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Outline
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• Multilevel inverter as a solution
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Types of DE
• Inverter-based

– Micro-turbine
– Fuel cell
– Photovoltaic (PV)

• Rotating-based
– Industrial gas turbine
– Reciprocating engine generator
– Wind turbine

Characteristics of DE
• Power electronic (PE) interface is required for most DE – providing DE 

with capability to provide ancillary services with the right controls.
• DE connected to utility system near load is ideal for many ancillary 

services.

• Voltage regulation from DE can have a beneficial impact on 
transmission stability & distribution system capacity & losses.

Types of Distributed Energy Sources 
(DE) for Voltage Regulation
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Ancillary services possible from DEAncillary services possible from DE

• Dynamic voltage regulation

•• Unbalanced compensation Unbalanced compensation 
•• Unbalanced source voltage compensationUnbalanced source voltage compensation
•• Unbalanced load current compensationUnbalanced load current compensation

• Reactive power compensation

• Power factor correction

• Harmonics compensation 
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Unique Solutions Possible with DE
Reactive power compensationReactive power compensation

• Capacitors are used widely, but don’t provide dynamic reactive power
– Fixed or time controlled capacitor banks can lead to lagging power factor 

during low loads
– Capacitor switching can cause voltage transients and also voltage 

magnification when capacitance matches system inductance
• Reactive power compensation with DE is more effective than capacitor-based 

compensation
– Reactive power compensation with capacitors is decreased by voltage 

squared and thus degrades at lower voltage when it is most needed
– DE in comparison can provide reactive power compensation continuously 

and without degradation when the voltage drops
• Future black outs might be prevented by sufficient DE installation

– Lack of reactive capacity or transport has been one of the leading causes for 
major cascading outages

• Local voltage support and control will be required to avoid voltage instability
– DE can supply reactive power based on maintaining local voltage schedules
– DE can supply reactive power to boost voltage or absorb reactive power to 

lower voltage
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Unique Solutions Possible with DE
PV modules and Fuel Cells can produce DC voltage 
suitable for DE applications. 

The output from PVs must be optimized for insolation 
and temperature, etc.
Fuel Cells do best when operated at fixed levels above 
50% without ramping
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PV Power Trend in USA
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Lower costs and incentives are 
driving some of this growth

Trends in Photovoltaic Applications Survey report of selected IEA countries between 1992 and 2005.
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Total PV Power Installed in IEA in 2005

Off-grid PV Capacity 
(MW)

Grid-connected PV 
capacity (MW)

domestic Non-
domestic

distributed centralized

202 311 3,022 160 3,696 1,092 1,039

Total 
installed 

PV power 
(MW)

PV Power 
installed in 

2005 
(MW)

Grid-
connected 
PV power 
installed in 
2005 (MW)

Installed PV power in reporting International Energy Agency (IEA)* 
member countries as of the end of 2005.

*IEA includes the US, Europe, Turkey, Japan, Canada, Australia, South Korea
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Multilevel Inverter is an optimal converter type 
for DE integration

Diode-clamped and cascaded H-bridge multilevel inverters

Staircase waveforms can be produced 

The possibility for several sources on the dc side of the converter makes 
multilevel inverter technology attractive for DE applications which 
require control of DC voltage.
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Multilevel Inverter Integration for High Power

Advantages:
● Staircase waveform quality with low distortion
● Input current with low distortion.
● Operate at both fundamental frequency and PWM

Disadvantages:
● Greater number of switches are needed
● Overall system more expensive and complex. 

Renewable energy sources such as photovoltaic and fuel cells can be 
easily interfaced to a multilevel inverter for a high power application 
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Instantaneous Non-active Power Theory (I)

Voltage 
Source Load

a

b

c

ia
ib
ic

P=active power
Q=reactive powerQ=reactive power

Q=reactive powerQ=reactive power

Active Power provides energy that does real work while non-active power, 
such as reactive power, provides stored energy for electric fields in motors.

ORNL has developed a new definition for instantaneous power.  All of the 
following are defined:

Instantaneous, average and apparent active current
Instantaneous, average and apparent non-active current

The theory is adopted for the real-time analysis and control of DE ancillary 
services in this study. 
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Instantaneous Non-active Power Theory (II)

• Instantaneous Non-active Power Theory is different 
from conventional theory since it does not have the same 
limitations:
– Not limited by the number of the phases
– Voltage and current can be sinusoidal or non-sinusoidal
– Waveforms can be periodic or non-periodic
– Other theories have above limitations.

• The Instantaneous Non-active Power theory is valid for
• Single-phase or multi-phase systems
• Sinusoidal or non-sinusoidal systems
• Periodic or non-periodic systems
• Balanced or unbalanced systems
• Ideal for real-time calculations and control
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Benefits of Instantaneous Non-active Power 
Theory (I)

• The definitions can be used for control of DE non-
active-power-related ancillary services including:

• Non-active power compensation, 
• Power factor correction, 
• Voltage and/or current unbalance compensation, 
• Harmonics compensation, 
• Voltage regulation.

