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Abstract 
 

This paper presents a 3D approach for recognizing 
faces based on Principal Component Analysis (PCA). 
The approach addresses the issue of proper 3D face 
alignment required by PCA for maximum data 
compression and good generalization performance for 
new untrained faces. This issue has traditionally been 
addressed by 2D data normalization, a step that 
eliminates 3D object size information important for the 
recognition process. We achieve correspondence of 
facial points by registering a 3D face to a scaled 
generic 3D reference face and subsequently perform a 
surface normal search algorithm. 3D scaling of the 
generic reference face is performed to enable better 
alignment of facial points while preserving important 
3D size information in the input face. The benefits of 
this approach for 3D face recognition and 
dimensionality reduction have been demonstrated on 
components of the Face Recognition Grand Challenge 
(FRGC) database versions 1 and 2. 

 

1. Introduction 
Facial recognition (FR) is a suitable biometric for 

many applications because of its non-intrusive nature, 
ease of integration into existing systems, societal 
acceptance, and potential to identify individuals at a 
distance without subject cooperation. Most of the 
current efforts in FR use a 2D representation of the 
face [12], however, these systems are generally not 
robust to variations in facial pose, scene lighting, and 
facial expression, requiring images to be taken in a 
controlled environment [9]. To address these issues 
researchers are examining the benefits of 3D data for 
the FR task [3]. 3D FR systems are believed to be less 
sensitive to lighting and facial pose variations. In 
addition, the geometric information available is 
expected to provide more discriminatory features for 

FR, including size information which is lacking in 
most 2D approaches.  

Principal component analysis (PCA) has been 
extensively used for the analysis, compression, 
modeling, and recognition of objects because of its 
simplicity and ability for dimensionality reduction. In 
particular, it has been used for facial recognition [2, 4, 
11, 14, 18, 20]. The goal of PCA is to derive an 
optimal basis from a set of training examples 
(representing signals in class C) such that training 
examples can be represented as a linear combination of 
basis vectors. For recognition problems, it is also 
desirable for the derived basis to have good 
generalization performance. For instance, the basis 
should also accurately represent new signals (not in the 
training set) in signal class C as a linear combination. 
To achieve both data accuracy and efficiency in 
representing new within class signals, both sufficient 
variability in the training set and proper 
correspondence of signal features (in concert with 
linear combination principals) are needed. 

In 2D face analysis this is obtained by a 
normalization procedure which typically requires 
certain attributes to be constant across faces. For 
instance, for a 2D face one often restricts the distance 
between eyes to be fixed and the nose tip to be placed 
at a particular pixel in the 2D image [13]. For 3D face 
recognition, PCA has been applied to range images of 
faces [4, 11, 18, 20]. Range images are often noted as 
2.5D representations and two issues may arise when 
using them for 3D PCA recognition: 1) if 
normalization is performed using typical 2D 
methodology, size information which is important for 
the recognition process is eliminated, 2) if 
normalization is not performed then proper alignment 
of facial points necessary for good generalization is not 
achieved. Accurate representation of new untrained 
signals in the signal class will typically require more 
model parameters and/or training examples. We 



address these fundamental issues with a truly 3D 
approach for PCA face recognition.  

The presented approach enables a good alignment 
of 3D points across faces while still preserving face 
size information important for the recognition process. 
This is achieved using a generic reference face model 
that can be scaled in 3D to best fit an input face. By 
scaling the model, opposed to the input face, proper 
size information of the face of interest can be encoded 
and better alignment of that face to the reference can 
be performed. Essentially, the reference face is the 
basis for a new coordinate system that provides a 
mapping between distinct faces to be encoded in the 
PCA decomposition. Input face to reference face 
alignment is achieved using the Iterative Closest Point 
(ICP) algorithm, and correspondences are obtained 
using a special normal search criterion. The utility of 
this approach for 3D face recognition has been 
demonstrated on components of the Facial Recognition 
Grand Challenge (FRGC) datasets versions 1 and 2. 
Results demonstrate both good generalization and data 
dimensionality reduction. 

2. Related Work 
A comprehensive review of 3D FR research is 

presented in [3]. Therefore, we will not perform a 
thorough review, but mention those findings closely 
related to our 3D approach for face recognition. 

