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What this Workshop Will Cover

• Theory of Operation
• System Options
• Installation of GHPs
• Important Factors in Design
• Thermal Conductivity Testing
• Case Studies
• Advantages and Disadvantages -- Summary
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Theory of Operation
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Definition

• A heat pump is a device that moves heat from
one location (the source) to another location
(the sink or heat sink) using work

• Most commonly realized using a refrigerant
cycle
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A window air conditioner is a heat
pump
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A rooftop air conditioner is a heat
pump
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Large chillers are heat pumps
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In common usage, the term heat pump is
applied to devices that heat and cool

Residential air source heat pump
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The previous examples are all air
source heat pumps
• They transfer heat between the building

interior and the outdoor air
• Outdoor air provides the heat sink (or heat

source)
• A compressor moves refrigerant around a

circuit to achieve cooling and/or heating
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Definition

• A geothermal heat pump (GHP) is a heat
pump that uses the earth as the heat source
and heat sink, as opposed to ambient air
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The technology goes by many different names

• Ground source heat pumps (GSHP)
• Ground coupled heat pumps (GCHP)
• Geothermal heat pumps (GHP)
• GeoExchange
• Earth energy systems



12

Why GHPs are more efficient than
other HVAC equipment
• Heat pumps are most efficient when the heat source

and heat sink are at nearly the same temperature
• Indoor air is usually conditioned to 20-27 ºC
• Outdoor air temperatures vary greatly: 0-45 ºC in some

locations
• As outdoor air temperature varies, temperature of the

earth just a few meters below the surface remains
constant throughout the year

• Earth temperature is close to indoor air temperature,
providing an efficient heat source for heating and heat
sink for cooling
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Deep earth temperatures generally follow
average annual air temperatures
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Typical GHP in mechanical room
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Basic components of a GHP

• Refrigerant compressor
• Refrigerant-to-air or refrigerant-to-water coil

(load-side)
• Water-to-refrigerant coil (water-side)
• Water pump
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Water-to-air geothermal heat pump
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Typical water-to-air heat pump
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Water-to-water geothermal heat pump
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Typical water-to-water heat pump
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Operation in Heating ModeGeo Heat Pumps
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Operation in Cooling ModeGeo Heat Pumps
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GHP System Options

22
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Residential vertical loop system
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Residential horizontal loop system

Horizontal loops
generally require 1500-
3000 ft2 land area per
ton
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Commercial vertical bore system

Generally requires
250-300 ft2 of land
area per ton
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School with vertical bore loop field
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Commercial pond loop system
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School with pond loop system
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Open loop system
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Standing column well is another
GHP system type
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Carlisle Barracks, PA is the site of a
large standing column well retrofit

• Equipment installed in 87
residential and commercial
buildings
• 847 total tons of heat pump
capacity
• 69 wells ranging from 180 to
855 ft deep (average 455’)
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Commercial applications most
commonly use vertical loops
• Vertical boreholes are drilled 75m - 150m deep with a

drilling rig
• High density polyethylene u-tube pipes are inserted

into the bores
• The boreholes are filled with grout to ensure good heat

transfer and protect groundwater
• Boreholes are then connected together in parallel
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Installation of GHP Systems
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Air hammer drill rig
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Drilling boreholes for a school
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Commercial site under construction



37

HDPE u-tube on spool
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U-tube installation
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Holes are then grouted
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Borehole grouted bottom to top
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Important Factors in Design
of GHP Systems
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Inside the building:  Similar to the design of
any conventional HVAC system

• Determine peak heating and peak cooling load for
each zone of the building

• Select heat pumps to meet design loads (remember
that capacity depends on EWT)

• Heat pumps should be located with due consideration
for serviceability

• Size ventilation system components: ductwork, fans,
preheating coils, etc.
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Capacity of a typical 4-ton geothermal heat
pump vs. EWT

Heating capacity

Cooling capacity
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Efficiency of a typical 4-ton GHP as a
function of EWT
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Outdoor air pre-treatment is a concern in
commercial designs

• In US, ventilation air requirements often drive design
• A number of options for outdoor air

– Dedicated water-to-water heat pump supplying OA preheat
coil

– Sensible heat recovery unit to absorb heat from exhaust air
– Conventional heat source (gas boiler, electric resistance,

etc.)
– Each method has advantages and disadvantages in terms of

first costs and operating costs
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Retrofits: Existing equipment influences cost-
effectiveness of various GHP designs

