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We have studied the resonant coupling of surface plasmons in curved thin-film tunneling geometries by
obtaining the dispersion relations for the system. The surface plasmon dispersion relations are calculated for a
metal-coated dielectric probe above a dielectric half space with and without metal coating. The system is
modeled in the prolate spheroidal system, and the dispersion relations are studied as functions of the parameter
that defines the boundaries of the tip and the corresponding coating, and as functions of the involved coating
thicknesses. Using this type of probe-substrate configuration, the nonradiative surface plasmon coupling
mechanism is investigated in the visible spectrum at frequencies relevant to scanning probe microscopy. The
simulations of the results predict optical access to the resonant surface modes of the system.
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I. INTRODUCTION

The quanta associated with the waves in bulk matter
splasmonsd were discussed in the early 1950s by Bohm and
Pines1 in order to explain the characteristic peaks observed in
the energy-loss spectrum of fast electrons penetrating metal
foils. The peaks were shown to correspond to plasmon gen-
eration in the foil. The quanta associated with the surface
waves ssurface plasmonsd were described in 1957 by
Ritchie2 in order to explain the observation of the reduced
energy peaks in the energy-loss spectrum not accounted for
by the plasmon concept alone. The observation of multiple
discrete energy losses was thus explained by invoking the
bulk and surface plasmon concepts.3 Optical access to the
surface plasmons and their susceptibility to the geometric
parameters and dielectric properties of the surrounding me-
dium gave rise to a different series of applications, such as
sensing and imaging. These applications typically involve
excitations of surface plasmons on small metal particlesspar-
ticle plasmonsd or at the interfaces of a thin metal film. For
the surface plasmons on a plane-bounded semi-infinite metal,
the resonance occurs when the real part of the dielectric
function is −1. For a sphere that is small compared to the
wavelength, the dipolar resonance condition occurs at the
frequency for which the real part of the dielectric function is
equal to −2. Even more negative values are obtained for
prolate spheroids. In the case of a thin foil, the resonance
condition depends on the wave vectork of the surface plas-
mon and the foil thickness in a transcendental dispersion
relation. If the foil is curved, then its electronic resonances
will change. Such variations can be important, for example,
in the context of scanning probe microscopysSPMd. The
quantum mechanical process of electron tunneling and the
phenomenon of photon tunneling associated with the frus-
trated total internal reflection are the well-known underlying
principles of the operation of the scanning tunneling micro-
scopesSTMd and the photon scanning tunneling microscope4

sPSTMd. The finite transmitted amplitude in the probe me-
dium determines the amplitude of the acquired signal, which
can be greatly influenced by the geometric factors of the
probe-substrate system. In the case of collective electronic
excitations5 in metal probes and/or samples, this is closely
related to the availability of the resonant modes of the entire
system.

Classical nonretarded electrodynamics with a dielectric
description of a metal can provide valuable information re-
garding the possible plasmon modes of a system.5–7 Within
this framework, the dispersion relations are uniquely deter-
mined by the material properties and geometric characteris-
tics of the system, and thus can offer important information,
in particular, with regard to the optical access to the resonant
modes of a supporting medium and their dependence on
smooth or unsmooth curvature. For example, it can be shown
that the dispersion relation for surface plasmons on a statis-
tically slightly rough surface displays a splitting that can lead
to a double peak in the reflection measurement.8 Another
example is the optical excitation of surface plasmons in gold
islands, which undergoes spectral variation as a result of
reshaping9 the submicron gold particulates or changing the
underlying substrate.10,11 This can be visually observed as a
change in the color of the thin gold film, or spectrally re-
corded using a spectrophotometer. The discrete surface
modes of the gold particulates12 are responsible for such
spectral shifts. Thus, surface modessas opposed to bulk
modesd are strong mediators of size and geometry of the
material media, as prescribed by the application of the
boundary conditions imposed on the involved electromag-
netic fields. For these reasons, dispersion relations have been
calculated to various degrees of geometrical complexity for a
variety of material domains, such as a slab,13–15multiple-film
systems,16,17metal gratings,18–20ionic and metallic spheres,21

spheroidal particles,12,22 cones and double cones,22,23 metal-
lic cylinder,21,24,25and metal-coated dielectric cylinder.26
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Probe-sample interactions and experimental observation
of the stimulation and propagation of the surface plasmons in
SPM systems have been reported in several works.27–35 An
example can be found in the work of Krennet al.,33 where
optically excited localized surface plasmon coupling be-
tween a submicron gold particle and wire was observed us-
ing a PSTM. Theoretical models for various SPM probe-
sample configurations have been reported where the probe is
approximated by a finite body residing close to or in the near
field of a substrate. For example, Madrazoet al.36 simulated
the probe as a two-dimensional cylinder within a few nanom-
eters above a metal surface with direct illumination. Simi-
larly, Gonzálezet al.37 reported a study of the optical forces
exerted on a metal probe modeled as a two-dimensional sil-
ver cylinder above a substrate illuminated via total internal
reflection. Recently, Portoet al.38 investigated the interaction
of a directly illuminated probe-substrate system by modeling
the probe as a metal sphere located a few nanometers above
a metal substrate.

In this paper, we study the feasibility of the coupling of
surface plasmons in thin metal films and the effect of curva-
ture on such a coupling. We predict optical excitation of this
coupling in geometries relevant to the physics of surfaces,
nanostructures, and scanning probe microscopy. Such geom-
etries are important when studying the near-field or localized
plasmon excitation in submicron particles39 or field enhance-
ment in surface-enhanced Raman scattering.40 The geometric
effects in the study of interacting thin metallic films at finite
interaction distances can also provide useful information
when studying the Casimir and Van der Waals forces.6 In the
limit of vanishing film thickness, a closely related example is
found in the work of Sernelius and Björk,41 where the inter-
action energy for a pair of quantum wells was calculated by
treating them as two-dimensional metallic sheets.

