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Abstract. We extend our previous work on the image segmentation
of electronic structures on patterned wafers to improve the defect
detection process on optical inspection tools. Die-to-die wafer in-
spection is based on the comparison of the same area on two neigh-
boring dies. The dissimilarities between the images are a result of
defects in this area of one of the dies. The noise level can vary from
one structure to the other, within the same image. Therefore, seg-
mentation is required to create a mask and apply an optimal thresh-
old in each region. Contrast variation on the texture can affect the
response of the parameters used for the segmentation. We show a
method to anticipate these variations with a limited number of train-
ing samples, and modify the classifier accordingly to improve the
segmentation results. © 2004 SPIE and IS&T.
[DOI: 10.1117/1.1762518]

1 Introduction

As semiconductor device density and wafer area conti
to increase, faster and more sensitive automatic inspec
tools are required. The size of the defects is becom
smaller, and harder to detect.1–4 This paper introduces a
improvement of our previous work5,6 on the image segmen
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tation of electronic structures on patterned wafers to
prove the defect detection process on optical inspec
tools.

Die-to-die wafer inspection is based on the comparis
of the same area on two neighboring dies using the assu
tion that they are identical, except for the defects. The d
similarities between the images are a result of defects
this area on one of the dies. The two images are subtrac
and a threshold level is selected to locate any abnorma
This threshold is established on the noise level in the
ference image, to improve the SNR. The noise level c
vary from one structure to another within the same ima
since multiple structures coexist in the field of view. Ther
fore, the measure of noise within the whole image is n
relevant for each individual type of structure. Segmentat
is required to create a mask of these different regions. T
mask is then used to produce a measure of noise for e
structure in the difference image, and we apply an in
vidual threshold in each region.

For this work, segmentation is performed using the d
crete wavelet transform7 and the ‘‘à trous’’ algorithm.8–10

This algorithm is well adapted to discriminate local fr
quencies of the repetitive pattern, and it is restricted
principal directions that correspond to the geometric p
terns found on integrated circuits. The weakness of t
10 to 128.219.49.9. Terms of Use:  http://spiedl.org/terms



Patterned wafer segmentation
Fig. 1 Image correction with (a) the raw image and (b) the corrected image.
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method is its sensitivity to contrast variation and small te
ture variation. In our previous work,5 a local correction was
applied to remove the nonuniformities. This is sufficient
the case of small variations. However, in some cases w
the variations become very important, such as with la
process variation or bad focus selection, the classifier m
be trained with many different samples that cover all
variations contained within the die.

The usual way to train a classifier on this type of data
an empirical approach. The classifier is trained with ra
domly selected samples, and then is tested over the w
set of data. The areas where the classifier performs po
are used to extract new training samples. These n
samples are added to the original set to retrain the class
until the best performances are obtained. This method is
realistic in the in-line inspection process when dealing w
a huge amount of data. It would require storing all t
images of a die to process them off-line, and therefor
huge amount of memory would be necessary. Meanwhil
is time consuming for an operator to go through the ite
tive cycle of training the classifier and testing its perfo
mances until it becomes acceptable. This paper introdu
an original method to anticipate the impact of the variat
on each feature and to modify the classifier consequentl
accommodate these variations. First, we discuss the co
tion applied to the images to remove the nonuniform
induced by the imaging system and the semiconductor
cess variations, followed by feature selections using
wavelet transform and the ‘‘a` trous’’ algorithm. Next, the
stress polytopes classifier11,12 is described as well as th
modifications introduced to correct the variations.

2 Image Correction and Feature Extraction

The selection of good features is one of the most impor
parts of the segmentation work. The wavelet transform p
duces good discrimination between the different structu
but is also extremely sensitive to the variations induced
the imaging system and the process variations. Therefor
is very important to correct the images before the feat
extraction, to remove these variations as much as poss
Downloaded from SPIE Digital Library on 24 Feb 20
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2.1 Image Preprocessing

Bright field illumination used in the imaging system pr
duces a Gaussian-type illumination, where the image
brighter in its center and darker near the borders. This n
uniform illumination creates contrast variations over t
image that can change the wavelet response. The textu
the electronic structures is also affected by focus chan
and process variation over the wafer. When small enou
they produce a contrast variation that can be partially c
rected.

The normalization is performed using the statistics in
neighborhood of each pixel. The mean value is used
correct the illumination, and the standard deviation is us
to partially correct the contrast variation. Each pixel is d
vided by the sum of the mean and the standard devia
values in a 535 sliding window. The illumination variation
as well as some of the contrast variation is removed~Fig.
1!.

