
 

Abstract  

As interest in 3D face recognition increases the importance 
of the initial alignment problem does as well.  In this paper we 
present a method utilizing the registered 2D color and range 
image of a face to automatically identify the eyes, nose, and 
mouth.  These features are important to initially align faces in 
both standard 2D and 3D face recognition algorithms.  For our 
algorithm to run as fast as possible, we focus on the 2D color 
information.  This allows the algorithm to run in approximately 
4 seconds on a 640X480 image with registered range data. On a 
database of 1,500 images the algorithm achieved a facial 
feature detection rate of 99.6% with 0.4% of the images skipped 
due to hair obstruction of the face.    

1. INTRODUCTION 

Face recognition (FR) is becoming an increasingly 
attractive technique for real world systems in which 
unobtrusive reliable identification of individuals is 
desired.  As a result, the ability to automate the entire face 
recognition process from acquisition to 
verification/identification is important.  For most 2D and 
3D recognition algorithms, it is critical that faces are 
aligned before being compared.  Typically, alignment 
begins with the detection of facial features.  At the 
research and development stage, alignment features are 
normally obtained by manually identifying consistent 
points or features across different faces.  In commercial 
2D FR systems, techniques exist to find alignment 
features, but additional robustness is needed to deal with 
facial, image, and environmental variations (i.e. lighting, 
image quality, resolution, facial expression, etc.) [1].   

Most face recognition algorithms utilize either the 2D 
or 3D data but not both simultaneously.  However, most 
current range sensors provide 2D color intensity 
information and 3D geometric information in a 
corresponding grid; thus, one should use the benefits of  

1 Sandia is a multi-program laboratory operated by Sandia 
Corporation, a Lockheed Martin Company, for the United States 
Department of Energy's National Nuclear Security Administration under 
contract DE-AC04-94AL85000. 

both to achieve greater performance and robustness.  In 
addition, 2D feature extraction algorithms (i.e., FaceIt 
[2]) typically require very good image quality (i.e 
1024x768, good lighting, etc.) in order to achieve high 
performance rates.  This makes using traditional 
techniques on a 2D color image acquired during a range 
scan difficult because the associated images are typically 
small and of low image quality.  To further aggravate the 
problem, lighting conditions, which would be ideal for a 
2D color image, are usually non-ideal for active range 
scanners. Bright lighting conditions which are needed for 
high quality 2D color images reduce the visibility of the 
active projection elements, such as lasers used in some 
range scanners.  These factors motivate the work 
presented in this paper.  We propose an algorithm that 
utilizes a combination of 2D and 3D registered data 
which should result in an accurate facial feature detection 
algorithm capable of running quickly because it strongly 
leverages its 2D components.   

2. PREVIOUS WORK 

2.1 2D methods 
Facial feature detection algorithms operating on 2D 

color and grayscale images exist and are able to identify 
the eyes and mouth somewhat reliably.  Examples of 
current methods for identifying facial features use 
eigenfeatures [3], deformable templates [4] [5] [6], Gabor 
wavelet filters [7], color manipulation methods [8], edge 
holistic [9], graph matching [10], etc.  These methods 
work fairly well with facial feature identification rates 
ranging from 90-98% [1].  The eyes are an important 
feature that can be consistently identified.  In fact, facial 
identification algorithms that use only the eyes can 
achieve an 85% facial classification rate [11].  As a result, 
the center or edges of the eyes are commonly used by 
feature detection algorithms as a reference point.  
Commercial software to identify the eyes exists as well.  
For example, Faceit relies on identifying facial symmetry 
in black and white images to locate the eyes.  Genetic 
algorithms also exist that can deal with minor pose 
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variation with success rates of 80% [12].   

2.2 3D methods 
3D facial feature extraction is a relatively new area of 

research with a less extensive body of work than 2D 
facial feature extraction.  Lu et al. [13] identified features 
through a 3D model from multiple scans stitched together 
and proposed using a shape index to identify the inside of 
the eye (next to the nose) as a saddle location.  The 
average distance to the true feature locations was 10 mm 
resulting in relatively low precision.  Gordon [14] 
proposed a method using face shape based on curvature to 
identify facial features.  Her method worked well, 
however it was tested on a small database of 24 range 
scans.  2D and 3D motion tracking of faces has also been 
performed [15] using active appearance and morphable 
models.  Another interesting method is a Gabor filter 
based curvature approach [16].   