Due to analytical difficulties, there is a trade-off between
the geometrical complexity with nonretarded approach and
geometrical simplification with fully retarded approach. Nev-
ertheless, each approach can offer both quantitative and
qualitative information about the system, in particular, with
regard to its limiting behavior in the context of dispersion,
resonances, and coupling.6 Here, we present the exact results
of the calculation of the dispersion relations for a system
composed of a hyperboloidal multilayered medium located
above a multilayered Cartesian medium. Section II A is de-
voted to the description of the solutions of Laplace’s equa-
tion, whereas in II B the nonretarded dispersion relations are
derived within the local response approximation. Numerical
work and discussions of the results will be given in Sec. III.
Finally, a summary of the conclusions is presented in Sec.
IV.

II. DISPERSION RELATIONS

A. Scalar potential of the electric field

We model the curved thin metal film by representing its
boundary with the surface of a single-sheeted hyperboloid of
revolution. The probe dielectric and the planar thin metal
film interfaces are modeled by confocal hyperboloids. The
use of such surfaces can be justified computationally by

surface-fitting procedures to scanning electron microscope
images of a metal-coated probe tip.42 One of the most impor-
tant features of employing the spheroidal coordinate system
here is the possibility of coexistence of planar boundaries
with hyperboloidal surfaces, appropriate for modeling sev-
eral “probe tip-substrate” configurations present in scanning
probe microscopy.43,44

The transformation between the Cartesian and the sphe-
roidal systems is performed by45

xsz,u,wd = z0 sinhz sinu cosw,

ysz,u,wd = z0 sinhz sinu sinw,

zsz,u,wd = z0 coshz cosu, s1d

in the domain defined by

0 ø z , `, 0 ø u ø p, 0 ø w ø 2p, s2d

with z0 being an overall scale factor, which also sets the focal
points for the hyperboloids defined by fixedu sor spheroids
defined by fixedzd. In what follows, we will make the vari-
able substitutions coshz=h with 1øh,` and cosu=m
with −1ømø1.

Since the system as a whole is electronically neutral, the
scalar potential of the electric fieldFsz ,u ,wd satisfies
Laplace’s equationDF=0, which is separable in the spheroi-
dal system.46 The fully retarded case is complicated in these
coordinates, due to the evaluation of radial and angular sphe-
roidal wave functions.47,48 The general solution can now be
expanded as a Fourier series in the azimuthal variablew as49

Fsh,m,wd = o
0

`

fmshdgmsmds2 − dm
0 dcosmw, s3d

where f and g, using the Laplacian in the spheroidal
system,50 and a separation constantc satisfy

d

dh
Fsh2 − 1d

dfmshd
dh

G −
m2

h2 − 1
fmshd = cfmshd,

d

dm
Fs1 − m2d

dgmsmd
dm

G −
m2

1 − m2gmsmd = − cgmsmd. s4d

The possibility of obtaining a continuous spectrum of real
eigenvalues and eigenfunctions relies on settingc=nsn+1d,
with n given by the complex numbern=−1

2 + iq, resulting in
c=−1

4 −q2, whereq is a real continuous variableqP f0,`f.
This is appropriate for the infinite surface of a hyperboloid as
opposed to the discrete values ofn arising in the case of
bounded surfaces, such as those of spheroids wheren is an
integer. The particular values of Ren=−1

2, and Imn=q is a
consequence of the necessary criteria for existence of the
eigenvalues and orthogonal eigenfunctions51–53 and result in
the finiteness of the scalar potential in the interior-exterior
boundary value problem in potential theory. The discrete
modes of objects with finite volumes, such as an ellipsoid,12

can be envisioned as standing waves oscillating on the sur-
face of the particle. When one of the dimensions of the sys-
tem is allowed to be infinite, the corresponding eigenmodes
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become continuous and this can alter the dispersion relations
dramatically and have consequences for the extension of en-
ergy localization.

It can be shown46,54 that Eqs.s4d are solved by the asso-
ciated Legendre functions with continuous complex lower
index sconical functionsd P−s1/2d+iq

m szd. The argument
zP g−` ,`f is set toz=h to give the solution to the first
equation ins4d, while it takes onz= ±m= ±cosu to generate
the two linearly independent solutions of the second equation
in s4d. Using the recursion relations for the conical functions,
it can be shown that the differential equations ins4d are
satisfied by the conical functions. It can be seen, from the
asymptotic expansion51,55,56 of the conical function, in the
limit of large argument, that the negative real part of −1/2
makes these functions decay. We note that the sum ins3d
runs only over positive m due to P−s1/2d+iq

m szd
=Zq

mP−s1/2d+iq
−m szd, where Zq

m,m=0,1,2, . . . isdefined by the
ratio57 of the G functions

Zq
m =

GS1

2
+ m− iqD

GS1

2
− m− iqD = s− 1dmSq2 +

1

4
DSq2 +

9

4
D¯

3Fq2 +
s2m− 1d2

4
G . s5d

Also, with the above value forn, bothP−s1/2d+iq
m szd andZq

m are
even in q, consistent with the fact53 that we do not need
to include the region of the eigenvalue spectrum beyond
Ren−1.

The following orthogonality relation58 for the conical
functions with argument 1øh,`:

E
1

`

P−s1/2d+iq
m shdP−s1/2d+iq8

m shddh =
Zq

m

q tanhpq
dsq − q8d,

s6d

will be useful in Sec. II B. Finally, a superposition inq gen-
erates for each azimuthal modem

fmshdgmsmd =E
0

`

P−s1/2d+iq
m shdUq

msmddq, s7d

where

Uq
msmd = AmsqdP−s1/2d+iq

m smd + BmsqdP−s1/2d+iq
m s− md s8d

and where the functionsAmsqd and Bmsqd are to be deter-
mined by the boundary conditions.

