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Abstract. We propose a vector representation (called a 3D signature) for 3D face shape 
in biometrics applications. Elements of the vector correspond to fixed surface points in 
a face-centered coordinate system.  Since the elements are registered to the face, 
comparisons of vectors to produce match scores can be performed without a probe to 
gallery alignment step such as an invocation of the iterated closest point (ICP) 
algorithm in the calculation of each match score. The proposed 3D face recognition 
method employing the 3D signature ran more than three orders of magnitude faster than 
a traditional ICP based distance implementation, without sacrificing accuracy. As a 
result, it is feasible to apply distance based 3D face biometrics to recognition scenarios 
that, because of computational constraints, may have previously been limited to 
verification. Our use of more complex shape regions, which is a trivial task with the use 
of 3D signatures, improves biometric performance over simple spherical cut regions 
used previously [1].  Experimental results with a large database of 3D images 
demonstrate the technique and its advantages.  
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1   Introduction 

Techniques for biometric recognition of people have applications in electronic 
commerce, homeland security, access control, and forensics. Much recent research 
work in biometrics has addressed face recognition, where the reflectance and/or shape 
of the face is measured and distinguishing features derived for the purpose of 
identification. 2D face images can potentially be captured quickly, inexpensively, and 
surreptitiously.  3D face shape has been investigated less deeply than face appearance, 
but offers potential advantages relating to decreased sensitivity to lighting and 
intrinsic reflectance variations in faces.  Retention of the third dimension may allow 
for easier partial matching techniques than those needed for 2D face images captured 
under nonfrontal pose, where the effects of the projection transform must be 
accommodated. 

Many traditional 3D face recognition techniques use Besl and McKay s iterative 
closest point (ICP) alignment approach [5] to get a distance between 3D face models 
as the basis for computation of the matching score; the alignment error measured can 
serve as a measure of match quality [1][2][3] representing the distance between the 
two faces.  However, ICP is iterative and involves a nearest-neighbor computation at 
each iteration, which can require a long running time, especially when the application 
is identification and involves the processing of a large subject gallery. 



This paper proposes a new face representation (called a 3D signature) which is a 
vector representation of the surface with vector entries tied to a canonical face 
coordinate system obtained by a one-time per region alignment operation.  The 3D 
signature representation is thus pre-registered to the surface, obviating the need for 
an iterative alignment procedure such as ICP to be executed at matching time. This 
yields a much shorter match computation time than an ICP-based matcher in 
recognition scenarios.  For verification, the running time would remain the same, as 
the 3D signature generation process would dominate the running time. The 3D 
signatures are similar to a vector representation used previously with principal 
component analysis for whole 3D faces that has been previously studied [4], but their 
construction employs a different search criterion and PCA is not required for our 
proposed approach. In addition, the proposed representation uses small face regions 
extracted using arbitrary geometric cuts, made simple with our 3D signature 
approach, that are more complex than the spherical cuts utilized in prior work (e.g., 
[1]). 

2.   Previous Work 

The invocation of ICP [5] in each match score computation has been a part of many 
of the best-performing 3D face matching techniques proposed in the literature. The 
calculation of N match scores by such a technique requires that ICP be executed N 
times for a typical running time of O(Nnd log nm). Here, we present a review of the 
most successful ICP-based 3D face matching techniques. Finally, we review 3D face 
match score calculation techniques that are not based on ICP, although these 
techniques may utilize some form of alignment in preprocessing. 

2.1   ICP Match-Score 3D Face Biometrics 

Several ICP based 3D face matchers have been proposed in the literature. Lu et al. [3] 
aligned 3D faces utilizing automatically detected feature points. During the 
computation of every match score, they refined the alignment utilizing ICP. The 
match score was the root mean squared distance between the two surfaces.  Chang et 
al. [2] experimented with whole face 3D matching by shrinking spherical regions 
around the nose for improved biometric performance. They first aligned two 3D face 
models with ICP and provided a Nearest Neighbor matching score.  