2.2 Wavelet Transform

Once the images are normalized, the features can be
tracted. The wavelet transform7 is based on horizontal an
vertical filtering that is well designed for the geometr
structures found on semiconductor devices. It enables
efficient discrimination of the horizontal and vertical loc
frequencies.

The ‘‘à trous’’ algorithm is used to process a fast wave
transform that is translation invariant.8–10 Unlike the clas-
sical wavelet decomposition, where the image is s
sampled at each decomposition level, the ‘‘a` trous’’ algo-
rithm works with a constant image size, and the filte
kernel is up-sampled by adding zeros between the co
cients. It creates an overcomplete decomposition that le
to some redundancy in the information, but also an inva
ance in translation, which is a requirement in this applic
tion. The image size is kept constant during the whole
composition, and there is a good spatial localization of l
frequencies.

Two filters are necessary to perform the wavelet deco
position: a low-pass filter~LP! and a high-pass filter~HP!.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 429
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Bourgeat et al.
Coifman’s orthonormal filters are used.13 Figure 2 shows
one level of the wavelet decomposition.

Between each decomposition level, the filters are
sampled to match different frequencies. Practically,
each level, 2level21 zeros are inserted between each co
ficient ~Fig. 3!. Thus, the number of meaningful coeffi
cients required to convolve with the image is kept const
during the whole decomposition, so the processing tim
almost the same for each level, enabling fast wavelet
composition.

Semiconductor images are mostly a composite of g
metric structures with horizontal or vertical orientation. F
that reason, only horizontal and vertical details are kept
the segmentation. Diagonal details are ignored, beca
they are not good discriminating features, and they ca
most of the noise. Three levels of decomposition are u
to produce six different features.

Because of their waveform, the wavelet coefficien
cannot be used directly in a classifier. That is why the lo
estimate of the wavelet standard deviation is used in a
317 neighborhood as a texture feature. This is a good w
to smooth the wavelet response and obtain a uniform
sponse when a frequency is matched, which is more s
able for the classifier.

3 Classification

The classification is performed using the stress-polyto
classifier.11,12 This is a statistical classifier designed f
high-data-flow segmentation. The parameter space is c
tered in a small set of hypercubes called stress-polyto
where each hypercube contains samples of a single c
Thus, the classification of a new point is performed
comparing its features with the boundaries of the hyp
cubes to verify a membership relation. When the set
hypercubes is small, this is a very fast way to perform
classification.

3.1 Training 1

Once the features are extracted, each training point is a
ciated with 6-D vector. These vectors form the input to t
classifier for the training. The 6-D parameter space is sli

Fig. 2 Wavelet decomposition.

Fig. 3 Wavelets kernels for three-level decomposition.
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in hypercubes corresponding to the different classes. A
percube is created around each training point, so that it o
includes points of the same class. This is performed us
the distance to the closest neighbor of dissimilar class
each side of the hypercube. The distancel (X,Y) between
two vectorsX(x1 ,...,xN) andY(y1 ,...,yN) is measured us-
ing theL-infinite norm, also known as maximum distanc

l ~X,Y!5iX2Yi`5max1<p<Nuxp2ypu ~1!

For each training point, the distancel is measured with
every other point of dissimilar class. In each direction, t
shortest distances set the boundaries of the hypercub
N-D space, 2N boundaries are enough to define a hyp
cube. To prevent any overlap between hypercubes of dif
ent classes, these distances are multiplied by a coefficieR
that must satisfy the condition

0,R, 1
2 . ~2!

The hypercubes are fully described once there are
boundaries in each dimension defined by a neighbor in e
direction. This means that withN parameters, there are 2N
directions in which to look for a neighbor. If no neighbor
found in one direction but there is a closest neighbor in
opposite direction, then this distance is used in both dir
tions. Otherwise, if there are neighbors in one dimensi
then the shortest distance in every other dimension is u
as a result, limits cannot go to the infinite and saturate

Fig. 4 Representation of one parameter versus the standard devia-
tion corresponding to four samples of the same texture taken on four
different images.

Fig. 5 Representation of one parameter versus the standard devia-
tion corresponding to four samples of the same texture taken on four
different images.
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Patterned wafer segmentation
parameter space. Using Eqs.~1! and ~2! guarantees tha
there is only one class per hypercube, and there is no o
lap between the hypercubes of different classes. This res
in clustering the parameter space in hypercubes with fi
boundaries.