From this point on in our quasistatic model, we use the
Fourier transform of the electric scalar potentialFFsr̄ ,td
→Fsr̄ ,vd and note that the fieldsĒ and D̄ will then be

connected due to the local approximation byD̄sr̄ ,vd
=esvdĒsr̄ ,vd at angular frequencyv. SinceF andD̄ adhere
to the standard quasistatic Dirichlet-Neumann boundary con-
ditions at regions wheree makes a jump, it is necessary to
invoke a transformation between the solutions in the planar
regions and the hyperboloidal regionsssee Fig. 1d. Setting

Hmsw−wkd=s2−dm
0 dcosmsw−wkd, this is provided by the

following expansion43,44,59specialized form=0:

eik̄·R̄ = o
m=0

`

Hmsw − wkd

3 E
0

`

Tq
mskz0dP−s1/2d+iq

m s0dP−s1/2d+iq
m shddq, s9d

where fork.0, andR̄ in xy plane

k̄ · R̄= kz0
Îh2 − 1 cossw − wkd, s10d

Tq
mskz0d = imÎ 2

pkz0

q tanhpq

Zq
m Kiqskz0d, s11d

andKiqskz0d is the Macdonald’s function.49

The computation of the conical functions
P−s1/2d+iq

m s±cosud for m=0,1 smù2 are obtained from appro-
priate recursion relations usingm=0,1 functionsd and −1
,m,1 can be performed using its integral representation.50

Through a proper variable substitution60 the infinite upper
limit of integration in the integral representation can be
transformed to a finite closed interval off0,sp /2dg. Here, for
q not too large, the integral was evaluated effectively using a
five-point Newton-Cotes integration method.61 For largeq
the conical functions were expanded in terms of powers of
q−1 and Insuqd Bessel functions.55,56 The values generated
here pass the Wronskian check and are in agreement with
those of Kölbig,60 and Zhurinaet al.62,63

B. Metal-coated dielectric probe above a metal-coated
dielectric substrate

Figure 1 depicts the projection onto thew=0,p planes of
the modeling surfaces for the metal-coated tip above a metal-
coated substrate configuration. The coating boundary, speci-

FIG. 1. Geometric representation of a metal-coated dielectric
probe above a metal-coated dielectric substrate in spheroidal system
in the w=0,p planes, wherew is the azimuthal coordinate. The
probe tip boundary is defined bymt=cosut, where the angleu is
measured from the symmetry axis of the hyperboloidsz-axisd to an
asymptote to the hyperboloid. The surface of the coating is given by
mc. The boundary of the substrate metal coatingsz=0 planed is set
by the hyperboloidms=cosus with us=p /2, while that of the sub-
strate is defined byz=−a. The dielectric functions characterizing
the involved materials in the five regions are labeled bye1 through
e5 defined in the figure.
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fied by m=cosuc=mc, is confocal with the tip surface de-
fined by m=mt.mc. The m=0 sxy planed separates the
substrate coating, which extends toz=−a, from the free
space above it. The distance between the apex of the coating
hyperboloid and them=0 surface isz=d=z0mc and between
the tip and the coating iszt−c=z0smt−mcd. Any variations in
the shape of the tip or the coating will inherently be accom-
panied by a translation along thez axis of the corresponding
hyperboloid within the distance 0øzøz0.

In Fig. 1, we will use gold or silver for the metallic re-
gions and quartz for the dielectric regions because these
compose the most commonly used material in the context of
this work. We characterize the system with the following
dielectric functions for each of the five regions defined in
Fig. 1: e1=et for the probe, e2=etc for the frequency
v-dependent probe metal coating,e3=eg=1.0 for the gap re-
gion, e4=esc for the substrate metal coating, ande5=es for
the substrate. The imaginary part and the frequency depen-
dency of the dielectric functions of the tip and the substrate
media have been neglected due to a small variation of these
quantities in the visible spectrum as is evident from the op-
tical data.64 With these notations, the general solution to the
Poisson equation will then be composed of the partial poten-
tials Fi, wherei =1,2, . . . ,5denotes the five regions of Fig.
1, respectively. Usings3d and noting that the conical func-
tions of negative arguments are singular atu=0, the partici-
pant partial potentialsFi are written fori =1,2,3 as

Fisr̄d = o
m=0

`

s2 − dm
0 dcosmsw − wkd

3 E
0

`

AmsqdTq
mskz0dP−s1/2d+iq

m shdf i
msm,qddq.

s12d

In order to satisfy the boundary conditions, that is, satisfying
the continuity of the potential and the normal component of
the displacement field, we utilize the orthogonality of the
azimuthal functionsHm and relations6d and write for the
potential atmt

E
1

` FE
0

2p

sF1usr̄duut
dHm8dwGP−s1/2d+iq8

m shddh

=E
1

` FE
0

2p

sF2usr̄duut
dHm8dwGP−s1/2d+iq8

m shddh,

s13d

where the inner integral eliminates them summation, and
changing the order of integration betweenh andq integrals,
the outer integral eliminates theq integration by isolating the
integrands atq8. Rewriting Eq.s13d for uc and carrying out
the same procedure for the displacement field atut and uc,
we obtain fori =1,2,3 thefollowing:

f1
msm,qd = bq

msmtdP−s1/2d+iq
m smd,

f2
msm,qd = P−s1/2d+iq

m smd − aq
msmtdP−s1/2d+iq

m s− md,

f3
msm,qd = LmsqdP−s1/2d+iq

m smd + L̄msqdP−s1/2d+iq
m s− md,

s14d

whereaq
msmtd, bq

msmtd, Lmsqd, andL̄msqd are all functions of
material properties and, thus, frequencyv, and are defined as

aq
msmtd = S etc − et

etc«q
msmtd − et

DKq
msmtd,

bq
msmtd =

etc − etc«q
msmtd

et − etc«q
msmtd

,

Lmsqd = 1 +S etc − 1

1 − «q
msmcd

DF1 −
aq

msmtd

K̂q
msmcd

G ,

L̄msqd = sK̂q
msmcd − aq

msmtddF1 − etc«q
msmcd

1 − «q
msmcd

G − K̂q
msmcd,

s15d

where we have defined

Kq
msmd =

P−s1/2d+iq
m smd

P−s1/2d+iq
m s− md

, K̂q
msmd =

]mP−s1/2d+iq
m smd

]mP−s1/2d+iq
m s− md

,

eq
msmd =

Kq
msmd

K̂q
msmd

, s16d

where ]m stands for partial differentiation of the conical
functions with respect to their argument. The Fourier fre-
quencyv dependencies of the functions above have been left
out for clarity. The special values and the asymptotic forms
of the relations ins16d, which will be useful in the further
work, are given in Appendix AfEqs.sA1d–sA4dg.