Chang et al. [4] examined the benefits of using 3D 
and 2D+3D approaches over 2D using a PCA 
algorithm. Results were presented using a database 
very similar to the FRGC v1.0 database. For a single 
probe database, they achieved a rank one recognition 
rate of 89%, 94.5%, and 98.5% for 2D, 3D, and 
2D+3D, respectively. In [5], Chang et al. presented 
results of PCA and ICP algorithms on FRGC v2 
containing over 450 subjects for comparison to a new 
approach more robust to variations in facial expression. 
For neutral expressions, average rank one identification 
scores were 77.7% and 91% for PCA and ICP, 
respectively.  Analysis of non-neutral face expressions 
resulted in average rank one identification rates of 
61.3% and 61.5% for PCA and ICP, respectively. 

In [2], Vetter and Blanz utilized a 3D model based 
on PCA to address the problem of pose variation for 
2D face recognition systems. A 3D model was 
generated from real 3D scans. To obtain a fixed 
ordering of points for PCA alignment, a reference face 
was used. Correspondence to the reference frame was 
obtained using an optical flow based algorithm that 
examined 2D texture and 3D shape information. 3D 
PCA model parameters initialized by features extracted 
from a 2D image served as the basis for recognition. 

Other approaches to PCA face recognition using 
range images were presented in [11, 18, 20]. These 
approaches corrected for orientation and preserved 3D 
size information similar to [4]. Using a PCA basis 
derived from one or more examples of subjects in the 
test set, [11] obtained a verification rate of 99.17% 
with a 0 false accept rate (FAR) analyzing 50 subjects, 
and [20] obtained a rank one identification rate of 90% 
analyzing 37 subjects. In [18], independent training 
and test sets were used to obtain an equal error rate 
(EER) of 12.7% analyzing 100 subjects with variations 
in expression and pose. 

Iterative matching algorithms for 3D face 
matching using range images were presented in [7] and 
[10]. An EER of 3.5-4.4% was obtained in [7] 
analyzing 18 subjects and a verification rate of 93.5% 
at a FAR of .001 analyzing 198 subjects was achieved 
in [10]. Deformations of faces from an annotated face 
model were analyzed for FRGC v2 in [19], achieving 
verification rates of 94.45% and 60.69% at .001 for 
neutral and non-neutral expressions respectively. 

Our approach seeks to move away from range-based 
algorithms [4, 7, 11, 18, 20] to a full 3D model. This 
approach allows proper consideration of all coordinates 
in a 3D space. In addition, avoidance of an image grid 
enables additional flexibility in how the actual points 
on the face are aligned. We are distinguished from [2] 
in that our focus is not 2D face recognition, but how to 
perform accurate 3D face recognition. While [2] 
utilizes 2D data to synthesize an approximate 3D 
model, we start with 3D data. Because of this we 
choose to avoid optical flow based correspondence to a 
reference, and instead, perform 3D point registration to 
a 3D reference face. 

3. 3D Face Modeling 

3.1. Principal Component Analysis 
Principal component analysis is a common method 

for deriving an optimal set of orthogonal basis 
functions from a linear class of signals [15]. This 
decomposition enables the signal class to be 
represented as a linear combination of the PCA basis 
vectors. We apply this technique to 3D facial analysis. 
Given M sets of 3D coordinates }s,...,s,{sS M21=  
representing M different faces, we seek to derive a 3D 
face basis V to represent signals in S as a linear 
combination. In order to achieve this, the coordinates 
in each dataset should be in correspondence and the 
same number of points should reside in each set is . 
This modified dataset (discussed in section 3.2) is 
referred to as X and is encoded in the PCA 
decomposition. Thus, any dataset x  can be 



reconstructed from the PCA basis by (1) to produce x̂ . 
The reconstructed signal x̂  is optimal in the sense that 
the L2 norm between x  and x̂  is minimized as shown 
in (2). 
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The PCA basis V is determined as follows. The mean 

face x   (3) is subtracted from  ix  to produce ai (4). 
These vectors define a matrix as shown in (5). The 
PCA basis vectors can be determined by computing the 
eigenvectors of the covariance matrix C (6), obtained 
using the Singular Value Decomposition of A . 
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Given an input face x  the PCA model coefficients 
can be determined by solving the least squares problem 
in (2). Equation (2) can be rewritten as Vαa =  and 
solved by computing the pseudo-inverse of V (7). The 
utility of these coefficients α  is examined for facial 
recognition in section 4.2. 

xVα +=  
(7)

3.2. Correspondence Calculation 
The correspondence calculation is a critical 

component of PCA and our approach to this is one of 
the unique contributions of this work. Ideally, like 
features should be corresponded (i.e. eyes are aligned 
with eyes, nose with nose, etc.). However, in practice 
this is difficult and good performance can be achieved 
with a coarse approximation to this. For example, 2D 
techniques seek alignment of nose positions; however, 
other features such as the mouth and chin may not be 
exactly aligned. Despite this, PCA is able to produce 
good results for 2D recognition. Similarly, we do not 
seek exact alignment of prominent facial features, but a 
good approximation to it over similar face geometries. 