The best (as measured by rank-one recognition rate) ICP-based 3D face 
recognition performance at the time this paper was written was reported by Faltemier 
et al. [1]. Their system s performance matches that of other non-ICP based 
techniques [10]. Utilizing multiple regions on the face (obtained using spherical cuts 
around distinguished surface points), they found that 28 regions combine for the best 
performance and achieved a 97.2% rank-one rate on the University of Notre Dame 
Fall 2003 and Spring 2004 3D face datasets (Phillips et al. [7] provide additional 
information on these datasets).  Faltemier et al. [1] showed that the use of a larger 
number of regions improves performance; they also analyzed the best performance for 
different number and choices of regions. Choosing the best combination of 8 regions, 
they were able to achieve a 92.9% rank-one performance. They promote their system 
for verification but not for recognition because of the running time that their ICP-



based system entails (calculating the match scores for the total of 28 regions that they 
utilize requires 2.38 seconds, not including the time for preprocessing, result fusion, 
or file I/O). 

2.3   Non-ICP-Based 3D Face Biometrics 

The methods discussed in this section may utilize ICP in the overall process as we do; 
however, the key is that they do not use ICP as part of each match-score computation. 
So regardless of gallery size, ICP is utilized as part of probe preprocessing and is not 
utilized for each match-score computation.  

Colbry et al. [9] recognized the issue of a need for a faster ICP technique that does 
not utilize ICP for each match score computation and presented an approach for faster 
matching. An input face is aligned to a stored model face and a depth map is 
rendered. After rendering the depth maps various sparse feature representations for 
analysis such as Gabor wavelets were utilized.  These alternate match score 
computations were accomplished without using ICP during each match score 
calculation. Although eliminating the use of ICP as a part of each match score did 
dramatically decrease the running time, they found that it had a negative impact on 
biometric performance.  

Kakadiaris et al. [10] produced depth maps utilizing a spin image.  Next, the spin 
image was converted into a wavelet representation utilizing Haar and pyramid 
coefficients for comparison. Their approach performed well at 97.3% rank one, with 
performance comparable to that of Faltemier et al. [1]. Their approach did not require 
an alignment step, such as ICP, for each match score computation but did utilize ICP 
in the initial alignment wavelet-generating process. As such, their running times were 
much faster than those of Faltemier et al. [1] but utilized a distinctly different process.  
This process is distinct from much of the previous 3D face recognition approaches in 
that it is not based upon a 3D distance metric.    

Russ et al. [4] proposed using a 3D PCA-based approach to calculate a unique 3D 
face vector that was used with PCA to perform recognition.  The vectors were 
produced utilizing a combination of nearest neighbor and normal searches in order to 
ensure a complete vector.  Next, the vectors were fed into principal component 
analysis to produce PCA coefficients utilized for recognition.   

3.  3D SIGNATURE GENERATION FOR FACE RECOGNITION 

In this section, we will describe the process of generating 3D signatures. We employ a 
gallery G = { X1, X2,  XnG} of 3D face images captured for the purpose of 
enrollment, and a training set T of 3D images from fifty subjects not in T is used to 
bootstrap the generation of two generations of reference faces. Each 3D image is 
assumed to be roughly aligned to the same location and orientation.   

3.1   Generation of Initial Reference Face 

An initial reference face F1 was generated by aligning, smoothing, and merging 3D 
images of ten distinct faces in T.  We employed the Raindrop Geomagic [12] 



commercial software for this step.  The reference face defines a canonical coordinate 
system. The reference face generated from this process can be seen in Figure 1. 

A 3D signature is a vector representation S = [ p1,  pn] (with pn representing 3D 
points) of the 3D surface constructed from a structured traversal of face positions 
defined on a reference region.   

 

Figure 1: Initial Reference Face Generated 

 

Figure 2: Complete Reference Face 

After computation of the initial reference faces, a 3D signature is computed for 
each of the fifty face images in T using the following process. 

 

The reference face and the training face image T are aligned using ICP, with an 
initial coarse correspondence obtained from nose alignment. 

 

An indexed sequence of locations S = {p1,  pnS}, pi = (xi, yi, zi) consisting of 
all points on the initial reference face was defined using its canonical 
coordinate system.  The initial reference face model consists of 15,000 
points.  We show this initial face in Figure 1.  The initial distribution of 
points was made approximately uniform utilizing a uniform point sampling 
function in Raindrop Geomagic [12]. 

