defect detection instruments.  For background, defect inspection generally consists of two steps.  First, 
the wafer is scanned to determine defect locations.  Then a "redetection" phase is applied where detection hardware is driven 
to the previously determined site and a higher-resolution image of the defect is taken.  This image can be submitted to an 
image archiving system.  If the instrument is equipped with automatic defect classification, a reference image is acquired 
from a neighboring die and digitally subtracted from the defect image to separate the defect from the background.  The 
resulting mask can also be saved along with the defect image.  Using this information can be extremely useful for CBIR 
systems, as it effectively adds much information to the image.  However, generally this mask image is not available.  An 
instrument manufacturer may be able to access the mask or separate defect features generated during the course of ADC, but 
not sharing these masks leads to closed systems that are not in the best interests of the semiconductor manufacturing 
community.  An additional complication is the existence of multiple files for each defect image.  There are several techniques 
for circumventing these problems.  These include free sharing of masks, storing masks in efficient manners (i.e., run-length 
encoding) in image file headers, encrypting mask information throughout the image itself using digital watermarking 
techniques, and probably the "holy grail", determining a method for robust non-referential defect detection.  
 
A random sampling of 1024 images from each site revealed that approximately 20% of the images had defects that were 
fairly centered and covered by the statistical mask.  Of course, the statistical mask does not allow us to measure anything 
about the defect's shape and area within the field of view.  Furthermore, the statistical mask covering a defect can bias the 
measurements of defect color and texture. However, it is interesting to see that cases where the statistical mask coincided 
with the actual  defect (for example, figure 5a) show good agreement both visually and with respect to layers and 
classifications.  This type of result renders much enthusiasm for the success of SS-CBIR when the defect mask issue is 
resolved. 
 
Despite this problem, both sites agreed that the SS-CBIR software shows tremendous potential for usefulness in the yield 
management environment.  Applications for the technology are abundant and become quite clear when deployed in a 
semiconductor manufacturing facility.  
 
Future experiments and work in this area include attempting to use SS-CBIR as an image manager, incorporating wafer 
process information, and using SS-CBIR as a tool for automatic defect classification library building.  The image 
management idea stems from the concept that images with similar visual appearance are useful to a point, but become 
redundant at some juncture.  Using SS-CBIR to detect these redundant images can deal with the glut of image data by giving 
confidence to purging techniques.  Incorporating wafer processing information will give an extra dimension to the issue of 
linking visually similar defects to non-defect data and may point the way for further uses in yield management and preventive 
maintenance.  Finally, the largest problem of ADC - training - can be circumvented if the SS-CBIR system is employed to 
seek commonality between images and examples of known classes. 
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