3.2.1. Reference Face Utilization 
The ordering of points for PCA is determined by 
alignment of an input face to a generic reference face 
as adopted in [2]. By ordering all of the points 

according to points on a reference face, all points are in 
a common consistent coordinate system from which 
PCA model parameters can be derived. An attractive 
attribute of this approach is that in a matching 
paradigm when one is searching for an input face in a 
gallery database, the input face does not have to be 
aligned with each face in the gallery for matching to 
occur, enabling fast database searches. 

To enable correspondence of new faces to the 
reference face, the reference face is scaled with respect 
to an input face. The five features shown in Figure 1 
provide a basis for determining scaling parameters. An 
automated technique to detect these features has been 
developed in [6] based on radial symmetry. Scales in 
the x, y, and z dimensions can be determined by 
calculating the ratio of feature distances between the 
reference face and input face. For the experiments 
conducted in Section 4, scaling was only performed 
along the vertical direction with the nose location at the 
origin. Using the inner eye corners and nose to scale in 
the x and z directions significantly impacted 
recognition performance. We believe this is because 
the inner eye corners are closely located to each other; 
thus, small errors may have a significant impact on the 
scaling parameter resulting in incorrect scaling of the 
reference. In order to assess our approach without 
feature detection errors, ground truth locations were 
used for the experiments in this paper. 

           
       features             scale parameter 

Figure 1. Example face features used to determine 
reference face scaling prior to alignment. 

         
Figure 2. Reference face (white) to input face (red)
registration.  

Reference to 3D face alignment is achieved using 
the Iterative Closest Point [1] to minimize the root 
mean-squared error between the two representations. 
Examples of the reference face to input face alignment 
are shown in Figure 2. Although, the faces are of 
varying sizes and shapes, the reference face is still well 
aligned with each input face. 

3.2.2. Normal Search Correspondence  
After face alignment, a corresponding point on the 

input surface is found for each point on the reference 



surface by intersecting a given reference point’s 
normal with the input surface. This tends to give 
improved performance over a nearest neighbor search 
because it enables an improved sampling of the input 
face’s surface geometry as can be seen in Figure 3. 
However, for a normal search algorithm to provide 
good results, the reference face must have a low noise 
level amongst the surface normals. This is obtained by 
applying smoothing and other processing to the 
reference face which can be generated offline. An 
example of the result of the correspondence stage can 
be viewed in Figure 4. The same ICP algorithm is 
performed for both examples; only the criteria for 
selecting the appropriate match to a reference point 
changes. The correspondence result in Figure 4a 
selected the nearest neighbor, and the result in Figure 
4b selected the point that intersects the surface in the 
normal direction. Notice the improved definition 
around the mouth and nose for the normal search 
method. Also, notice how the nearest neighbor search 
distorts the upper lip in Figure 4b. Added definition 
and accuracy at this stage will benefit the final 
recognition stage. 

3D face representations often contain erroneous 
data points because of limitations in 3D sensor 
technology. To address this problem, smoothing and/or 
processing is performed prior to ICP alignment and 
after 3D point correspondence. The 3D points are 
triangulated across holes to provide a valid surface for 
the reference face’s normal to intersect during 
correspondence. In cases where the normal search 
correspondence strays too far from the closest point on 
the surface, the nearest neighbor is used. To correct 
erroneous correspondences, the post-processing step 
utilizes neighboring correspondences. 

 

Nearest Neighbor Search

Normal Search
Not Represented 
in Correspondence

reference

input  
Figure 3. An example of the nearest neighbor and
normal search correspondence methods.  

 

a) segmented 
 

b) nearest neighbor 
 

c) normal search
Figure 4. Examples of reference based 
correspondence reconstructed datasets using different 
correspondence criteria. 

3.2.3. Reference Face Generation 
The reference face can be obtained in a number of 

different ways. For our experiments, a face from the 
FRGC database was processed in Raindrop Geomagic 
6. The choice of the selected face for processing was 
random; a number of faces would probably work 
equally well. To derive a reference face, processing 
was performed both globally and regionally including: 
surface decimation, smoothing, and relaxation.  