 

Images of fifty images Xj in T were aligned with F1 using ICP. 

 

Calculation of 3D Signature: Each of the aligned faces was sampled by 
searching along the normal vector on F1 at each point pi in S, retrieving the 
closest intersecting point on Xj.  This yields an ordered set of 3D points on 
the aligned version of Xi, and a set of fifty correspondents {pl,  p50} for 
each pi. 

 

The correspondents {p1,  p50} for each point pi are averaged, yielding an 
average 3D signature which also serves as a second generation reference 
face. This face model is shown in Figure 2. We cropped the eye and nose 
region from this representation because the data from this area are typically 
noisy and contain holes due to sensor limitations.  

To determine individual reference regions, the averaged reference face was 
manually cropped into different regions using Raindrop Geomagic [11].  This is done 
once during the initial reference region signature generation. Using this method, we 
produced eight random regions, as are shown in Figure 4. Regions 5 and 6 are subsets 
of region 2. However, the resulting 3D signatures are not simply subsets. The reason 
for this is that each reference region is aligned separately. The different alignments 
result in different 3D signatures. Each region utilized here yields an increase in the 
performance of the fusion result. 



Selection of the reference region shape and point density plays a critical role in 3D 
signature generation. However, determining the ideal region shape and density to 
utilize is a problem that has not been addressed and most likely deserves more 
attention. Our method of reference-region generation has three main advantages over 
traditional hard-coded region-generation approaches.  

 

Ease of producing odd-shaped regions 

 

Ability to increase or decrease the number of points for comparison, 
regardless of the initial point density of the model  

 

Ability to control the point density for different parts of the same region  

A
B C

A B C

Reference Surface to 
Vector Mapping

3D Signature Surface 1

A B C

Reference Surface to Vector Mapping 3D Signature Surface 2

Surface 1
Reference Surface

Surface 2

 

Figure 3: 3D signature correspondence for two surfaces: Green dotted surface is the 
reference surface, and the red and blue surfaces are input surfaces; the double arrows represent 

correspondence  

Region 1 Region 2 Region 3 Region 4
1412 Points Total 5086 Points Total 1399 Points Total 1303 Points Total

71 Points Compared 254 Points Compared 70 Points Compared 65 Points Compared
78% Rank One

d =2.5
85.4% Rank One

d =2.1
28.6% Rank One

d =1.0
64.7% Rank One

d =2.1

Region 5 Region 6 Region 7 Region 8
1311 Points Total 1445 Points Total 1692 Points Total 2377 Points Total

66 Points Compared 72 Points Compared 85 Points Total 119 Points Compared
69% Rank One

d =1.9
61.6% Rank One

d =1.9
76% Rank One

d =2.6
77% Rank One

d =2.1

 

Figure 4: 8 Reference Regions  

The ability to customize region shape definition and point density has traditionally 
required more complex programming as the regions are defined via hard coding in 
methods such as Faltemier et al. [1]. Faltemier et al. [1] employed hard coded 



spherical regions (since they are relatively simple to define) and utilized the point 
densities of the existing gallery and probe face models as a basis for comparison.  Our 
approach offers the ability to tune region shapes and point density to highly 
discriminatory face features by modifying the reference face regions. 

3.2 Correspondence Search 

Given a pair of 3D surfaces, one a reference region and the other an image of an 
unknown face, it is possible to determine 3D signature correspondence via a nearest 
neighbor (NN) search, a normal vector search, a hybrid of these two approaches, or a 
different correspondence method.  The notion critical to a 3D signature is that a 
method of determining correspondence between two points is used.      

The nearest-neighbor search assigns each point in the unknown face signature to 
the closest correspondent on the unknown face to that of the point in the reference 
face. Previous work [4] has documented that the NN approach does not pick the most 
representative points when areas of curvature differ between the reference and input 
surface.  

A normal search searches along the normal vector to the reference region surface at 
each reference region point to find the intersection between the normal and the 
unknown face surface which is then the corresponded point used for the 3D signature. 
As such, it is possible that the reference region normal does not intersect the unknown  
face surface due to surface shape or holes in the 3D surface.  

