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Abstract. We extend our previous work on the image segmentation
of electronic structures on patterned wafers to improve the defect
detection process on optical inspection tools. Die-to-die wafer in-
spection is based on the comparison of the same area on two neigh-
boring dies. The dissimilarities between the images are a result of
defects in this area of one of the dies. The noise level can vary from
one structure to the other, within the same image. Therefore, seg-
mentation is required to create a mask and apply an optimal thresh-
old in each region. Contrast variation on the texture can affect the
response of the parameters used for the segmentation. We show a
method to anticipate these variations with a limited number of train-
ing samples, and modify the classifier accordingly to improve the
segmentation results. © 2004 SPIE and IS&T.
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1 Introduction

tation of electronic structures on patterned wafers to im-
prove the defect detection process on optical inspection
tools.

Die-to-die wafer inspection is based on the comparison
of the same area on two neighboring dies using the assump-
tion that they are identical, except for the defects. The dis-
similarities between the images are a result of defects in
this area on one of the dies. The two images are subtracted,
and a threshold level is selected to locate any abnormality.
This threshold is established on the noise level in the dif-
ference image, to improve the SNR. The noise level can
vary from one structure to another within the same image,
since multiple structures coexist in the field of view. There-
fore, the measure of noise within the whole image is not
relevant for each individual type of structure. Segmentation
is required to create a mask of these different regions. This

As semiconductor device density and wafer area continueMask is then used to produce a measure of noise for each
to increase, faster and more sensitive automatic inspectiorgtructure in the difference image, and we apply an indi-
tools are required. The size of the defects is becomingvidual threshold in each region.

smaller, and harder to detéct This paper introduces an
improvement of our previous wotk on the image segmen-
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For this work, segmentation is performed using the dis-
crete wavelet transforfmand the “atrous” algorithm®-1°
This algorithm is well adapted to discriminate local fre-
quencies of the repetitive pattern, and it is restricted to
principal directions that correspond to the geometric pat-

terns found on integrated circuits. The weakness of this
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Raw Image Corrected image

Fig. 1 Image correction with (a) the raw image and (b) the corrected image.

method is its sensitivity to contrast variation and small tex- 2.1 Image Preprocessing

ture variation. In our previous worka local correction was Bright field illumination used in the imaging system pro-
applied to remove the nonuniformities. This is sufficient in §,ces a Gaussian-type illumination, where the image is
h o i h 1 %righter in its center and darker near the borders. This non-
the variations become very important, such as with large nizorm jllumination creates contrast variations over the
process variation or bad focus selection, the classifier musﬁmage that can change the wavelet response. The texture of
be trained with .magy q;]f_ferehnt é_amples that cover all the yhe electronic structures is also affected by focus changes
variations contained within the die. and process variation over the wafer. When small enough,

The usual way to train a classifier on this type of data is ey nroduce a contrast variation that can be partially cor-
an empirical approach. The classifier is trained with ran- .ocieqd.

domly selected samples, and then is tested over the whole ¢ ormalization is performed using the statistics in the

set of data. The areas where the classifier performs poorlyneighborhood of each pixel. The mean value is used to
are used to extract new training samples. These new,

| dded h iinal " the classifi correct the illumination, and the standard deviation is used
samples are added to the original set to retrain the classifief, haially correct the contrast variation. Each pixel is di-

until the best performances are obtained. This method is no{;yaq by the sum of the mean and the standard deviation
realistic in the in-line inspection process when dealing with values in a 55 sliding window. The illumination variation

a huge amount of data. It would require storing all the as well as some of the contrast variation is remoueid.
images of a die to process them off-line, and therefore a )

huge amount of memory would be necessary. Meanwhile, it
is time consuming for an operator to go through the itera-
tive cycle of training the classifier and testing its perfor- 2 2  \Wwavelet Transform

mances until it becomes acceptable. This paper introduce% he | lized. the f b
an original method to anticipate the impact of the variation 2Nc€ the images are normalized, the features can be ex-
tracted. The wavelet transfofris based on horizontal and

on each feature and to modify the classifier consequently to

accommodate these variations. First, we discuss the correcvertical filtering that is well designed for the geometric
tion applied to the images to remove the nonuniformity structures found on semiconductor devices. It enables an

induced by the imaging system and the semiconductor prc)_efficient discrimination of the horizontal and vertical local

cess variations, followed by feature selections using thefre%}_lrj]eq‘qletzs. » algorithm i dt tast let
wavelet transform and the “&ous” algorithm. Next, the € ‘atrous algorithm IS used 1o process arast wavele

. - - B 10 .
stress polytopes classiffer? is described as well as the tr_anlsform ﬂl]at Ids translation |nvarr|]a*?ﬂ. LrJ]nhlge the clas- b
modifications introduced to correct the variations. sical wavelet decomposition, where the image Is sub-
sampled at each decomposition level, thettaus” algo-

rithm works with a constant image size, and the filters’