For lower half spacez,0, we use the following Cartesian
ansatz:

Csr̄d = e±kzeik̄·R̄, k . 0, s17d

which, when incorporating the boundary conditions for the
z=−a, takes the following forms fori =4,5 si.e., in the re-
gions −a,z,0 andz,−ad:

F4sr̄d = Yskdfekz + ge−2kae−kzgeik̄·R̄,

F5sr̄d = Yskdḡekzeik̄·R̄, s18d

with g and ḡ defined as

g =
esc− es

esc+ es
, ḡ =

2esc

esc+ es
, s19d

andYskd being a common amplitude forz,0. The continu-
ity of the potential and the normal component of the dis-
placement field at them=0 interface requires using Eqs.s9d
and s17d, and the following observations:
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uēm · ¹̄Cum=0 = uēz · ¹̄Cuz=0,

− keikz0
Îh2−1 cossw−wkd =

1

z0h
o
m=0

`

Hmsw − wkd

3E
0

`

uTq
mskz0dP−s1/2d+iq

m shd

3]mP−s1/2d+iq
m smdum=0+dq, s20d

uF4sr̄dum=0− = Yskdf1 + ge−2kageik̄·R̄ = o
m=0

`

Hmsw − wkd

3E
0

`

Tq
mskz0dYskdf1 + ge−2kag

3 P−s1/2d+iq
m s0dP−s1/2d+iq

m shddq,

u]mF4sr̄dum=0− = o
m=0

`

Hmsw − wkd

3E
0

`

Tq
mskz0dYskdufge−2ka − 1g

3P−s1/2d+iq
m shd]mP−s1/2d+iq

m smdum=0−dq.

s21d

From now on, we only consider the case whereescsvd
=etcsvd=esvd. Equating the above equations to their coun-
terparts form→0+, expressing all the exponentials in terms
of hyperbolic cotangent and simplifying, we arrive at

− e

lq
msmcd

S e + es cothka

es + e cothka
D

=
aq

msmtd − Kq
msmcd + ezq

msmcdfK̂q
msmcd − aq

msmtdg

aq
msmtd − Kq

msmcd + ez̄q
msmcdfK̂q

msmcd − aq
msmtdg

,

s22d

where we have set

lq
msmcd =

1 + K̂q
msmcd

1 − K̂q
msmcd

, zq
msmcd =

1 + Kq
msmcd

1 + K̂q
msmcd

,

z̄q
msmcd =

1 − Kq
msmcd

1 − K̂q
msmcd

. s23d

For eachm, solving Eq.s22d for e results in the following
polynomial:

o
i=0

4

ci
msqdeisv,qd = 0, s24d

with the coefficientsci
msqd given by Eq.sB1d in Appendix B.

This result can now be studied numerically to simulate the
dispersion relations, that is, the roots ofs24d, which, in view
of Drude’s dielectric function, will describe the frequency

svd dependence of each modesm,qd. We thus note that, tak-
ing k as a parameter, eachsm,qd singles out a particular
solution of the system resulting in a particular potential
Fq

msr̄d and field −¹Fq
msr̄d distribution in the spacesh ,m ,wd.

III. RESULTS AND DISCUSSIONS

A. Surface modes of a probe

We begin our discussion by studying the resonance modes
of an isolated solid hyperboloid of a local dielectric function
esvd in vacuum. With the definitions ins16d, these are given
by the functionseq

msv ,mtd, m=0,1,2, . . .,which yield the
nonretarded surface plasmon dispersion relations for a hyper-
boloid atm=mt, and are shown in Figs. 2 and 3. Employing
the Drude model, the modes have also been displayed with
reference to bulk plasmon frequencyvp. For all other pur-
poses in this work, a plasma frequency65 of vp=ckp=8.33
31015 Hz for gold and 10.9931015 Hz for silver scorre-
sponding to Ree=0 in each cased will be used.64 In the limit

FIG. 2. Surface modes of an isolated hyperboloid in vacuum as
a function of curvature. The top two graphs show them=0,1 reso-
nance modes, and the bottom two are the corresponding Drude
metal limit responses. The modesssolid curvesd in each graph, in
the order of increasing curvature from top to bottom, show the
departure from a Cartesian interface atut=p /2. The dashed curve
represents the light dispersion relation. The energies have been ex-
pressed with reference to the bulk plasmon energyvp.

FIG. 3. The various azimuthal modesm of a probe withut

=30°. As shown, in the limitm→`, the modes approach the sur-
face plasmon dispersion of a vacuum-bounded metal half space for
all q. All modes reach their asymptotic values forq*20.
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ut→p /2 smt→0d, we haveeq
msv ,mtd→−1, that is, the non-

retarded dispersion relation of a simple Cartesian metal-
vacuum interface. This limit is also approached by largem
values, as seen in Fig. 3. The largeq form of these functions
ssee Appendix Ad,

eq
msv,mtd ,

q@1
− 1 −

cotut

q
, s25d

also yields, in the limitq→`, the Cartesian metal-vacuum
resulteq

msv ,mtd→−1.
As a comparison, we first note that it can be seen from the

retarded metal-vacuum Cartesian interface modes

esvd = − S1 − lesvd
1 − l

D1/2

, s26d

where Îl =v /ck measures the retardation strength, so that
l =1 yields the photon dispersion in vacuum, that the nonre-
tarded modee=−1 sl =0d is pushed down below the photon
dispersion relation and tangential to it in the small momen-
tum limit as a result of the retardation. For a Drude metal of
resonance frequencyvp, in the small momentum regionk
!kp, it can be shown froms26d that v /vp<k/kp<q, and
thus we expect that the inclusion of retardation will pull all
the modessm,qd below the light line. However, retardation
has no effect in the large momentum region as Eq.s26d
reaches its asymptotic value of the surface plasmon fre-
quencyvp/Î2 for k<2kp. It can also be seen from Fig. 2,
that forut→p /2, we encounter a degeneracy inm as a result
of loss of curvature. The higher the curvature, the closer to
zero the modes start; that is,v0sq=0,utd→0 when ut→0.
Thus, the sharper the tip, the larger the variation in them
modes. It is interesting to note that, in the case of a Drude
metal spheroidal particle,12,66 the energies of the lowest
eigenmodes start close to 0 and increase to reach their