At this stage, the goal was to create a smooth 
reference model containing the defining characteristics 
of the face (i.e. eyes, nose, mouth area, etc.); however, 
we did not want the facial features to be too distinct. 
The use of an abstracted smooth reference face allows 
the ICP process to better align the reference face to a 
variety of different face geometries and aids in normal 
search correspondence. In addition, parts of the face 
were cropped to remove and avoid the inclusion of 
undesirable areas such as hair. After extensive 
processing, the reference face contained approximately 
23,000 points. A picture of the FRGC face, before and 
after processing, is shown in Figure 5. 

              
               FRGC face              reference face 

Figure 5. An example of a 3D face and a derived 
reference face used for correspondence.  

 

4.  Results 
Analysis of the presented system is performed for 

3D facial verification and identification on multiple 
probe databases from the FRGC database versions 1 
and 2 [8]. FRGC v1 consists of images of 200 subjects 
acquired in the spring of 2003. Of the 200 subjects, 
198 participated in more than one session allowing the 
first image to be used as a gallery image (enrollment), 
and subsequent acquisitions to be used as probe images 
(test image against the gallery). For this database, 745 



probe images were analyzed and hereafter referred to 
as the spring 2003 database. The FRGC v2 includes 
FRGC v1 and images acquired during the fall of 2003 
and spring of 2004. FRGC v2 contains significant 
variations in facial expression. Only images of subject 
with more than 4 images acquired in fall 2003 were 
used in the following analysis. This resulted in 242 
neutral gallery images and 1287 probe images with 
neutral and non-neutral expressions. Hereafter, this 
database is referred to as fall 2003.  

4.1. 3D Face Synthesis 
3D PCA face synthesis is the process of generating 

a new face based on the model; however, this process 
can be impacted by the quality of the segmentation, the 
ability to properly generate good correspondences to 
the reference model, and the set of training faces from 
which the PCA face basis is derived. In this section, 
the face generated by correspondence to our reference 
face is called the reconstructed face. In general, the 
best PCA can achieve is the accuracy of the 
reconstructed face. However, if the PCA training 
images are free of correspondence errors then the 
model can potentially overcome inaccuracies in the 
reconstructed face introduced by the correspondence 
stage. Face segmentation was performed by cutting a 
sphere near a manually marked nose location and 
performing surface clustering to remove extraneous 
unconnected regions that fall within this area. 
Subsequently, the correspondence procedure described 
in section 3.2 was performed and PCA model 
coefficients were calculated. 

Figure 6 shows examples of reconstructed and 
synthesized faces generated with a PCA training set of 
approximately 200 faces representing unique subjects. 
We demonstrate the utility of the approach for three 
cases: a face image included in the PCA training set, a 
face image whose subject was included in the training 
set (i.e. different data set of subject), and the face 
image of a subject not included in the training set. For 
all three cases, the quality of the reconstructed and 
synthesized faces is very good; although, in practice 
correspondence errors may occur.  

4.2. Facial Recognition Analysis 
In this section, we examine the utility of the PCA 

model parameters for face recognition by examining 
both receiving operating characteristic (ROC) curves 
and cumulative match curves (CMC’s) [9]. The ROC 
curve graphs the probability of correct verification 
versus FAR and provides an indication of 
discrimination ability as various thresholds are used to 
define correct verification. The CMC displays the 
probability of identification if the top K match results 

were returned. This provides an indication of how 
close one is to obtaining the correct match if the rank 
one match was incorrect. In a real world system, the 
top K matches can be given to security personnel to 
make the final identification decision. 
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Synthesized 

Figure 6. 3D PCA Synthesis Examples for (Top) 
dataset in the training set  (Middle) dataset not in 
training set, but subject in the training set (Bottom) 
dataset and subject not in training set 

The match metric used for facial recognition is one 
minus the cosine of the angles between the PCA model 
parameters; however, whitening is not performed as in 
[13]. Given a vector u representing the model 
parameters of face A and v representing the model 
parameters of face B, this metric is defined by Q(u,v) 
in (8). When the vectors are identical the metric is 0.0 
and when they are orthogonal, it is 1.0. In practice, this 
metric performed better than the L2 norm. 
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PCA is known for its efficiency in dimensionality 
reduction. Thus, we examined FR performance using 
k% of the most important parameters in matching. FR 
performance is analyzed on the neutral images from 
the spring and fall 2003 databases containing 198 and 
202 gallery images and 765 and 565 probe images, 
respectively. The gallery sets from each database were 
used for PCA training. Figure 7 and Figure 8 show the 
ROC’s for both the spring and fall 2003 databases. 
Both ROC curves demonstrate verification rates of 
approximately 95% for a FAR of .001. In addition, the 
rank one identification rate varies from 91-97% for the 
spring and fall 2003 databases (Figure 9 and Figure 
10). Notice little degradation in performance when 



using 100% to 20% of the basis coefficients (~200 
coefficients). 