. . kernel is up-sampled by adding zeros between the coeffi-
2 Image Correction and Feature Extraction cients. It creates an overcomplete decomposition that leads
The selection of good features is one of the most importantto some redundancy in the information, but also an invari-
parts of the segmentation work. The wavelet transform pro-ance in translation, which is a requirement in this applica-
duces good discrimination between the different structures,tion. The image size is kept constant during the whole de-
but is also extremely sensitive to the variations induced by composition, and there is a good spatial localization of low
the imaging system and the process variations. Therefore, ifrequencies.

is very important to correct the images before the feature  Two filters are necessary to perform the wavelet decom-
extraction, to remove these variations as much as possibleposition: a low-pass filte(LP) and a high-pass filtefHP).
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Fig. 2 Wavelet decomposition.
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Coifman’s orthonormal filters are usé%lFigure 2 shows Fig. 4 Representation of one parameter versus the standard devia-

one level of the wavelet decomposition. tion corresponding to four samples of the same texture taken on four
Between each decomposition level, the filters are up-different images.

sampled to match different frequencies. Practically, for

vel__ i . . .
each level, 2“1 zeros are inserted between each coef in hypercubes corresponding to the different classes. A hy-

f|§:|e?t (Fig. 3)d tThus, thle nu_rtr;]btehr of mea_nlnkgfutl coele- percube is created around each training point, so that it only
cients required 1o convolve with the iImage IS kept constanti, |, qes points of the same class. This is performed using

during the whole decomposition, so the processing time iy, gistance to the closest neighbor of dissimilar class for
almost the same for each level, enabling fast wavelet de-

. each side of the hypercube. The distah@€,Y) between
composition. w torsX dy . d us-
Semiconductor images are mostly a composite of geo- 0 vector _(,Xl""’XN) andY(ys,... yn) is measured us
metric structures with horizontal or vertical orientation. For Ing theL-infinite norm, also known as maximum distance:
that reason, only horizontal and vertical details are kept for
the segmentation. Diagonal details are ignored, because(X:Y)=[X=Y/..=max pn|X;~yp| oy
they are not good discriminating features, and they carry

most of the noise. Three levels of decomposition are used O €ach training point, the distan¢eis measured with
to produce six different features. every other point of dissimilar class. In each direction, the

Because of their waveform, the wavelet coefficients Shortest distances set the boundaries of the hypercube. In

cannot be used directly in a classifier. That is why the local N-D space, N boundaries are enough to define a hyper-
estimate of the wavelet standard deviation is used in a 17cube. To prevent any overlap between hypercubes of differ-
X 17 neighborhood as a texture feature. This is a good wayeNt classes, these distances are multiplied by a coeffigient
to smooth the wavelet response and obtain a uniform re-that must satisfy the condition

sponse when a frequency is matched, which is more suit- N

able for the classifier. 0<R<3z. 2

3 Classification The hypercubes are fully described once there are two
The classification i ¢ d using the st vt boundaries in each dimension defined by a neighbor in each
€ classrication 1S performed using e Sress-polylopeSy; action. This means that wit parameters, there aréN2

classifiet!'? This is a statistical classifier designed for .~~~ " = "> " : . ,
high-data-flow segmentation. The parameter space is Clusgjwectlons in which to look for a neighbor. If no neighbor is

; found in one direction but there is a closest neighbor in the
tered in a small set of hypercubes called stress-polytopes
where each hypercube contains samples of a single clas
Thus, the classification of a new point is performed by
comparing its features with the boundaries of the hyper-
cubes to verify a membership relation. When the set of
hypercubes is small, this is a very fast way to perform the
classification.

opposite direction, then this distance is used in both direc-
ions. Otherwise, if there are neighbors in one dimension,
then the shortest distance in every other dimension is used,;
as a result, limits cannot go to the infinite and saturate the

0014
. . &l 1
3.1 Training 1 B hot "
L. L 9 3
Once the features are extracted, each training point is asso-~ ° o4
ciated with 6-D vector. These vectors form the input to the -z oos
classifier for the training. The 6-D parameter space is sliced -8 gqs
=
.S oom
5
Level 0: @ @ @ > 000
0 . ;
002 0.04 006 008 01 012 0.14
Level 1:
@ @ @ @ @ Standard Deviation
Level 2: @ @ @ @ @ @ @ Fig. 5 Representation of one parameter versus the standard devia-
tion corresponding to four samples of the same texture taken on four
Fig. 3 Wavelets kernels for three-level decomposition. different images.
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Fig. 6 Define the hypercubes using the distance to the neighbor of Fig. 8 Merge the hypercubes within each class.

a different class.