3 ALGORITHM 

The work presented in this paper uses the purely 2D 
approach of Hsu and Jain [8] as a foundation.  The 
algorithm first segments skin regions using an elliptical 
grouping model in YCbCr color space for skin.  Then a 
convex polygon hull around the largest connected skin 
group is computed to fill in facial pixels that were not 
detected as skin.  Subsequently, eye and mouth maps are 
defined by performing operations in YCbCr color space 
which produces a grayscale image map with higher values 
in regions of the desired features. Eye and mouth 

candidates are determined by processing these maps.  The 
ratio of pixel distances is then used to determine if the 
detected features are typical of a human face.  This 
algorithm obtained a 90% detection rate in identifying 
facial features in 206 640X480 color images from the 
Heinrich Hertz Institute (HHI).  Several other databases 
were also tested with accuracy ratings from 80-97%.    

Our approach first segments the foreground from the 
background using the range data.  Then, a modified 
version of the skin detection algorithm from [8] is used to 
identify potential skin pixels.  We refine these pixels 
further using z-based range erosion and standard erosion 
algorithms, and then compute the eye and mouth maps.  
Initially, the formulas from [8] are used, but then we 
modify them to use additional range and color 
information.  Finally, the geometric-based confidence of 
potential feature candidates is computed to aid in the 
selection of the best feature set.   

Our algorithm differs from the approach in [8] in that 
we seek to tightly couple information in 2D color and 
range imagery to increase feature detection performance 
without suffering from the computational load associated 
with using a purely 3D approach.  In addition to 
computing the eye and mouth locations, we also detect 
the nose since it is a distinctive 3D feature on the face and 
is likely to improve the overall performance of our 
algorithm. In our approach, range imagery is used to 
refine the skin region of interest, determine the nose 
location, better isolate potential eye locations, refine the 
mouth location, and assist in identifying the best eye, 
nose, mouth combination.  

Another unique attribute of our approach is a 
geometric-based confidence measure.  Instead of using 
relative distances between points to determine the best 
feature group candidate, we use a measure that 
incorporates actual 3D distances from the range image.  
This is a powerful metric because it allows the 
determination of the best feature group and of incorrect 
feature detections after a low-confidence grouping has 
been identified. 

3.1 2D Skin region refinements 
Although the 2D components outlined in this paper are 

based on [8], some enhancements were made to improve 
system performance when confronted with poor color 
images and to improve the computational cost associated 
with the algorithm.  Prior to processing, light 
compensation was performed to adjust for adverse 
lighting conditions [8].   Also, we have a lower quality 
2D color image compared to [8], which necessitates 
greater latitude in defining skin regions.  We accomplish 
this by defining a larger elliptical area in YCbCr to be 

     

 

        a. Original RGB Image        b. Range Map 

     

 

        c. Skin Pixels                       d. Face Mask 

     

 

       e. Z-based Erosion                f. Final Eroded Facial Region 
Figure 1. The facial region identification process 



 
detected as skin.  When the skin detection algorithm is 
combined with only examining valid range pixels one 
obtains an initial skin estimate as shown in Figure 1.c.  In 
addition, instead of computing the geometric convex hull 
to fill in skin region holes, we use a less computationally 
intensive method that fills in the pixels between the 
minimum and maximum rows and columns for each 
detected skin component which produces the result shown 
in Figure 1.d. Currently, our system works under the 
assumption of a single face in the scan.  However, to 
allow for multiple faces, one would identify groups of 
skin pixels over a certain size as a face and process each 
one for facial features.   

3.2 Skin refinement using z-based erosion 
Range information can be used to refine skin region 

detection by using valid range pixels to better determine 
regions of interest.  It is expected that valid range pixels 
will correspond to regions on the face because in many 
cases range sensors have limited operational range, 
causing objects out of range to have an invalid value.  
Determining an accurate representation of skin regions 
reduces the number of potential feature groups to examine 
and may reduce the number of incorrect feature 
detections.   

