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Presentation Outline

§ Integrated Equipment Systems (IES) 
Laboratory at ORNL
– Tom Rizy, Abdi Zaltash

§ CHP Commercial Building Integration 
Test Center at University of Maryland
– Dr. Reinhard Radermacher, Matthew 

Cowie, Lucia Liao



DOE’s IES Vision
Packaged System Integration

2002: Individually optimized 
products combined on-site

2010: IES - single 
optimized package
from manufacturer



IES System Components
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Objectives of the
IES Laboratory

§ Benchmark DER Equipment Performance and Emissions

§ Benchmark Integrated Equipment System Performance

– Currently focused on MTG-based IES

§ Provide Data for Computer Models and Verification

§ Identify Component and System Improvements for            
current packaged IES manufacturers and “Next          
Generation” Products and Applications

§ Provide Diagnostic Support for Field Test Data Analysis

§ Support Rating/Certification Standards for IES Products



Integrated Energy Systems (IES) 
Laboratory Facility



IES Laboratory – Outdoor Configuration

30 kW Microturbine Cooling Tower for  10 Ton (35 kW)
Single-Effect Absorption Chiller



IES Laboratory – Indoor Configuration

Exhaust Heat 
Recovery Test Loops



IES Laboratory
Key Milestones

§ Designed and Setup in CY2000 and CY2001

§ Commissioned at the end of CY2001

§ IES Testing of 30 kW MTG-based system

§ Designated as “National User Facility” in 
Summer 2002
– Provides industry with greater access and control to 

various IES testing that can be conducted at the 
laboratory.

§ Early success story regarding HRU re-design by 
manufacturer

§ User agreement signed with first industry user 
last month



Areas of IES 
Performance Testing

§ Microturbine Baseline Performance (MTG)
§ Heat Exchanger (Air-to-Water) Thermal Loop

– Recover exhaust heat with air-to-water HRU 
– Indirect-fired desiccant dehumidifier

§ Desiccant Dehumidification Thermal Loop
– Direct-fired desiccant dehumidifier

§ Absorption-Chiller Thermal Loop
– Use 10 ton single-effect indirect-fired absorption chiller
– Supply 44ºF (7ºC) chilled output water to provide cooling



Microturbine Benchmark
Efficiency vs. Power Output*

* Based on Natural Gas Higher Heating Value (HHV), outside ambient 
temperature between 30 to 40ºF (-1 to 4ºC)
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Microturbine and CHP Efficiencies
Based on HHV of Natural Gas 

*Based on 127oC (400K) or 260oF flue gas rejected to the atmosphere
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Heat Recovery in the HRU with Water
Flow Rate of 19 gpm or 4.3 m3/h 
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Flue Gas Emissions at Various Power 
Outputs (Steady-State)
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Summary of 
Microturbine Performance

§ Efficiency of Unit Drops Off Significantly with Power 
Output

§ Above 65oF (18oC), Turbine RPM Limit Causes Drop Off in 
Power Output

§ Only Major Problem Encountered is the Natural Gas 
Compressor

§ Low Emissions At Full Power: Emissions Increase At 
Lower kW

§ Developed/verified a semi-empirical CHP mathematical 
model

§ Obtained analytical relationship between the changes in 
the CHP system using linear analysis

§ Model predicted significant improvement in CHP system 
efficiencies with elimination of microturbine recuperator



Future Work

§ Near Future Testing
– Test larger MTGs - industry moving towards larger units to 

make them more attractive to the marketplace
– Extend testing to encompass other DR systems such as 

reciprocating engines and fuel cells

§ Laboratory’s National User Designation
– Increases flexibility to work directly with business and 

industry in developing/testing IES
– Model and test modular IES package systems to improve 

technology and accelerate its introduction to the market
§ Future - assessment of IES controls and advanced diagnosis 

& thermal energy storage



University Test Center for 
IES/Building Integration

University of Maryland,
College Park



U of M Staff Partnering With ORNL’s CHP 
Integration Laboratory Personnel

§ Integrate equipment into CHP systems

§ Integrate CHP systems into commercial buildings

§ Demonstrate performance potential in an occupied 
building

§ Provide essential technical knowledge to 
manufacturing partners



The CHP Integration Test Center
is a Platform for 

Professional Collaboration

§ ORNL - Sensors (CO2 and Humidity)
§ PNNL – Whole Building Diagnostician
§ NREL – Liquid Desiccant Components
§ Energy Storage (DOE, Energetics, NRECA, Sandia –

Distributed Energy Technology Simulator)
§ Southern Research Institute, EPA, Honeywell –

Independent Verification of Micro-Turbine 
Performance and Emissions 

§ ORNL – Integrated System Performance Evaluation



Integration Test Center Building

§ TYPICAL, MEDIUM SIZE 
OFFICE BUILDING, 51,000 FT2, 

§ 4 FLOORS, 2 ZONESON FOR
§ 90-TON ROOF TOP UNIT FOR 

EACH ZONE
§ COOLING ALL YEAR 
§ ECONOMIZER CYCLE
§ VAV WITH ELECTRIC REHEAT
§ LOW LEVEL CONTROLS
§ GAS RARELY USED
§ ELECTRIC ~300 kW PEAK
§ 10 YEARS OLD, 200 