Figure 7. Spring 2003 neutral ROC curves 
 

Figure 8. Fall 2003 neutral ROC curves 
 

Figure 9. Spring 2003 neutral CMC 
 

Figure 10. Fall 2003 Neutral CMC 

4.3. 3D PCA Generalization Analysis 
A benefit of the proposed approach over range-

based PCA modeling algorithms is the potential for 
greater accuracy when provided with new untrained 
data. In order to test this capability, we varied the 
training set size for a combined spring and fall 2003 
database. This resulted in a total of 310 neutral gallery 
subjects and 1450 neutral probe images. The training 
set was obtained by taking the first N images of the 
gallery set where N varied between 50 and 310. A 
synthesized example showing the impact of training set 
size on face reconstruction is shown in Figure 11. Note 
this subject was not included in any of the training sets 
except for when N=310. 

    
Reconstructed     N=50         N=100           N=200 
Figure 11. PCA synthetic reconstruction using 
different training set sizes 

Figures 12 and 13 show the ROC curves and 
CMCs generated for the combined spring and fall 2003 
neutral databases. The graphs shown are only using 
60% of the N-1 model coefficients. With this approach 
good performance is obtained using a small but 
representative training set achieving verification rates 
of 92-96% at a .001 FAR and rank one identification 
rates between 94-95%. This is an improvement over 
the range-based PCA results presented in [4] and [5]. 
While good results were demonstrated in [4], 
performance dropped significantly in [5] when 
considering additional images and subjects. Rank one 
recognition rates ranged from 73.3% to 83.5% 
analyzing neutral expressions (~ 449 subjects). We 
have analyzed a subset of this data, but contend that 



our results are significant because of the amount of 
improvement achieved and the consistency of the 
results over variations in training set size and the 
number of coefficients used. 

Figure 12. Fall and spring 2003 ROC curves using 
different training set sizes 

Figure 13. Fall and spring 2003 CMC using different 
training set sizes 

4.4. Facial Expression Analysis 
Dealing with facial expression variations is a 

challenge for many 2D and 3D recognition systems 
because they cause non-rigid deformations in the facial 
surface, but it is worth noting the utility of the 
proposed method in addressing this problem.  

         
    segmented       reconstructed      synthesized 

Figure 14. An example of PCA synthesis of a non-
neutral expression using a basis trained on mostly 
neutral expression images. 

To examine this issue, a gallery of neutral images 
is matched to a probe set of non-neutral images from 
the fall 2003 database. The fall and spring 2003 
databases were combined to extract a set of 310 unique 
subjects used to train PCA. The probe set contains 840 
images of which only 753 have a match in the fall 2003 
neutral gallery of 202 subjects. An example of PCA 
synthesis of a non-neutral expression with a mostly 
neutral expression training set is shown in Figure 14. 
Note the similarity in facial structure, although the 
amount of smiling between the original and 
synthesized versions is noticeably different. 

The ROC curve and CMC for this experiment are 
shown in Figures 15 and 16. There is a considerable 
decrease in performance when dealing with non-
neutral expressions as expected; however, a rank one 
identification rate of 82.6% and a verification rate of 
91% with a .001 FAR is achievable using 60% of the 
coefficients. Furthermore, the 3D model has potential 
to correct for variations in facial expression similar to 
[17]. 

5. Conclusion and Future Work 
We have presented a general approach for 3D face 

recognition based on PCA. It avoids elimination of size 
information by scaling a 3D reference to enable 
alignment of facial points important for PCA training, 
synthesis, and recognition. This work represents an 
improvement upon the work presented in [4, 5] in 
recognition accuracy, dimensionality reduction, and 
generalization to new faces. The presented approach 
also has benefits over the iterative registration 
algorithms presented in [1, 5, 7, 10] during a 1 to N 
match in that it only requires the registration of the 
probe to a reference, speeding up the algorithm 
considerably. In future work, we intend to examine the 
FRGC v2 database in its entirety (i.e. spring 2004) and 
use the 3D model as a foundation for dealing with the 
problem of facial expression variation [17]. We also 
seek to examine robust scaling parameters to be 
applied across other dimensions of the face besides the 
vertical one and examine the impact of scaling errors 
or recognition accuracy. Also, we intend to replace the 
ICP reference alignment algorithm with the 2D range 
Hausdorff approach described in [10], which can be 
computed in O(N) opposed on O(N2). 

 



Figure 15. Fall 2003 non-neutral ROC 
 

Figure 16. Fall 2003 non-neutral CMC 
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