When filling in holes and applying masks to refine the 
skin region, one often misclassifies pixels with invalid 
range values as skin.   These misclassified pixels can 
cause an undesirable affect.  Thus, a z-based erosion 
algorithm was implemented to improve the classification 
of skin/non-skin pixels. The z-based erosion algorithm 
works by removing every skin pixel which has an invalid 
range value and has an 8-connected neighbor n(i) that is a 
non-face/skin pixel. A non-face/skin pixel is one that was 
previously classified as skin, but upon further 
investigation (i.e. examining range) was determined not 
to be skin. The variable Q(i) is true if i is a non-face skin 
pixel as is determined by (1).  In the following, all of the 
variables are binary such that S(i) is true if pixel i is 
currently a skin pixel, and R(i) is true if pixel i has a valid 
range value.  

                         )())(()()( iRinSiSiQ              (1)  

This approach erodes the edge of the face group that 
has invalid range values and neighbors that have not been 
classified as skin, but will maintain values in the interior 
of the group such as in the eyes and near the nose as part 
of the face region.  This process is iteratively repeated 
until there are no remaining pixels that meet these 
requirements.  The algorithm effectively tightens the 
region around the face and segments it from the 
background as in Figure 1.e.  This is very important as 

misidentifying parts of the background as part of the face 
can lead to a many errors that are much more difficult to 
handle than if range information was not available.    

While this approach effectively produces a tight region 
around the face, small bits of hair and other edge based 
artifacts can remain.  Therefore, we subsequently perform 
a standard erosion algorithm to remove the edge pixels 
that may contain edge and hair artifacts as in Figure 1.f.  
While it is desirable to get rid of some of the exterior 
artifacts, it is important not to erode too much (i.e. erode 
the eyes, nose and mouth) because if critical regions are 
totally removed the algorithm cannot recover.  

At the end of this process, we have a face region 
which may be smaller than the actual face, but which 
contains a connected pixel group without holes including 
the eyes, nose, and mouth.  Traditional 2D methods have 
a greater difficulty segmenting the person from the 
background because they do not have the advantage of 
using invalid range regions or jump edges.  This 
segmentation is important because it limits the nose 
search region and reduces potential errors dramatically.      

3.3 Eye and mouth map refinements 
A number of refinements are made to the eye and 

mouth maps to reduce false alarms.  These refinements 
include narrowing the search region for perspective eye 
and mouth features and filtering to produce a higher 
signal in the eye and mouth regions of interest.  The 
search for potential eye locations is refined by eliminating 
the bottom 30% and top 10% of the EyeMap region since 
the eyes should not be located in the very top or bottom 
of the face region. Figure 2.a shows an example of this 
result.  Removing the bottom 30% of the data may 
remove the mouth; however, this does not effect eye 
detection.  Subsequently, we run a smoothing mask 
(Figure 2.b), minimum filter (Figure 2.c), and a z-based 
filter (Figure 2.d) over the EyeMap in that order to 
enhance the region around the eyes, and hopefully 
attenuate the non-eye regions.   

    

a. EyeMap b. Smoothing c. Minimum 
Filter 

d. Z-Filter  

Figure 2. EyeMap process   
The z-based filter adds a 40% weight to pixels on the 

EyeMap which have an invalid range value associated 
with them.  On typical range scans holes appear in the 
pupils because they are transparent and absorb light.  This 
causes the EyeMap to appear even brighter in the pupil 



 
region and allows for a more precise identification of the 
exact center of the eyes.  Using formulas from [8] we 
produce the initial grayscale MouthMap which we then 
improve with a smoothing filter. 

3.4 Facial feature detection 
Potential eye candidates are identified by searching the 

EyeMap for the highest N values with a minimum 
threshold distance from each other (in our experiments 
N=7).  The minimum distance threshold is important 
because we are looking for distinct eye candidates, thus 
multiple feature candidates that correspond to the same 
underlying eye feature would provide no additional value.  
Thus, it is sufficient to find the highest value on each eye.  
After identification of these potential features, we search 
for eye pairs based on the distance between eye features.  
For instance, a potential pair with a feature to feature 
distance (measured by the XYZ distance) that is within 
the range of possible eye distances is considered a valid 
eye pair. 