OCCUPANTS



IES Test Center
Key Milestones

§ Baseline data collected in CY00

– Installed data acquisition system:  >160 sensors

– Performed baseline building and micro-turbine performance

– Performed baseline of indoor environment

§ Commissioned Integrated Systems in CY01

– System #1  (Honeywell MT, Broad Chiller, ATS desiccant)

– System #2 (Goettl Engines, Kathabar desiccant)

– Tested Trion air filter

– Performed indoor environmental assessment

§ Tested modified integrated systems in CY02

– System #1 (replaced Honeywell with Capstone MT)

– System #2 (replaced 1 Goettl engine)

– Tested both systems on propane





System 2 Controls Demonstration

www.enme.umd.edu/ceee/bchp



CHP System 1

Air to Zone 1

45 kW       
(150,000*) 
@ 1000º F

LIQUID DESICCANT 
SYSTEM45 kW 

(150,000*) 
@ 190º F

140 kW (40 tons) of Cooling

175 kW
(600,000*)

2 ENGINE DRIVEN AIR 
CONDITIONERSNatural 

Gas

3000 CFM of dry 
air to RTU1 

*Btu/hr

•Engine Jacket Water & Exhaust Used 
to Regenerate Desiccant

•Liquid desiccant only waste heat 
driven



Kathabar liquid Desiccant

Goettl Engine Driven AC

19



•Turbine efficiency 25.6 %, with chiller 63.5 %, and with desiccant 79.2%
•Single effect absorption chiller with COP of 0.7
•Supplemental cooling provided by existing RTU

67  kW Electric Power

MICRO TURBINE
100 kW 
(340,000*) 
Exhaust Air
@ 500 F

ABSORPTION CHILLER

70 kW (20 tons) 
Chilled Water

Solid Desiccant 
System40 kW 

(140,000*) 
Exhaust Air  
@ 225 F

3000 CFM
of Dry Air

* Btu/hr

262 kW
(895,000*)

Natural 
Gas

Air to   
Zone 1

CHP System 2 – Year 1



ATS Solid Desiccant

Microturbine

Broad Absorp. Chiller

3



• Microturbine exhaust driven only
• 20-ton nominal capacity
• Single effect, COP = 0.7
• VFD fan drives exhaust through generator 
• Microturbine power drives chiller & auxiliaries 

about 10 kW
• Chilled water pump
• Condenser water pump
• Cooling tower
• Exhaust fan
• Solution and refrigerant pumps

Broad Absorption Chiller



Absorption Chiller Data



Solid Desiccant Performance



Comparison



CHP System 2
Modified with Capstone 60 MT

59 kW electric power to building

Natural Gas 
215 kW 
(734,000*)

MICROTURBINE (MT)

150kW(512,000*) 
Exhaust @ 600º F

ABSORPTION CHILLER
63 kW (18 tons) chilled 
water to RTU 2

Air to Zone 2

SOLID DESICCANT SYSTEM

40 kW (136,000*) 
Exhaust @ 225º F

3000 CFM of dry 
air to RTU2 

*Btu/hr

5kW

20kW

1 kW



NG Scroll Compressor
On DC Bus

Reduced 
Ductwork

Mixed Air
Fan w/VFD

Exhaust 
Damper

Plenum
Box

System 2 - 2002System 2 - 2002

Capstone 60 
kW MT



Microturbine

Compressor Inlet Temperature vs. MT Power Output
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ÜÜ Clear relationship between compressor air Clear relationship between compressor air 
inlet temp and power output.inlet temp and power output.





NG Scroll Compressor
On DC Bus

Reduced 
Ductwork

Mixed Air
Fan w/VFD

Exhaust 
Damper

Plenum
Box

System 2 - 2002System 2 - 2002

Capstone 60 
kW MT



Plenum Box 
Modification



Start-Up Issues

§ Burned out fuses in Capstone MT caused 
by compressor faults è specialty fuses 
replaced.
§ Copeland compressor faults:

– Compressor ran at max speed & led to VFD 
burnout & fuse burnout è replaced VFD & 
fuses.

– Burned out VFD caused by faulty gas pressure 
transducer è replaced transducer.

– Low inlet pressure faults caused by faulty inlet 
pressure switch è replaced switch.



Broad Absorption Chiller

Ü Cooling capacity can be continuously 
maintained around 17 tons, it needs less than 1 
hour to stabilize

Ü Average exhaust inlet temp. 520 ºF , outlet 
temp. 235 ºF

Ü Chilled water flow rate is 45 gpm

Ü Parasitic power is 6.4kW

Ü Chiller COPtherm =17ton*3.5/92kW=0.65



Chiller Cooling Capacity
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Accomplishments

• Two Systems Installed and in Operation
• Education and Information Dissemination

• Tours, Conferences
• Technical Papers, Website

• Humidity, Comfort Implications, Other Aspects under 
Investigation 

• Current/Future Work
• Minimize parasitic loads
• Controls Integration
• Complete System Performance Analysis
• Increase heat recovered from engines







Thanks !