. correlation is weak, the parameter will be less likely to be
parameter space. Using Eqd) and (2) guarantees that subject to variationsFig. 5. Therefore, the corresponding

there is only one class per hypercube, and there is no overhypercube can be reduced in the corresponding direction.
lap between the hypercubes of different classes. This resultgg o< 4 and 5 show the difference of correlation with the
in clustering the parameter space in hypercubes with fixedg;aarg deviation for two parameters on the same set of
bOLIIDr:eda?irrllzs;Nith fixed boundaries in the classifier enables four different samples.

. i . ~ This correction can be accomplished by makiRga
processing the data very quickly, but it removes any flex function of the correlation factors, the parameters, and the

ibility. It is not a real problem when the parameter rESPONSE ) 2sses. This must be done carefully to ensure that there is
is consistent for a given texture, but in most applications, : Y ;
nly one class per hypercube, and that no overlap exists

unexpected variations in the parameter response can aﬁecgetween the hypercubes of different classes. Actually, for

the performance. This is usually resolved by increasing theeach arameter of each class, the expansion/retraction must
number of training samples and going through a cycle of P ; ' Xp -
be done according to the correlation coefficients of the

retraining and testing the classifier until the expected Per- Ciahbors of other classes. For the same parameter. the cor-
formance is reached. In the particular application of image g . : P ’
relation coefficient can be extremely different from one

segmentation of electronic structures, variation of the P& 12ss to the other one
rameters can be correlated with the residual contrast varia- . : :
During the hypercube creation step, the class of the clos-

tions that have not been completely corrected. In Otherest neighbor is recorded. Thus, the class of each neighbor in

words, for a given texture, some parameters will follow the each gimension s kndwn T’he boundar betwegn WO

contrast variation, but not all of them. It is technically dif- . . o " pounaary .
neighboring points in one dimension is defined using the

ficult to train the classifier with a very large set of samples entroid of mass between the respective correlation coeffi-
since there is no guarantee that the whole range of contrasgient P

variation will be represented. Therefore, a technique was .
developed to modify the hypercube’s boundary according Considering a vectoK of (?IassCx, a_nd a vectqh( of
to the anticipated variations of the parameter for each class¢12SCy, Ed.(2) can be rewritten to fulfill the requirement
Since the contrast variation is produced by the variationsWith the corrected coefficierRc(x,,Yp):
induced by the system, the measure of correlation between
the contrast and a particular feature is a good way to deterO<Rc(Xp,Yp) + Re(Yp . Xp) <1.Yp, €
mine if the feature will be sensitive to focus and process
variations. This measure will then be used to modify the
boundaries of the hypercubes. When a parameter has a
strong correlation with the standard deviation for a given
class, it will be more likely to be subject to variations itself
(Fig. 4). That is why the corresponding hypercube needs to
be enlarged in the direction corresponding to this parameter
to allow more variation of the parameter. Similarly, if the

P2

Fig. 7 Correct the hypercubes using the correlation information. Fig. 9 DRAM area.
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Fig. 12 Inspection layout.
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(6)

Fig. 10 Logic area.

It is easy to show that
whereRc(Xp,Yp) is the coefficient for the parametprof

classCy with its closest neighbor of clags . d(Xp,Yp) +d(Yp,Xp)=1. (7
To perform the correction, a Weigwc(wcl,...,ch) is ) ] )
assigned to each class. This weight is inversely propor_ReqU|rement(3) can be fulfilled using Eq(7) andR de-

tional to the correlation with the standard deviation: fined as in Eq(2). The corrected coefficierRc (X, Yp) is
described as

1

P re,l

WC ’ (4) RC(Xp pr):ZRd(va}’p): (8)

r
wherer . is the correlation factor between the parameter Re(Xp,Yp)=2R | XP'

of classC and the standard deviation {Qr_|<1). Il Hry

Given a vectorX of classCy and a vectory of class  tpg coefficientRc(x,,y,) provides a way to control the
Cy, for each parametap, the distance ratid(x,,yp) be-  expansion/retraction of the hypercubes so that two hyper-
tweenx, and the centroid ok, andy, can be defined as  cubes of different classes will not overlap. Any expansion

in a given direction is followed by a proportional retraction
Ve in the same direction of the hypercubes corresponding to
d(Xp.Yp) = ©) the neighboring points of another class. Since the correc-
Xp Yp i ici i
tions affect only the coefficient used to set the boundaries,

9)

Fig. 11 Blank area. Fig. 13 Example of the pixelwise segmentation on one image.
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Table 1 Misclassification rate on the segmentation on one column and one row.