Once the valid eye pairs are detected the process of 
finding an associated mouth value is greatly simplified.  
The approach simply looks for the MouthMap value in 
the corridor running perpendicular from the midsection of 
the line formed by the eye pair.   At about distance D 
down we search for a potential mouth location, where 
distance D represents the approximate distance that we 
expect to find the mouth.  

The detection of the eye and mouth features forms a 
triangle that can be used to find the nose location with 
greater accuracy.  This triangle not only provides a well 
defined space in 2D in which a nose should be detected, 
but it also defines a 3D plane indicating the 3D 
orientation of the face.  Thus, we have a defined direction 
in which the nose should have maximum extent in 3D.  
We expect this to be extremely robust for performing 
nose detection when the face is in various orientations.    
The function simply examines face pixel range values in 
the interior of the eye-mouth triangle for the point farthest 
away from the eye-mouth plane.  This point is believed to 
be the nose since the nose extends the farthest from the 
face.     

At this stage we have a potential eye, nose, and mouth 
location.  However, while the eyes and the nose use range 
information, the mouth has been defined based solely on 
the MouthMap.  As a result, identification of the exact 
center of the mouth is not precise.  Thus, we refine the 
mouth location purely geometrically based upon the eyes 
and nose locations to obtain a more precise location than 
the MouthMap alone would produce. 

After feature detection a confidence metric is computed 
which analyzes the distances between the four feature 

points and compares them with the ideal distances.  The 
feature group with the highest confidence value is 
returned as the believed eye-mouth-nose locations.  This 
approach is discussed in detail in the next section.  

3.5 Confidence estimation 
The confidence metric is a geometric-based measure 

that incorporates ideal and measured feature location 
distances to provide an indication of feature group 
feasibility.  The confidence metric has been extremely 
useful in 1) determining the most plausible feature group 
when many feature groups are considered for a given face 
and 2) determining when a final feature group selection 
may be incorrect.  The confidence metric C is slightly 
altered to deal with 1) and will be explained in the 
following.  

Table 1. Measured ideal distances   
Ideal 
Distance 

Standard 
Deviation 

Confidence 
Weight Wi 

Eye to Eye 62.4 mm 3.7 mm 3 
Eye to Mouth 72.5 mm 4 mm 2 
Eye to Nose 57.5 mm 4 mm 6 
Nose to Mouth 33.3 mm .5 mm 1 

  

A core component of C is the ideal distances between 
feature locations. For our analysis, these distances are 
computed from 148 different range scans of individuals 
separated from the testing set used in the results. In lieu of 
manually determining feature locations, we ran these 
images through our algorithm and verified the correctness 
of the detected features by visual inspection.  Table 1 
represents the average/ideal distances Di and the standard 
deviation i between the correct eye-nose-mouth pairings.   

The measured feature locations iD

 

are determined by 
using the 3D coordinate associated with the detected pixel 
location (computed from the range image).  However, in 
some cases,  pixels do not have valid range data 
associated with them (especially around the eyes) because 
of the pupils, sensor drop-outs, etc.  In this case the 
algorithm will traverse down the column of pixels for the 
closest valid range value and use the associated 3D 
coordinate for the distance measurement.   

The confidence metric incorporates a weight Wi for 
each feature to feature confidence Ci. Each Wi is 
determined by our observation of the reliability of certain 
feature locations.  For example, the mouth is refined 
based purely upon the geometric distance down from the 
tip of the nose.  Therefore, no additional value is gained 
by giving it a high geometric confidence weight since it 
was determined using entirely geometric means.  As a 
result we give any distance measurement to the mouth a 
weight of one.  Since the eyes and nose are more reliable 



 
each calculation involving both of them is given a weight 
of 3.  These weights are shown in Table 1.   