asymptotic values, while all the higher modes start at higher
energies below the surface plasmon energy and decrease to
reach their asymptotic values. For a spherical metal particle21

sa special case of a spheroidd, the lowest mode is atv=0. In
the case of an isolated metal cylinder in vacuum,21 having an
identical azimuthal symmetry as in our hyperboloidal case,
them=0 mode starts atv=0, while all the higher start at the
surface plasmon energysv /vp=1/Î2=0.71d, in close simi-
larity to the trend here as shown in Fig. 2. Them degeneracy
is also observed in the high momentum regionsq→`d. At
such small scales, the collective oscillations cannot sense the
geometrical variations. From the well-like appearance of the
mù1 modes in Figs. 2 and 3, each allowing two excitations
at the same energy, it can be seen that the wells get wider, the
higher the curvature, but that the minima of the wells reach
the limit v /vp=0.64. For the samem, the q distributes the
charges on the probe, such that lowq values result in more
uniform distributions. This is illustrated by the simulations of
the potential distributions of aut=30° probe in Fig. 4, which
also provides a physical interpretation of the eigenvaluesq.
Figures 4sad and 4sbd show the projection onto thew=0,p
planes of the equipotential surfaces forsm,qd=s0,0.0d, and
sm,qd=s0,10.552d, while Figs. 4scd and 4sdd show the dif-
ferences for the twoq values, corresponding to the same
e=−1.17 for them=1 mode shown in Fig. 3. Figure 4, thus,
shows explicitly the different symmetries dictated by the
modessm,qd, where the eigenvaluesq appear to play the
role of the surface plasmon wave vectors along the surface of
the hyperboloid. This point will be rehashed in Sec. III B
fEq. s33dg in the context of surface plasmon propagation in a
Cartesian thin foil. Experimentally, the relative excitation
probabilities of these modes will, therefore, depend on the
polarization state of the incident field.

We also note that, although the solutionseq
mscosutd are

formally valid anywhere in the system, the interpretation of
them physically, as the true surface modes of the metal-

FIG. 4. The projection onto
the w=0,p planes of the relative
potential distributions of a probe
with ut=30°. The various symme-
tries presented by the pairsm,qd
are shown by the equipotential
surfaces, where the dotted con-
tours display Fq

msr̄d,0, while
Fq

msr̄d.0 is represented by the
solid contours. Insbd and sdd the
effect of the azimuthal order on
the charge distributions is given
for the same eigenvalueq, while
scd and sdd show the effect as a
function of q for the same order.
The particular values of q
=1.0552,10.552 were extracted
from the dispersion of them=1
mode ate=−1.17 in Fig. 3. The
simulated domain is defined byh
P f1,3g, andmP f0,p /2g.
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vacuum boundary, is more precise the closer we get to the
apex region as a result of our quasistatic assumption. We are
only interested in the apex region, where settingR=sx2

+y2d1/2, the curvature of the hyperboloid

dRzsRd = Rz−1sRdcot2 ut, s27d

changes appreciably. Thus, forh@1, and whenz0 sinut is
fixed we getdRzsRd→cotut si.e., a constantd, and thus the
hyperboloid behaves as a cone in this limit. To estimate when
the retardation becomes significant, we calculate the radius
of curvature of the probe apex by fitting a sphere to it. For a
focal point ofz0=10.0 nm and a probe angle ofut=p /6 in a
medium e=ee, we get for the radius of the sphere
r =7.5 nm. It can be shown67 that, as long asl.2prÎee, we
can neglect retardation. This is clearly satisfied for our hy-
perboloidal probe surrounded by vacuumsee=1d.

Also noteworthy is that, the modess16d adhere to the sum
rules for the surface modes of the complementarily divided
spaces as formulated by Apellet al.68 In the case of an iso-
lated solid hyperboloidswith frequenciesvhd, the comple-
mentary space is a hyperboloidal voidswith frequenciesvvd,
and thus the sum rule automatically generates the surface
modes of the voidssuch as the modes of a metal nanohole,
for which experimental observation of curvature-dependent
transmission, has been reportedd.69 Thus, for a Drude metal,
if Eq. s16d has the right symmetry, the transformationmt→
−mt should yield the surface plasmon frequencies of the void
from vv

2=vp
2−vh

2, which can easily be confirmed froms16d
becauseesvhdesvvd=1. Finally, for the particular case of the
modes of an isolated hyperboloid, further comparisons can
be made, for finite curvatures, to the case of an isolated solid
paraboloid of revolution, and in the limitmt→1, to the case
of an isolated solid cone, for which the solutions to the
Laplace equation are known.6,22

B. Surface modes of a complex probe

By resorting to the fully retarded Cartesian cases, we ex-
tend the above considerations to the multilayer systems in
the hyperboloidal cases. In particular, as a limiting case to
the system in Fig. 1, we extend the simple metal-vacuum
Cartesian interface analogy to the multilayer system depicted
in Fig. 5. In doing so, we generate for thep-polarized pho-
tons, using a matrix formalism,70,71 the retarded surface plas-
mon dispersion relations for the system in Fig. 5, bysconve-
nientlyd solving for the metal separation distanced using
Eqs.sC1d–sC3d. We note that Eq.sC1d is transcendental due
to inclusion of retardation, and, though it may be rewritten
differently, it can only be reduced to polynomial form when
retardation is neglected. The propagation length of the sur-
face plasmons is limited by damping in the metal, which is
ignored in the free-electron model. In what follows, we will
also use the real part of the complex dielectric functions for
gold and silver, obtained by interpolation in the reported64

experimental data, heretofore referred to as the experimental
dielectric functions.