A hybrid technique proposed by Russ et al. [4] repairs missed correspondences by 
using a NN search to produce correspondences for probe points where the normal 
search fails. This is necessary for use with PCA as missing vector entries cannot be 
tolerated.   

3.3    Individual Region Match Score Calculation 

Calculation of match scores is simple when two 3D signatures are compared.  No ICP 
step is needed during the match score calculation (as in [1][2][3]) since the signatures 
are pre-aligned.  In our method, we calculate the average squared Euclidean distance 
between the vectors by accumulating the squared distance between each 
corresponding point pair.  When utilizing a normal only search criteria we can ignore 
any points that lack a correspondent due to a failed normal search.  No iterative 
techniques are used. 

3.4    Score Fusion 

After obtaining match scores from multiple regions, it is necessary to utilize all of the 
results to determine identity in a process commonly referred to as fusion. The most 
commonly used fusion methods include sum, product, minimum, and consensus. The 
concept of combining independent match scores into one result via fusion was 
originally proposed by Kittler et al [12].   

Faltemier et al. [1] found optimal performance with a modified Borda count 
technique operating at the rank level. Each rank value was compared to a threshold. 
Ranks higher than the threshold were replaced by the threshold value and then all 
ranks were summed. This modified Borda approach performed 4.5% better than sum.  



All rank-based fusion techniques, lose the proximity of match scores between in 
rank computation. We propose a new method named the Match Sum Thresholding 
(MST) approach. MST operates on the set of scores resulting from multiple 3D 
signature comparisons. As with the modified Borda count technique, MST replaces 
any region scores that exceed a predetermined matching score threshold with the 
value of that threshold. 

The threshold used in the MST method is tuned for each 3D signature. 
Determining an individual MST score threshold for each region is necessary, because 
match score ranges vary from region to region. We precomputed the MST thresholds 
using the following approach.  We limited the possible values of the thresholds to .01 
increments searching for a biometric performance local maxima.  

1. Set initial score thresholds to include all match scores 
2. Continue until score thresholds do not change or change falls 

below a set threshold 
a. For each region 
i. For a range of threshold values (such as  i=0; i<2; 

i+=.01 ) 
1. Find best threshold for current region based upon 

other region thresholds and MST calculation 
2. Set threshold for current region to best 

4.   RESULTS 

Our experiments used a subset of the FRGC 2.0 3D face data corpus [8]. Images were 
acquired at the University of Notre Dame using a Minolta Vivid 900 3D scanner. We 
used all subjects with two or more 3D face images, yielding a dataset comprising 410 
subjects and 3939 total images, and conducted closed-set recognition trials.  The data 
contains a variety of facial expressions. All experiments were performed with the 
earliest image as the gallery image and subsequent images as probes. This standard 
experiment has been commonly utilized in previous work and is referred to as 
Experiment 2 in the FRGC protocol. For more information on this dataset or 
experiment, please refer to Philips et al. [8].   
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Figure 6: Performance of Hybrid, Nearest Neighbor, and Normal 3D Signatures 



4.1   3D Signature Search Method 

Previous work [4] utilized a hybrid normal/NN search method to produce vectors for 
PCA input. We compared the performance of a hybrid approach, NN approach, and 
normal approach for generating vectors, for a range of 3D signature sizes between 1% 
and 100% of the original size. The rank one recognition rate recognition results are 
shown in Figure 6 with different correspondence methods and the MST fusion 
method. 

Contrary to Russ et al. [4], we found that the NN (nearest neighbor) search criteria 
for 3D signature generation performed best. The difference in performance between 
the NN approach and the previously utilized hybrid search is even greater 
(approximately 1%), depending upon the number of points utilized for match score 
computation. It is possible that the use of individual regions as opposed to entire faces 
(as used in [4]) explains this difference. 

4.2 Fusion Method 

The previous highest performing fusion method for multiple regions was proposed by 
Faltemier et al. [1]. They utilized a modified Borda count to combine the results from 
each region for optimal performance.  Their search criteria was a nearest neighbor 
approach. As seen in Figure 6, we found that the best-performing 3D-signature search 
criterion was the NN search method and examine only that correspondence method in 
this section. 