Dealing with fixed boundaries in the classifier enab
processing the data very quickly, but it removes any fl
ibility. It is not a real problem when the parameter respon
is consistent for a given texture, but in most applicatio
unexpected variations in the parameter response can a
the performance. This is usually resolved by increasing
number of training samples and going through a cycle
retraining and testing the classifier until the expected p
formance is reached. In the particular application of ima
segmentation of electronic structures, variation of the
rameters can be correlated with the residual contrast va
tions that have not been completely corrected. In ot
words, for a given texture, some parameters will follow t
contrast variation, but not all of them. It is technically d
ficult to train the classifier with a very large set of samp
since there is no guarantee that the whole range of con
variation will be represented. Therefore, a technique w
developed to modify the hypercube’s boundary accord
to the anticipated variations of the parameter for each cl

Since the contrast variation is produced by the variati
induced by the system, the measure of correlation betw
the contrast and a particular feature is a good way to de
mine if the feature will be sensitive to focus and proce
variations. This measure will then be used to modify t
boundaries of the hypercubes. When a parameter h
strong correlation with the standard deviation for a giv
class, it will be more likely to be subject to variations itse
~Fig. 4!. That is why the corresponding hypercube needs
be enlarged in the direction corresponding to this param
to allow more variation of the parameter. Similarly, if th

Fig. 6 Define the hypercubes using the distance to the neighbor of
a different class.

Fig. 7 Correct the hypercubes using the correlation information.
Downloaded from SPIE Digital Library on 24 Feb 20
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correlation is weak, the parameter will be less likely to
subject to variations~Fig. 5!. Therefore, the correspondin
hypercube can be reduced in the corresponding direct
Figures 4 and 5 show the difference of correlation with t
standard deviation for two parameters on the same se
four different samples.

This correction can be accomplished by makingR a
function of the correlation factors, the parameters, and
classes. This must be done carefully to ensure that the
only one class per hypercube, and that no overlap ex
between the hypercubes of different classes. Actually,
each parameter of each class, the expansion/retraction
be done according to the correlation coefficients of
neighbors of other classes. For the same parameter, the
relation coefficient can be extremely different from o
class to the other one.

During the hypercube creation step, the class of the c
est neighbor is recorded. Thus, the class of each neighb
each dimension is known. The boundary between t
neighboring points in one dimension is defined using
centroid of mass between the respective correlation co
cient.

Considering a vectorX of classCX , and a vectorY of
classCY , Eq. ~2! can be rewritten to fulfill the requiremen
with the corrected coefficientRC(xp ,yp):

0,RC~xp ,yp!1RC~yp ,xp!,1,;p, ~3!

Fig. 8 Merge the hypercubes within each class.

Fig. 9 DRAM area.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 431
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whereRC(xp ,yp) is the coefficient for the parameterp of
classCX with its closest neighbor of classCY .

To perform the correction, a weightWC(wc1
,...,wcN

) is
assigned to each class. This weight is inversely prop
tional to the correlation with the standard deviation:

wcP
5

1

ur cP
u
, ~4!

wherer cP
is the correlation factor between the parametep

of classC and the standard deviation (0,ur cP
u,1).

Given a vectorX of classCX and a vectorY of class
CY , for each parameterp, the distance ratiod(xp ,yp) be-
tweenxp and the centroid ofxp andyp can be defined as

d~xp ,yp!5
wyP

wxP
1wyP

, ~5!

Fig. 10 Logic area.

Fig. 11 Blank area.
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ur xP

u

ur xP
u1ur yP

u
. ~6!

It is easy to show that

d~xp ,yp!1d~yp ,xp!51. ~7!

Requirement~3! can be fulfilled using Eq.~7! and R de-
fined as in Eq.~2!. The corrected coefficientRC(xp ,yp) is
described as

RC~xp ,yp!52Rd~xp ,yp!, ~8!

RC~xp ,yp!52R
ur xP

u

ur xP
u1ur yP

u
. ~9!

The coefficientRC(xp ,yp) provides a way to control the
expansion/retraction of the hypercubes so that two hyp
cubes of different classes will not overlap. Any expansi
in a given direction is followed by a proportional retractio
in the same direction of the hypercubes corresponding
the neighboring points of another class. Since the corr
tions affect only the coefficient used to set the boundar

Fig. 12 Inspection layout.

Fig. 13 Example of the pixelwise segmentation on one image.
10 to 128.219.49.9. Terms of Use:  http://spiedl.org/terms



Patterned wafer segmentation
Table 1 Misclassification rate on the segmentation on one column and one row.