• Central/terminal systems (ductwork or no)
• Water loop for two- or four-pipe system? If so,

potential for re-use as GHP water loop
• What space is available in zones for individual

heat pumps?
– Above dropped ceiling → horizontal units
– Mechanical closets → vertical units
– Through-wall PTAC units & perimeter → console

units
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Outside the building:  Further tests are
required to optimize the design

• Vertical loop:  Thermal Conductivity Test
– Measures deep earth temperature as well
– Important for loop field design

• Open loop:  Well Test
– Water flow
– Water quality (including chemistry)
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Outside the building:  Borefield sizing
(for vertical bore systems)

• Decide on borehole and u-tube size, grouting
• Determine ground properties from in-situ test
• Design borefield layout (rows × columns, spacing)
• Determine whether antifreeze is required
• Select design EWT
• Enter all information (including loads) into borefield design

program — iterate if necessary
• Design exterior headers



49

Borefield sizing is a critical issue

• Rejecting heat to borehole tends to heat the earth in
the borefield

• The earth dissipates heat very slowly
• Borefield must be sized so that the temperature rise is

limited to some design value
• Opposite problem in heating-dominated climates: heat

is extracted, so temperature drop must be limited to a
design value
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Borefield must be sized correctly

• Undersized borefield will may cause temperature of
water returning to building to rise to the point where
heat pumps no longer operate

• Oversized borefield is costly -- drilling and manpower
cost money

• Design borefield length is determined by solving a
rather complicated heat conduction problem
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Commercial software is available
for borefield sizing
• GCHPCalc (www.geokiss.com)
• GLHEPro (www.hvac.okstate.edu/glhepro/)
• GLD (http://www.gaiageo.com/)
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Design depends on soil thermal
properties
• Thermal conductivity
• Deep earth temperature
• Borehole resistance
• For commercial projects, these properties are

measured in the field with an in situ test
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Thermal Conductivity Testing
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Schematic of test
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Test Rig for thermal conductivity test
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Measurements taken during test

• Inlet and Outlet Temperature
• Deep Earth Temperature
• Water Flow Rate
• Power Input to Water Heater
• Power Input to Pump
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ORNL has free software available
to analyze field test data
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Case Studies



61

Fort Polk Residential Project
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Project background

• Fort Polk is a US Army base in the State of
Louisiana

• Climate is hot and humid during much of the
year

• Contains a small city with residential housng
for 4000 soldiers and their families



Scope of Fort Polk Project

• Entire stock of 4,000 family housing units (1,292
individual buildings)

• Residences range in size from 1,073 to 2,746 square
feet (1,393 average)

• 3,243 (or 81%) of residences were served by air-
source heat pumps and electric water heaters

• Remainder (761) used gas heat with central air
conditioning, and gas-fired water heaters



Conservation Measures Included

• Air-source heat pumps and gas/central air systems
replaced with GHP in all residences

• Gas-fired water heaters replaced with electric
resistance

• GHPs included desuperheaters to supplement water
heating in 75% of residences

• Interior/exterior lighting replaced with compact
fluorescent lights; some fixtures delamped

• Low-flow shower heads
• Attic insulation upgraded as needed in upstairs

residences



Geothermal Heat Pumps Installed

• Total of 6,600 tons of GHP capacity installed in
nominal capacities of 1.5, 2, and 2.5 tons

• Each with its own vertical u-tube type ground heat
exchanger with one circuit per bore and two circuits
in parallel

• Average 275 feet of bore per ton
• Total of 3,621,256 feet (685 miles) of 1-inch SRD 11

high-density polyethylene pipe installed at site
• Bores backfilled with standard bentonite grout with no

thermal enhancement



Pre-retrofit electricity use for all-electric
feeder

Typical All-Electric Feeder
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On all-electric feeders, GHPs reduced
energy use every day of the year

Feeder 1
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Typical Gas/Electric Feeder

Pre-Retrofit Daily Energy Use
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Electrical energy saved on this feeder as well
because most days are cooling

Feeder 5 
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Summary of savings achieved at Fort
Polk

• Electrical energy savings 25.6 million kWh, or 32.4% of annual pre-
retrofit electrical energy in a typical year

• Electrical demand reduction estimated at 6.7 MW, or 40.2% of pre-
retrofit demand for peak cooling day during utility peak hour