TABLE 1: THRESHOLD VALUES USED FOR MST 

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8
Region Thresh 0.55 1.2 0.4 0.6 0.85 0.8 0.85 0.8

  

Furthermore, our new MST fusion approach consistently outperformed the 
modified Borda approach by approximately 0.2% to 0.5%. The thresholds utilized for 
each region are shown in Table 1. We believe this demonstrates an advantage in this 
situation of using the matching score instead of the rank alone.  The remainder of the 
experiments will be presented on the NN search criteria with MST fusion because 
those criteria obtained superior performance. 

4.3 Running Time and Memory Requirements 

In addition to a performance accuracy improvement, the 3D signature comparison 
technique yielded a decrease of nearly four orders of magnitude in matching 
execution time compared to the matcher proposed by Faltemier et al., due to the lack 
of an ICP step in each match pair comparison. The 3D-signature match-score 
computation running time and memory requirements are proportional to the total 
number of points in the 3D signature utilized for comparison.  

Our test scenario utilized a single core of a dual-core laptop. The laptop utilized an 
Intel T7500 mobile processor operating at 2.2 GHz running a 32-bit version of 
Windows Vista. We found that on average we were able to compute 102,594 match 
scores per second for a single region. By comparison, Faltemier et al. [1] were able to 



compute 12 match scores per second on average for a single region. This makes the 
proposed approach approximately 8700 times faster.  

Non-ICP based 3D matchers, such as that described by Kakadiaris et al. [10], have 
been able to achieve speed improvements similar to those seen here. However, their 
approach is distinctly different from our 3D-signature approach in that it [10] does not 
utilize a surface distance comparison (its match scores are based upon wavelet 
representations). Traditionally the distance based match score approach as used here 
has been more utilized in the literature. The advantages or disadvantages of this type 
of an approach or the wavelet approach by Kakadiaris et al. [10] is an open research 
area. 

The proposed 3D signature approach requires the storage of 802 3D points when 
95% of the original signatures points are removed by subsampling. This requires 
2406 vertices (x, y, z) to be stored, or  approximately 32 kilobytes per gallery image. 
By comparison, a densely sampled 3D face model of 20,000 vertices would require in 
excess of 240 kilobytes for vertex storage alone. 

5. Conclusion 

We have proposed to represent a 3D surface as a 3D signature that can be directly 
compared to another 3D signature in a process similar to ICP match-based distance 
biometrics.  Both approaches represent match score as an error distance between two 
surfaces.  However, our approach eliminates the need for ICP as a part of the match-
score computation.  

This process has advantages over other consistent representations, such as depth 
maps, because a 3D signature is not a 2D projection of the 3D surface; it is, instead, 
dependent upon a 3D reference region retaining the resulting 3D shape in the new 
representation.  This allows for the data to be represented in a face based coordinate 
system that does not suffer any data loss as a projection to a depth map does.  

The process of computing the signature and performing the comparison presented 
performance and accuracy advantages over an ICP based approach. The lack of an 
ICP invocation in each match yields a dramatic speed increase without encountering 
an accuracy penalty.  We were able to calculate match scores 8,700 times faster than 
previous state of the art ICP based methods [1]. Each match score is computed by 
calculating the distance between two 3D signatures that are stored in vector form. 
Previous exploration of vector representations [4] utilized a hybrid normal search/NN 
approach. Here we show that a purely NN approach achieves improved performance.  

In addition, we present a new region fusion approach named MST, which 
outperforms the modified Borda count approach [1], which was previously the state-
of-the-art fusion method for region based 3D face biometrics. MST does not require 
computing match rank, as does the modified Borda count approach. The superior 
performance of MST is a result of it retaining the distance between match scores.  
Utilizing more complex comparison regions and improved fusion method we are able 
to achieve a 95.5% rank one identification utilizing 8 regions as opposed to 92.9% 
using 8 regions from the previous state of the art method [1]. 

In closing, the proposed 3D-signature method outperforms previous state-of-the-art 
ICP match score-based biometrics [1][2][3] in running time and biometric 



performance through the use of regions with more complex shapes and makes 3D face 
biometrics feasible for large applications with the increased speed and low memory 
requirements. In the future, we would like to further explore reference regions with a 
larger variety of shapes and densities. Although the regions here show the potential of 
complex regions, further exploration may yield further improvements in performance. 
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