The geometric confidence measure is given in equation 
(2) where Ci represents the confidence of the ith feature to 
feature distance.  EM is a parameter indicating the weight 
of a potential eye candidate in the EyeMap and is 
included in C since higher EyeMap values are highly 
correlated with being the true eye locations. 

Fi
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i CWEMC
DD

C    and       (2)        

Equation 2 is used as the confidence metric for the 
selected feature group; however, modifications are 
required when examining potential feature group 
candidates. First, Di is slightly decreased to discourage 
the eyebrows from being detected as eyes (a common 
error).  In addition, we impose a symmetry term that 
indicates that eye to nose distances should be the same for 
both the left and right eyes.  This discourages eye to 
eyebrow pairings which can be problematic.  Despite 
these additions, it is still possible to obtain eyebrow pairs 
with a higher C than the true eye pairs. This is because 
ideal distance estimates Di are used in C while different 
faces are different sizes. In the event that C is extremely 
close for two different feature groups, we take the pair of 
potential eyes that are closer to the center of the face.  
This allows us to eliminate the mistaken identity of 
eyebrows for eyes when C s are extremely close.   

4 RESULTS 

We ran our experiment on two different datasets from the 
University of Notre Dame [17] acquired using a Minolta 
Vivid 910 range scanner that produces a 640X480 range 
and corresponding color image.  The first dataset contains 
1,542 high quality images of approximately 300 subjects 
acquired in the fall of 2003.  The database contained a 
variety of facial expressions (expressionless, smiling, 
frowning, etc.) as is shown in Figure 3.  Therefore, the 
results shown here reflect the algorithm s ability to deal 
with different expressions.   

The second dataset was acquired in the spring of 2003 
and is included to show the limitations of the algorithm 
on very low quality real world data.  These scans were 
taken with studio lights under different environmental 

conditions.  The studio lights caused the Minolta, which 
is extremely sensitive to the near infrared spectrum for 
laser visibility, to produce low quality range and color 
information as seen in Figure 4.  This data contains 
saturated samples with the red component skewed both 
substantially too high and too low.  Also, the range 
images incorrectly identify the eyes as being extremely 
recessed into the face as seen in Figure 4.d.  Furthermore, 
facial size tends to be  smaller in the second dataset, so 
there are fewer pixels on the face, which may make 
feature detection more difficult. 

Our algorithm reads in a standard Minolta Vivid 910 
dataset.  The algorithm has very low memory usage 
(around 68k) and takes approximately 4 seconds per 
image on a 3.2 GHz Pentium 4.   

    

 

    a. Expressionless                  b. Toothy Grin                  

     

 

    c.  Frowning Sample              d. Open Mouth/Alarmed 
Figure 3. Different expressions from sample 
image in the Notre Dame fall 2003 database 

4.1 Real world results 
For the first dataset all 1,542 images were processed 

and produced the results shown in the second column of 
Table 2. The samples shown in Figure 3 are 
representative of the images analyzed by our system.  The 
color can be fairly dark, especially around the eyes, 
because no additional lighting other than overhead 
fluorescent lighting was used during capture and the 
quality of the RGB as shown here for our good dataset is 
acceptable but not optimal.  

For this dataset,  the correct features were detected in 
99.6% of the faces.  However, 0.3% of the images were 
rejected and skipped by the algorithm due to hair 
obscuration of the eyes, which resulted in incorrect 
identification of both eyes.  One of the images had an 
eyebrow identified instead of the eye, which appears in 
the one error category.  The one error category means that 
one of the four detected features was found in the 
incorrect location.  We separate out this type of error as 
we feel it should be recoverable in later stages of a 
complete system.  Other than this there were no errors in  

Table 2. Performance on high and low 
quality datasets 

Dataset High Quality Low Quality 
Correct 99.61% 82.33% 
One Error 0.06% 4.10% 
Wrong 0.00% 6.31% 
Skipped 0.32% 7.26% 



 
the reported features located. 