In analogy with the splitting of the degenerate thick Car-
tesian film dispersion relation, into symmetric and antisym-
metric modes, as a result of a reduction of the film thickness,

we expect in the isolated curved metal foil case, i.e., with
0,ut,uc, that the modes in Fig. 2 multiply. Similarly, we
expect that in the limitut→uc, the dispersion relations enter
the two-dimensionals2Dd plasmon73 ssheet plasmond behav-
ior. In the absence of thez.0 structures in both Figs. 1 and
5, we are left with the Kretschmann74 configuration. Then,
Eq. sC1d, in the limit of et=etc→1, generates the retarded
and nonretardedsc→`d modes shown in Fig. 6sad for an
undamped Drude metal. The decoupling of the two modes
and their degeneration to surface plasmon energy in the non-
retarded case, and to the retarded dispersion of a single metal
interface are seen from the gray scale.

The symmetric and antisymmetric modes, shown in Fig.
6sad, will each split into twosclose-laying modesd if we bring
a metal-coated dielectric medium from above, as shown in
Fig. 5. This is demonstrated for a Drude metal in Fig. 6sbd
for the nonretarded case and in Fig. 6scd for the retarded
case, where the modes are again pushed down below the
light line in the small momentum region. Excluding the vir-
tual modes for the dispersion relation of the coupled system
in Fig. 5, there are four branches describing the possible
retarded modes of resonance. These are grouped into two
categories, one above the reduced bulk plasmon frequency
vp/Î2 and one below it. Optical access to these modes, in
the arrangement shown in Fig. 5, is governed by the inter-
section of the light dispersion line with these modes. This
restricts the number of accessible modes for a particular
wavelength, propagation angle of the incident photon field,
and the selected film thicknesses.

We now continue by analyzing the possible eigenmodes
of the configuration depicted in Fig. 1. We first note that,
setting

Ai
msqd =

ci
msqd

c4
msqd

, i = 0,1,2,3,4,

the strength of a coefficientci
msqd, in Eq. s24d describes the

relative energy of the modes at the interface that corresponds
to that coefficient’s degree, fori =1,2,3,4labeling the inter-
faces from top to bottom. These coefficients are smooth
functions ofq and are shown in Fig. 7. ForqP fqmin,qmaxg

FIG. 5. A Cartesian multilayered system in thez direction. This
configuration is composed of a semi-infinite dielectric mediumse1d,
interfaced with aa8=35 nm thin gold filmse2d, and another semi-
infinite dielectric mediumse5d, interfaced with aa=45 nm thin
metal film se4d separated by a free spacese3d gapsdd from the first
one. This system can be considered as the limiting caseut,uc

→p /2 to the system in Fig. 1. The system is stimulated by an
optical field of momentumk=2p /l incident at angleu.
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and qminù0, Eq. s24d was solved numerically using La-
guerre’s method.61 Thus, for thisq interval, we solve Eq.
s24d for m=0,1, which gives the rootser

msqd, r =1,2,3,4
such that

er
msqd* = er

msqd ø 0, ∀ q,m,r . s28d

In all the numerical evaluations of these roots, we have
assumed thatk, in Eq. sB1d, takes on the value of the wave
vector of the surface plasmons excited on the coating of the
substrate without the presence of the coated tip

cothka = coth
2pans sinu

l
, s29d

with l=632.8 nm, ns=Îes, u=46°, and a=45 nm. This
would then correspond to a realistic polarization charge sepa-
ration in the substrate medium. Based on experimental ob-
servation we setz0=100 nm, allowing a coating thickness of
zt−c=30 nm forut=0.45 andut=0.93, which, in turn, gives a
gap size ofd=59.8 nm. Equationss24d ands30d are indepen-
dent of z0; the only distance dependency is due to the par-
ticular choice ofmt andmc.

Before discussing the general case of Fig. 1, we consider
the important limiting case of an isolated hyperboloidal foil
in vacuum and its Cartesian counterpart of an isolated planar
foil in vacuum. The former can be achieved from Eqs.s24d
and sB1d after some algebra in the limita→0 and es→1,
which reducess24d to

e2 + cmsqde + dmsqd = 0, s30d

with the coefficients given by

cmsqd =
f2K̂q

msmtd − Kq
msmcdg«q

msmtd − K̂q
msmcd

fK̂q
msmcd − K̂q

msmtdg«q
msmtd

,

dmsqd =
Kq

msmcd − K̂q
msmtd«q

msmtd

fK̂q
msmcd − K̂q

msmtdg«q
msmtd

,

and shown in Fig. 7. Now specializing Eqs.sA1d–sA3d for
m=0 in the above equations, we get

FIG. 6. Retarded and nonretarded dispersion relations corre-
sponding to symmetricsvsd and antisymmetricsvad surface modes
of a Drude metal.sad For the two surfaces of a thin gold film
ssketched in the insetd, the two nonretarded modessextending to the
left of the light lined are clearly pushed down all the way below the
light line sdashed lined as a consequence of inclusion of retardation.
The dashed-dotted line represents the surface plasmon frequency
vp/Î2. The gray scale represents film thicknesses in the rangea
P f40.0,50.0g nm. For the arrangement of Fig. 5 witha=45 nm and
a8=35 nm in Eq.sC1d, the nonretarded dispersion relations insbd
are similarly pushed down due to retardation as shown inscd. The
gray scale represents the air gap interval:dP f0,255g nm.