• The theory can be used for rotating and PE based DE. 

• The only limitations is that rotating-based devices can't 
address all non-active power (harmonics, unbalance, etc.) 
as the inverter unless they are single-phase and will be 
much slower.
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• Three of the ancillary services are achieved by 
controlling the current of the compensator*:
– Non-active power compensation, 
– Current harmonics compensation, 
– Current unbalance compensation. 

• The compensator current can be controlled so 
that the utility current is fundamental 
sinusoidal, unity power factor and balanced.

Benefits of the Instantaneous Non-active 
Power Theory (II)

*The broad term of compensator is used to represent the power-electronics 
based DE.
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Instantaneous Non-active Power Theory 
Definitions (I)*
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Instantaneous power and average power:

Voltage and current in a three-phase system:

• Tc is the averaging interval. 
– In a periodic system with period T, Tc = kT/2, k = 1, 2, 3, …

• The average power P(t) is a variable changing with time.

*Mathematical definitions of the theory are shown.
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Instantaneous Non-active Power Theory 
Definitions (II)
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Instantaneous active current and non-active current:

RMS value of the reference voltage:

• vp(t) is the reference voltage & Vp(t) is the RMS value of vp(t).
– vp(t) could be the system voltage itself, 
– or another reference, based on compensation objectives.

• ia(t) is the active component in current i(t), 

• in(t) is the non-active component in current i(t). 
– ia(t) and in(t) are orthogonal.
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Instantaneous Non-active Power Theory 
Definitions (III)
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RMS values:

• Ia(t) is the active current RMS value

• In(t) is the non-active current RMS value

• Average & RMS values in the instantaneous non-active power 
theory are variables changing with time

• These definitions are suitable for real-time control & calculation and 
have been implemented in our simulations and tests.
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Unbalanced compensation

• In reality, neither the grid voltages nor the loads are 
balanced. 

• Unbalances cause numerous problems such as:
– Additional losses and overheating of transformers
– Shortened equipment life
– Higher noise, oscillatory torque, and mechanical stress in 

rotating machines
– Interference with communication networks
– Malfunction of sensitive electronic equipment etc.

• Therefore, it is vital for power electronics based DE to 
be able to handle unbalanced sources and/or loads.  

• A DE can perform both current and voltage unbalance 
compensation, either individually or together, 
depending on the compensation objectives. 
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Unbalanced Voltage and Current Compensation

• Unbalanced Voltage(s):
– Caused by other loads or generators or phase imbalances in 

the system
– Results in unbalanced load current even the load is balanced.

• Unbalanced Current(s):
– Caused by the load not being balanced
– Results in unbalanced voltage at the service panel (source)

• A grid-interfaced Power-electronic-based DE can 
compensate the unbalanced voltage by controlling 
the magnitudes and phase angles of the individual 
phases.

• The DE can perform both current and voltage balance 
compensation with proper control schemes.
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Simulation of Unbalance Load Compensation
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Unbalanced source currents 
(load compensation starts at 0.35 second)
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Source voltages before and after 
compensation of unbalanced load 

current condition

Unbalanced load currents 
lead to unbalanced load 
voltages

In an unbalanced load current condition, balanced voltage and current are 
desired

Loss of a phase is severe case which is proof of principle
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Simulation of Unbalanced Voltage Compensation 
and Reactive Power Compensation

Unbalanced source voltage

Three-phase source voltages and source current (phase a only) before 
and after compensation in unbalanced voltage source condition.

load compensation starts at 0.35 second

Power factor 
before 
compensation

Power factor 
after 
compensation*

*Corrected to unity (1.0) power factor; no 
reactive power demanded from the system.
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Simulation Results

• With the proposed new definitions and control 
algorithm, power electronic-based DE has the 
following features:
1.When the three-phase line voltages are balanced:

the line currents will be sinusoidal and follow the 
zero-sum components of the line voltages, the DE 
can control its reactive power output to raise or 
lower the local voltage to maintain a reference level.

2.When loads are unbalanced: the DE can 
automatically generate non-active (harmonic and 
unbalanced reactive) currents to cancel those from 
unbalanced loads to keep the line currents balanced 
and at unity power factor.
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Conclusions

• Using our developed instantaneous non-active 
power theory,  ancillary services can be provided by 
DE.

• DE can perform real-time local voltage regulation by 
controlling reactive power compensation to maintain 
a voltage reference.

• PV modules and Fuel Cells can produce DC voltage 
suitable for DE applications but their operating 
limitations need to be considered.

• The multilevel inverter, together with the new 
definitions will be extremely powerful in solving 
common distribution system problems.

• Future black outs might be prevented by sufficient 
DE installation in the power system.
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