• Annual natural gas savings estimated at 260,000 therms
• 29% reduction in maintenance costs ($4.5 million over 20 years)
• As a result of the ESPC, family housing at Fort Polk is exceeding

federal mandates which direct facilities to reduce energy consumption
by 30% compared to 1985 energy use
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Maxey Elementary SchoolMaxey Elementary School
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Aerial view

Borefield in
this area
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Maxey GHP System Design
• Total of 54 GHP units
• 200 tons total nominal cooling capacity
• Two 15-ton WWHP units provide pre-

conditioned OA with HW coil for cold days
• Unit heaters in corridors with HW coils
• Four 333,000 BTU/hr gas-fired boilers; gas

DHW
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Study is based on a calibrated
simulation
• Developed simulation model beginning with as-built

construction plans
• Estimated internal loads from occupancy, fixture counts
• Developed occupancy schedule based on school

calendar
• Adjusted model parameters until performance matched

site-monitored data (daily electrical use, monthly gas
use)
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Simulated and monitored daily
HVAC electrical use
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Simulated and monitored monthly
total natural gas use
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Maxey life cycle cost study

• Once we had a calibrated model, we replaced the
GHPs (in software) with
– Water-cooled chiller with VAV air handling system
– Air-cooled chiller with VAV air handling system
– Water-cooled chiller with constant volume air

handling system
• Calculated installed cost of each system
• Estimated energy use of each type
• Calculated life cycle cost of each type
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GHPGHP  had lowest LCC and lower firsthad lowest LCC and lower first
cost than widely-used VAV systemscost than widely-used VAV systems
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Cost Containment in GHP Projects
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Value engineering in GHP projects

• Like most renewable technologies, GHP systems have
a cost premium

• This can be as much as $2000-$3000 per ton of
capacity compared with conventional equipment

• For this reason, it is important to minimize costs and
maximize benefits
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Optimizing the Cost/Benefit Ratio of
GHP Projects
• In vertical bore projects, minimize bore length by using industry-

standard borefield design program
• Perform in-situ thermal conductivity test
• Avoid complex control systems
• Minimize pumping power

– Water flow rate <3 gpm per ton peak block load
– Minimize pipe friction
– Operate pumps within 5% of max efficiency
– Avoid excessive antifreeze

• Bundle with other ECMs such as lighting, envelope
• Consider the benefit of maintenance savings
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GHPs should also be considered for
domestic water heating

• A heat pump is the most efficient technology for
water heating

• Can use dedicated water-to-water heat pump, or
desuperheaters on selected heat pumps
supplementing conventional DHW

• In cooling-dominated applications, using
desuperheaters can reduce required bore length
and system costs
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Summary -- Advantages and
Disadvantages of GHP Systems
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Advantages of GHPs
• High efficiency

– Lower energy consumption
– Lower energy cost
– Lower electrical demand

• Low maintenance cost
• Low life cycle cost
• No outdoor equipment
• Better humidity control
• Greater occupant comfort
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Disadvantages of GHP

• First cost can be higher than for conventional
systems

• Not all system types feasible in all locations
• Limited pool of designers



86

Resources for GHP Designers
• Ground-Source Heat Pumps:  Design of Geothermal Systems for

Commercial and Institutional Buildings, Kavanaugh and Rafferty
(ASHRAE, 1997)

• Commercial/Institutional Ground Source Heat Pump Engineering
Manual, Caneta Research (ASHRAE, 1995)

• Closed Loop/Ground Source Heat Pump Systems: Installation
Guide (IGSHPA)

• Learning from Experiences with Commercial/Institutional Heat
Pump Systems in Cold Climates, Caneta Research (CADDET,
2000)

• Chapter 32: Geothermal Energy, 2003 HVAC Applications
Handbook (ASHRAE)

• eQuest simulation program (www.doe2.com)
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US and International Organizations

• American Society of Heating, Refrigerating and
Air Conditioning Engineers (ASHRAE)

• International Ground Source Heat Pump
Association (IGSHPA)
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Web sites with information on GHPs
• www.ornl.gov/sci/femp
• http://www.eere.energy.gov/femp/financing/supere

spcs_geothermal.cfm
• www.igshpa.okstate.edu/
• www.ghpc.org
• http://geoheat.oit.edu/
• www.geokiss.com



89

Questions?

John Shonder
shonderja@ornl.gov

865-574-2015