FIG. 7. sad Coefficientscmsqd anddmsqd of the dispersion func-
tion fEq. s30dg for m=0,1 for anisolated hyperboloidal foil. Little
or no variation is observed forq.10. sbd Coefficients of the poly-
nomial fEq. s24dg describing the relative magnitudes of the resonant
values ofe corresponding tom=0,1 for thesystem shown in Fig. 1.
There is little or no variation in these coefficients for essentiallyq
.2.
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c0sqd ,
q@1

2
e−qsp−2ucd + e−qsp−2utd

e−qsp−2ucd − e−qsp−2utd
,

d0sqd ,
q@1

1,

and rearranging puts Eq.s30d in the following form:

e2 + 2 cothfqsuc − utdge + 1 = 0. s31d

Identifying this dispersion equation with the corresponding
equation for the planar case derived fromsC1d,

e2 + 2 cothskade + 1 = 0 s32d

yields the equivalence betweenq and the surface plasmon
momentumk

qsuc − utd , ka. s33d

With this interpretation ofq, the two modes of a metal-
coated dielectric probe over a dielectric substrate are shown
in Fig. 8. Here, symmetric and antisymmetric modes com-
prise the relative distributions of electrons on the two hyper-
boloidal bounding surfaces of the metal coating. The fre-
quency dependencevsqd of the dispersion relations
fsatisfying Eq.s24dg was obtained by matching them to the

experimental dielectric functionse. This can be accom-
plished by searching the frequencies at which there is a
match in the dielectric functions or, more efficiently, by writ-
ing v=vsed and interpolating ine at locations presented by
the solutions to Eq.s24d.

The results of Fig. 8 show that, although the overall red-
shift of all modes in the experimental dielectric function case
fFig. 8sbdg is clear, in the small momentum regionq,1, the
m=0 modes are slightly blueshifted in comparison to the
Drude metal case of Fig. 8sad. Despite the abrupt change in
the v2

0 mode, caused by the nonuniform distribution of the
experimental dielectric values over the frequency range en-
countered, the overall structure of the modes is preserved.
The discontinuous appearance of thev2

0 mode can be readily
smoothed out by an averaging algorithm such as the boxcar
technique.

Finally, the dispersion relations for the system in Fig. 1
are displayed in Figs. 9sad and 10sad for a Drude metal, and
in Figs. 9sbd and 10sbd for the experimental dielectric func-
tion for gold and silver, respectively. As in the Cartesian
cases of Fig. 6, there are four branchesvi, i =1,2,3,4 cor-
responding to the four metal interfaces, two Cartesian and

FIG. 8. Nonretarded surface plasmon resonance values for the
symmetric and antisymmetric modes for ordersm=0,1, assuming
sad a Drude model andsbd the experimental dielectric function of
gold for the metal-coated probe above a dielectric substrate con-
figuration. The higher energy modesv2

m correspond to themc inter-
face, whereasv1

m represent the modes ofmt interface. The horizon-
tal gray band is the visible band corresponding to the spectral range
f400,700g nm. Retardation effects are expected, in analogy with the
Cartesian case, to pull the smallq region of these spectra below the
light line in view of Eq.s33d.

FIG. 9. The four branchesvi
m, i =1,2,3,4representing the non-

retarded surface plasmon resonance values for the modesm=0,1,
assumingsad a Drude model andsbd the experimental dielectric
function of gold for the metal-coated probe above a metal-coated
dielectric substrate configuration shown in Fig. 1. The appearance
of the two additional modesv1,4

m , compared to Fig. 8, is a result of
the presence of the coated substrate. Simulations were performed
for substrate thicknessa=45 nm, with tip and coating boundaries
set tout=0.45 anduc=0.93, respectively. The horizontal gray band
is the visible band, and the reference energy isvp=5.47 eV.
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two hyperboloidal. However, in the case of gold, the modes
of the Cartesian interfacessv1,4

m d appear to be blueshifted,
whereas those of the curved surfacessv2,3

m d are mostly red-
shifted in close similarity to the case of Fig. 8 when employ-
ing the experimental dielectric function. On the other hand,
in the case of silver, the higher energy modes are severely
redshifted. Furthermore, in all Figs. 8–10, a squeezing of the
modes into the visible region is observed in comparison to
the Drude model.

In a series of limiting considerations in the simulations
of the results in Eq.s24d fsuch as the following casessor
a combination thereofd: es→1,`; a→0,`; ut→0,p /2;
uc→0,p /2; ut→ucg we can arrive at several interesting con-
clusions regarding the behavior of the dispersion relations of
the systemsor its subsystemsd shown in Fig. 1 as compared
to those of the systemsor its subsystemsd in Fig. 5. We can
identify the lowest frequencysv1

md and highest frequency
sv4

md modes in Figs. 9 and 10 to belong to the thin Cartesian
film ssymmetric and antisymmetric modes, respectivelyd,
whereasv3

m and v2
m correspond to the two surfaces of the

curved metal filmssymmetric and antisymmetric modesd. If
we, in our simulations, leta→0 systematically, we note that
v4

m→vp, whereasv1
m→0. The presence of the planar metal

film elevates the energy of the modes of the inner surface of
the probe. For ut,uc/p /2, this resembles Otto’s
geometry.75

As another example, we can also simulate the effect of the
involved dielectric media. All modes are redshifted as a re-

sult of an increase in the value of the dielectric functions.
The depolarization effect of large substrate and probe dielec-
tric constantsses=et@1d are observed to have the effect of
suppressing to zero the two lower frequency modes in Figs. 9
and 10, belonging to the inner curved metal surfacesv2

md and
lower planar metal surfacesv1

md, both in direct contact with
the dielectric media. The nature of this suppression is similar
to the redshift in surface plasmon energy experienced by the
simple Cartesian metal-vacuum interface when the vacuum
is replaced by a dielectric.76 The two higher frequency
modes belonging to the outer curved surface and upper pla-
nar surface only undergo a slight redshift in energy.