We also evaluated the algorithms performance using 
the second dataset (see Figure 4) and produced the results 
shown in the 3rd column of Table 2.  For this dataset the 
percentage of correct classifications went down 
considerably.  We attribute this to the combination of 
poor color quality, incorrect range values, and a reduced 
number of pixels on the face.  This is to be expected and 
we believe standard 2D algorithms would not operate 
very well on these images either.  Image saturation 
contributed to the majority of skipped images.  The single 
errors were mostly eyebrow mistakes due to the incorrect 
or non-existent range values around the eyes which 
caused eyebrows to be viewed as better eye candidates 
than the eyes themselves.  Finally, the completely 
incorrect feature detections were usually due to a 
combination of bad range and saturated pink images.     

      

 

          a. Saturated Image          b. Dark Image 

      

 

        c. Pink Image                 d. Bad Range Around Eyes 
Figure 4. Sample images from the spring 2003 

ND database 

4.2 Robustness experiments 
After analyzing limitations on the low quality data (the 

second dataset), we sought to quantify the algorithms 
robustness.  To accomplish this we took 513 of the 
images from high quality ND dataset and modified them 
to vary color bias/saturation, image resolution, and range 
error.    
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Figure 5.  Affect of increasing or decreasing RGB  

4.2.1 Color bias robustness 
First, we biased the color components of the input 

image by increasing or decreasing all three RGB 

components simultaneously to produce the results shown 
in Figure 5.  We discovered that there is a large (150 out 
of 255) pixel value range in which the algorithm was able 
to effectively deal with color bias.  It is not until the 
image becomes extremely saturated (where large parts of 
the face are either solid black or white) that the 
algorithm s performance begins to degrade.  

Next, we varied just the red color component to 
produce pinker images similar to the low quality Notre 
Dame data shown in Figure 6.  These images are expected 
to cause more difficulties for the algorithm.  While the 
results still showed a large region (between -50 and 100) 
in which the algorithm performed well, there is a drop off 
at 150 as opposed to the more gradual one in Figure 5.  

4.2.2 Range error robustness 
While our algorithm seems fairly robust to color 

variation, the impact of range distance errors required a 
separate test.  In order to reproduce errors in a range scan, 
the z coordinate of each point was varied by plus or 
minus the values shown on the x axis of the graph in 
Figure 7.  The range errors have no significant impact on 
performance until the error is approximately 20 mm.  At 
this point about 40% of the feature detection errors are in 
the one error category.  These errors are not eye errors, as 
were common in previous experiments, but mouth 
detection errors.  The calculated ideal distance between 
the nose and mouth is 33.3 mm.  Once the error between 
two points is greater than this, the nose mouth distance 
refinement function misidentifies points on the nose 
(potentially one pixel away from the nose location) as 
being a potential mouth location.    
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Figure 7.  Affect of adding error to the z axis 
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Figure 6.  Affect of increasing or decreasing only 
the red component  



 
Furthermore, because the nose detection algorithm 

looks for the point that is farthest from the defined plane, 
the detected nose point will likely have the greatest error 
associated with it because the normal to that plane is 
roughly aligned to the z axis which is where we 
introduced the error.  Overall the method deals extremely 
well with range errors up until the error exceeds the ideal 
distances calculated.  Algorithm performance could be 
improved by pre-processing the range data.     

4.2.3 Image resolution robustness 
   In our final robustness test we reduced the resolution 

of the original 640X480 image by down sampling (simply 
selecting intermediate points, no smoothing was applied) 
to achieve the sizes shown in Figure 8. These results 
demonstrate our ability to deal with images of a wide 
range of sizes getting down to very small images in which 
the eye may only be a few pixels across.  Even when the 
images are very small (58X43), feature detection errors in 
the one error category were caused by the eyebrow being 
selected instead of the eye which in most cases meant it 
was off by about 2-3 pixels.  From these results we find 
that we can deal with low image resolution .   
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Figure 8.  Performance of different image sizes 
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Figure 9.  Performance of different image sizes 
where low confidence images are moved to 

skipped 

4.3 Confidence measure   
As discussed previously a confidence value associated 

with each feature group is returned as well.  Up until 
Figure 9 we have only discussed the results regardless of 
the confidence of the feature group.  Figure 9 assumes 
that the features returned with the lowest confidence from 
Figure 8 should be skipped, and automatically moves the 
lowest confidence images into the skipped category.  This 
allows the removal of all of the feature detection errors 

for this example.  However, it also moves some of the 
correctly classified results to the skipped column.  This 
may be a desirable way to treat images if one desires a 
very conservative algorithm that ensures the detected 
features are correct.  A different feature identification 
method could be used in the case of the skipped images to 
correctly detect features of interest.   