Column Row
Misclassification Rate Training 1 Training 2 Training 1 and 2 Training 1 Training 2 Training 1 and 2
Without correction 2.45% 7.85% 2.29% 3.04% 2.97% 2.95%
With correction 2.32% 2.36% 2.49% 2.94% 2.69% 2.87%
Improvement 0.13% 5.49% —0.20% 0.09% 0.29% 0.08%

the hypercubes will not be reduced to a point where they3.2 Segmentation

would exclude training points of the same class, or ex-ping the classification process, each point is tested with
panded to a point where they would include training points o hypercubes to verify the membership relation. The hy-

of another”cliss.h b 4 th ercubes do not cluster in the whole space; therefore, some
Once all the hypercubes are created, they are merge;§oints do not belong to any hypercubes. In that case, an

inside each class. Two hypercubes are merged together ifiicia| point for each class, which corresponds to the

the newly created hypercube does not overlap with @ NY-mean of the training points of the same class, is used. The
percube of another class. This step reduces manageablggest neighbor sets the class of the point.

number of hypercubes.

The full process is illustrated in Figs. 6, 7, and 8 for the 4 Results
two dimensional and two classes’ case. First, the hyper-
cubes are defined for both classes using(Egand Eq.(2), The segmentation tests were performed on a memory wa-
as shown in Fig. 6. Then in the case where the pararpgter fer, where three different areas must be segmented:
of the classC; has a strong correlation with the contrast,
but at the same time, the paramepgrof the classC, has
a weak correlation with the contrast, hypercubes of class
C, can be extended in the; direction, while hypercubes
of classC, can be retracted in the same directi®ig. 7).

* the dynamic random access mem@mRAM) (Fig. 9
area, which is a fine regular texture that shows a lot of
process variations

« the logic aredFig. 10, which is a composite of coarse

L textures
Thus, the parameters of cla€s can afford more variation the blank Fia. 1 hich d i tai
in the p, direction. After this step, the hypercubes can be stfuctt?rne aredFig. 11, which does not contain any

merged inside each clagkig. 8).
Since the DRAM shows most of the variations, the test is

Fig. 14 Segmentation on one row without correction. Fig. 15 Segmentation on one row with correction.
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two training sets with and without correction are presented
in Table 1. Training sets 1 and 2 are also combined to
provide a comparison.

These results show that without the hypercube correc-
tion and only one training sample in the DRAM area, the
misclassification rate can vary depending on the training
sample. The segmentation on the column is really depen-
dent on the selection of the training set, whereas the seg-
mentation on the row is more invariant because the contrast
variations are less important. In both cases, the best results
are achieved when combining the two training sets.

The correction on the first or the second training set
improves the results in both cases, and the segmentation is
more invariant with the selection of the training samples.
With this segmentation, very good results are achidiess
than 3% of misclassificatiorwith a few training samples.
The results with one training set with the correction are as
good as using a combination of two training sets without
correction. Figures 14 and 15 show the improvement
brought about by the correction on the column images us-
ing the second training set. Figures 16 and 17 show the
slight improvement brought about by the correction on the

Fig. 16 Segmentation on one column without correction. row images using the second training set.
There are still limitations to the correction technique,
especially when the variations are large or when the inter-
) . ) ~ class distance is small. Furthermore, the correlation mea-
done by comparing the results obtained with the same trainsure is accurate on uniform fine textures, but less accurate
ing sample for the logic and the flat area, but different on nonuniform texture, where the correlation value is aver-
samples for the DRAM in locations where the contrast is aged_ We also notice that on the column, the correction
different. In each case, a single sample on the DRAM areaysed on the combination of the first and second training sets
is used. Two samples of the logic area are required to in-slightly increases the misclassification rate. This is caused
clude two different types of structures and one sample ofpy the large difference between the two samples on the
the blank area. Images for the segmentation come from aDRAM area. For some parameters, the two samples are so
column of 170 images and a row of 170 images taken djfferent that they do not overlap. Thus, the correlation
across three dieig. 12 to include the maximum contrast  value is dramatically increased, and the corresponding hy-
variation. Each image is 4%472 pixels, and the segmen- percubes can be overstretched. Nonetheless, misclassifica-
tation is performed pixelwiséFig. 13. The results for the  tion is below 3%, which is adequate for this inspection
process.

5 Conclusion

In wafer inspection, the performance of the segmentation is
critical since the misclassification of an area can create a
false detection or increase the overall noise level in the
area, which would result in a higher threshold with the risk
of missing a critical defect. It looks like a trivial problem
since we deal with regular textures, but it is not since tex-
tures are subject to large variations that can be complex to
correct. There are also limitations on the system flexibility
to train the classifier since we have to work with huge data
flow. We developed an original method to anticipate the
variations with a limited number of training samples, thus
increasing the training speed and the segmentation perfor-
mance.
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