Misclassification Rate

Column Row

Training 1 Training 2 Training 1 and 2 Training 1 Training 2 Training 1 and 2

Without correction 2.45% 7.85% 2.29% 3.04% 2.97% 2.95%

With correction 2.32% 2.36% 2.49% 2.94% 2.69% 2.87%

Improvement 0.13% 5.49% 20.20% 0.09% 0.29% 0.08%
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the hypercubes will not be reduced to a point where th
would exclude training points of the same class, or
panded to a point where they would include training poi
of another class.

Once all the hypercubes are created, they are me
inside each class. Two hypercubes are merged togeth
the newly created hypercube does not overlap with a
percube of another class. This step reduces manage
number of hypercubes.

The full process is illustrated in Figs. 6, 7, and 8 for t
two dimensional and two classes’ case. First, the hyp
cubes are defined for both classes using Eq.~1! and Eq.~2!,
as shown in Fig. 6. Then in the case where the parametep1

of the classC1 has a strong correlation with the contra
but at the same time, the parameterp1 of the classC2 has
a weak correlation with the contrast, hypercubes of cl
C1 can be extended in thep1 direction, while hypercubes
of classC2 can be retracted in the same direction~Fig. 7!.
Thus, the parameters of classC1 can afford more variation
in the p1 direction. After this step, the hypercubes can
merged inside each class~Fig. 8!.

Fig. 14 Segmentation on one row without correction.
Downloaded from SPIE Digital Library on 24 Feb 20
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3.2 Segmentation

During the classification process, each point is tested w
the hypercubes to verify the membership relation. The
percubes do not cluster in the whole space; therefore, s
points do not belong to any hypercubes. In that case,
artificial point for each class, which corresponds to t
mean of the training points of the same class, is used.
closest neighbor sets the class of the point.

4 Results

The segmentation tests were performed on a memory
fer, where three different areas must be segmented:

• the dynamic random access memory~DRAM! ~Fig. 9!
area, which is a fine regular texture that shows a lot
process variations

• the logic area~Fig. 10!, which is a composite of coars
textures

• the blank area~Fig. 11!, which does not contain any
structure

Since the DRAM shows most of the variations, the tes

Fig. 15 Segmentation on one row with correction.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 433
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Bourgeat et al.
done by comparing the results obtained with the same tr
ing sample for the logic and the flat area, but differe
samples for the DRAM in locations where the contrast
different. In each case, a single sample on the DRAM a
is used. Two samples of the logic area are required to
clude two different types of structures and one sample
the blank area. Images for the segmentation come fro
column of 170 images and a row of 170 images tak
across three dies~Fig. 12! to include the maximum contras
variation. Each image is 4723472 pixels, and the segmen
tation is performed pixelwise~Fig. 13!. The results for the

Fig. 16 Segmentation on one column without correction.

Fig. 17 Segmentation on one column with correction.
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two training sets with and without correction are presen
in Table 1. Training sets 1 and 2 are also combined
provide a comparison.

These results show that without the hypercube corr
tion and only one training sample in the DRAM area, t
misclassification rate can vary depending on the train
sample. The segmentation on the column is really dep
dent on the selection of the training set, whereas the s
mentation on the row is more invariant because the cont
variations are less important. In both cases, the best re
are achieved when combining the two training sets.

The correction on the first or the second training
improves the results in both cases, and the segmentatio
more invariant with the selection of the training sample
With this segmentation, very good results are achieved~less
than 3% of misclassification! with a few training samples
The results with one training set with the correction are
good as using a combination of two training sets witho
correction. Figures 14 and 15 show the improvem
brought about by the correction on the column images
ing the second training set. Figures 16 and 17 show
slight improvement brought about by the correction on
row images using the second training set.

There are still limitations to the correction techniqu
especially when the variations are large or when the in
class distance is small. Furthermore, the correlation m
sure is accurate on uniform fine textures, but less accu
on nonuniform texture, where the correlation value is av
aged. We also notice that on the column, the correct
used on the combination of the first and second training
slightly increases the misclassification rate. This is cau
by the large difference between the two samples on
DRAM area. For some parameters, the two samples ar
different that they do not overlap. Thus, the correlati
value is dramatically increased, and the corresponding
percubes can be overstretched. Nonetheless, misclass
tion is below 3%, which is adequate for this inspecti
process.

5 Conclusion

In wafer inspection, the performance of the segmentatio
critical since the misclassification of an area can creat
false detection or increase the overall noise level in
area, which would result in a higher threshold with the ri
of missing a critical defect. It looks like a trivial problem
since we deal with regular textures, but it is not since te
tures are subject to large variations that can be comple
correct. There are also limitations on the system flexibil
to train the classifier since we have to work with huge d
flow. We developed an original method to anticipate t
variations with a limited number of training samples, th
increasing the training speed and the segmentation pe
mance.
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