As a final limiting case, we consider the following situa-
tion: es→1, a→0, and ut/uc si.e., a curved 2D metallic
system in vacuumd. In this limit, v4

m→vp, v1
m→0 as a result

of a→0, and the normal hyperboloidal modev3
m→vp, while

the tangential modesv2
m approach a 2D plasmon. Here the

normal and tangential refer to the field distribution inside the
foil and correspond to antisymmetric and symmetric polar-
ization charge distributions, respectively. If we further let
ut,uc/p /2, v2

m becomem degenerate and approach the
mode of a Cartesian 2D plasmon. The variation of such a
mode with the plasmon momentum is known6 to have a
square-root dependence and is confirmed graphically in our
simulations by visual inspection and, numerically, by fitting
the functions0.058249±0.000131dÎq to v2

m.

IV. CONCLUSIONS

In summary, we have presented an exact quasistatic cal-
culation for the dispersion relations of curved metal-
dielectric multilayer structures within the framework of a
local dielectric function. We have demonstrated that, by fol-
lowing the movements of the loci representing the resonance
values of the surface modes of the multilayer system, the
effect of curvature can be studied explicitly without resorting
to any geometric approximations.

All the dispersion relations for the hyperboloidal cases
considered in this work adhere to the fact that at higher plas-
mon momenta, there is little or no variation in the resonance
values. In particular, forq.4 fixed substrate film thickness
and fixed ut−uc, all the modes converge rapidly to their
asymptotic values. This would correspond, in the case of Eq.
s32d, to the thick foil limit wheree→−1 sor v→vp/Î2d.
Thus, for fixedq bulk behavior enters faster with increasing
coating thickness. For a typical probe coating of 30 nm and
substrate coating of 45 nm, the dispersion relations presented
in this work suggest the possibility of optical excitation.
Given an available frequency range of interest, it is possible,
invoking the approach here, to seek the appropriate physical
parameters for the probe and the involved coatings, and the
choice of the involved metal and dielectric media, including
the gap region. Comparisons of the existence of resonance
frequencies at the typical experimental visible wavelengths
l=632.8, 515.0, and 442.0 nm incident at anglesu=46.0°,
50.0°, and 55.0°scorresponding to peak absorptiond can be
made from Figs. 8–10.

An experimental verification of this result would entail, in
the case of SPM, that the metal-coated probe tip be placed

FIG. 10. Dispersion of surface plasmons in the system of Fig. 1
for sad a Drude metal andsbd experimental dielectric function of
silver. A large redshift of the higher energy modes is observed in the
case of the experimental dielectric function of silver as compared to
the Drude model. The reference energy isvp=7.23 eV.

PASSIAN et al. PHYSICAL REVIEW B 71, 115425s2005d

115425-10



within a few nanometers above a metal-coated substrate to
record the exponentially decaying signal in the constant
height mode of the operation, upon which the wavelength
can be scanned while monitoring the coupling signal.
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APPENDIX A

The asymptotic form of the defined ratios

Kq
msmd =

P−s1/2d+iq
m smd

P−s1/2d+iq
m s− md

,
q@1

e−qsp−2ud8q tanu − 4m2 + 1

8q tanu + 4m2 − 1
,

sA1d

K̂q
msmd =

]mP−s1/2d+iq
m smd

]mP−s1/2d+iq
m s− md

,
q@1

e−qsp−2ud3 − 8q tanu

3 + 8q tanu
,

sA2d

eq
msmd =

Kq
msmd

K̂q
msmd

→
q→`

− 1. sA3d

EquationssA1d and sA2d evaluated atu=p /2

Kq
ms0d = 1, K̂q

ms0d = − 1, ∀ q,m. sA4d

APPENDIX B

Functionsci
msqd representing the coefficients of the poly-

nomial s24d

c0
msqd = esetlq

msmcdFK̂q
msmtd −

Kq
msmcd

«q
msmtd

G ,

c1
msqd = K̂q

msmtdhetV̄q
mskad − eslq

msmcdf1 + etzq
msmcdgj

+
K̂q

msmcdesetlq
msmcdzq

msmcd
«q

msmtd

+ Kq
msmcdFeslq

msmcd −
etV̄q

mskad
«q

msmtd
G ,

c2
msqd = K̂q

msmtdfet − etVq
mskad − V̄q

mskad + eslq
msmcdzq

msmcdg

+ K̂q
msmcdF etVq

mskad
«q

msmtd
− eslq

msmcdzq
msmcdG

+ Kq
msmcdFV̄q

mskad −
et

«q
msmtd

G , sB1d

c3
msqd = K̂q

msmtdfVq
mskad − etz̄q

msmcd − 1g

+ K̂q
msmcdF etz̄q

msmcd
«q

msmtd
− Vq

mskadG
+ Kq

msmcd,

c4
msqd = z̄q

msmcdfK̂q
msmtd − K̂q

msmcdg,

where

Vq
mskad = cothkaflq

msmcdzq
msmcd + esz̄q

msmcdg,

V̄q
mskad = cothkafes + lq

msmcdg. sB2d

APPENDIX C

dsk,vd =
1

2k3
3 ln −

v1u2T1 + u1v2T2

v1v2T3 + u1u2T4
, sC1d

where

T1 = uNu3 + vNv3e
2k2a8,

T2 = uNu3e
2k2a + vNv3e

2k2sa+a8d,

T3 = uNv3 + vNu3e
2k2a8,

T4 = uNv3e
2k2a + vNu3e

2k2sa+a8d, sC2d

with the frequency-dependent functions

ui = ei+1svdki + eisvdki+1,

vi = ei+1svdki − eisvdki+1,

kisk,vd = Fk2 − eisvd
v2

c2 G1/2

, i = 1, . . . ,N, sC3d

where i =1 refers to the first medium, whereasi =N denotes
the last medium. This is equivalent to letting thesp polariza-
tiond reflectancerpsk,vd→` for the entire system in Fig. 5,
which results in a transcendental equation for the resonance
modes of the system.72 When computingsC1d, the principal
branch of the natural logarithm is selected as the argument is
complex. EquationsC1d, in the limit a8→0, et→1.0 ssee
Fig. 6d describes the dispersion of surface plasmons in the
Kretschmann configuration, which foreg=1.0,etc=esvd, and
c→` ski →kd is given by

e2svd + cothkdses + 1.0desvd + es = 0. sC4d
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