4.4     Impact of 3D algorithm components 
In this paper, a multi-modal approach for feature 

detection has been presented.  However, we are interested 
in assessing the performance benefits that the 3D 
additions provide, and identifying those improvements 
that have the biggest impact on performance.  To assess 
this, we analyze the performance impact of three 
components of our algorithm:  z-filtering, z-based 
erosion, and 3D distance calculations for the confidence 
function.  

In Figure 10 one can see the gradual degradation in  
performance as various 3D aspects are removed until 
ultimately in the All 2D Calculations category range 
data was not used at all (other than in the initial 
background segmentation).  For the 2D case, the 
confidence estimator and all other calculations were 
modified to only use pixel coordinates.  For instance, the 
2D confidence estimator is the same as for 3D except 
ratios of pixel distances were used.  In Figure 10, the 
removal of 3D components has only a moderate impact 
leading to an 86% accuracy once all 2D calculations are 
performed.  This is consistent with the performance of 
known 2D implementations of a similar design to this 
algorithm.    
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Figure 11.  Removing components for the r+50 test   
One of the advantages of this algorithm is its 

robustness.  It can compensate for poor quality data by its 
combined use of 2D and 3D data.  We ran the r + 50  
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Figure 10.  Impact of 3D algorithm components  



 
test from the robustness section where all red values were 
increased by 50 for the no z-filter  or no z-erosion  and 
All 2D Calculations versions of the algorithm from 

Figure 10.  The result is shown in Figure 11.  The full 3D 
version of the algorithm with all of its 3D components 
performs at 98% correctness in the r+50 test.  However, 
the All 2D Calculations which relies solely on the color 
to determine eye, nose, and mouth location fails at this 
point with a 58% correctness for the same r+50 test.  This 
demonstrates one of the advantages of our method; its 
multi-modal characteristics allow it to overcome in 
situations where a single modal method such as All 2D 
calculations fails. 

5 CONCLUSIONS/FUTURE WORK 

We have presented a multi-modal approach for facial 
feature detection that can achieve a 99.6% correct 
identification rate for high quality images.  We have 
demonstrated the benefit of using 3D information in 
combination with 2D over using 2D information alone.  
The benefits of the multi-modal approach become 
extremely apparent when the quality of either the 2D or 
3D representation is compromised as demonstrated in our 
robustness experiments.  Another notable attribute of our 
approach is the geometric-based confidence measure 
which enables the selection of the correct feature group 
out of many potential groups and allows us to determine 
when the final feature group selection may contain feature 
detection errors.   

Although the results presented in this paper represent 
an initial analysis of the multi-modal feature detection 
approach, we are extremely encouraged that the algorithm 
is robust and its performance competitive with current 
commercial feature detection systems.  For instance, 
Wang and Flynn [1] analyzed the performance of a 
commercial program called Faceit on a dataset taken side 
by side with the high quality ND dataset (images were 
acquired within one minute of each other).   Although, 
this database consisted of higher quality images than used 
in our test and the algorithm was only capable of 
identifying the eyes, correct feature detection was 
achieved for only 96.1% of the faces.  We feel we can 
fairly compare their 2D results with our success of 99.6% 
correct classification rate.  

Further, we have improved upon Hsu and Jain s [8] 
work.  For the most comparable database they managed a 
90% detection rate.  The best rate they were able to 
achieve on all of their databases was 97% and their 
database sizes were significantly smaller than those used 
in this paper.  We managed to improve upon this 
significantly.   

Next steps include analyzing the algorithm with 
variations in facial pose and optimizing the approach for 
this case.  Further testing may involve the utilization of 
other types of scanners and expanding our capability to 
deal with profile shots.   
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