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Outline

• Background: Advanced ceramics for microturbine applications

• Problem:  Corrosion of ceramics in aggressive environments

• Objective: Develop & fabricate low-cost protective coatings
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Advanced Ceramics for Microturbine Applications

• Si3N4 and SiC/SiC composites are candidate high temperature structural 
materials for hot section components in microturbine environments.

• Protective SiO2 scales are the basis for corrosion resistance.

• Silica scales can be rapidly degraded in combustion environments.
–Hot corrosion by alkali species (Strangman)
–H2O vapor & impurities accelerate SiO2 growth (Deal, Opila, More et al.)
–SiO2 is volatile in H2O (Venable, Opila)
–Oxidation/volatilization increase w/ gas pressure & velocity (Robinson)

SiO2 scale
Si
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SiO2 + H2O(g) = SiO(OH)4 (g)

gas
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Are Protective Coatings Necessary? 

• Protective coatings will be necessary to provide adequate ceramic component lifetimes.

• Coatings must be adherent, stable and protective in high temperature water vapor, 
thermal expansion matched with SiC or Si3N4, easy to manufacture, and cost effective.

Si3N4 (281-2)+ CVD mullite

CVD mullite coating

15 µm

Si3N4 (281-1):  bare ceramic

Oxide scale

15 µm

500-h, 1200°C, 10 atm, 15% H2O

20  µm

Coating Performance = f(Material + Processing + Environment)

*  Micrographs courtesy of J.A. Haynes/Oak Ridge National Laboratory



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Tape casting Gelcasting, slip casting
Dip coating

BaTiO3 capacitors

2-D structures Coatings and Monoliths

RE-silicate coating on  
a Si3N4 rotor blade

Colloidal Assembly of Ceramic Devices and Coatings

Robotic deposition
3D inkjet printing

3-D structures

PZT motor arrays
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Interparticle Forces Must be Controlled to Tailor 
Suspension Rheological Behavior

200 nm

Colloidal particles  -->  basic “building blocks”
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Surface (Zeta) Potential of Ceramic Particles in Aqueous Media

Mullite
Barium-Strontium 

Aluminosilicate (BSAS)
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(Dilute Suspensions, 10-3 vol%)

• The isoelectric point (IEP) of mullite and BSAS is at pH 3-4.
• Above the IEP, the zeta potential is negative.
• -63 mV achieved at pH 7 and 10 for mullite and BSAS, respectively.
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Mullite BSAS

Charge Stabilization of Ceramic Suspensions
(45 vol%, pH adjusted with 1 M HNO3 and 1 M NH4OH)

pHpH

Model Predictions at
Optimum Conditions
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• Mullite suspensions are stable (Newtonian) just above pH 6.3.
• BSAS suspensions cannot be stabilized by bare surface charge modification.
• Results agree with model predictions. 
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Ceramic
Material DispersantIEP
SiO2 3-4
SiC

BSAS 3-4
Mullite

3-4Si3N4 (E10)

Al2O3

3-4

3-4

8-9
RE-silicates

PEI
PEI
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3-6
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Polyelectrolyte Stabilization of Ceramic Suspensions
(45 vol%, pH 7, 10,000 g/mole PEI)

Mullite BSAS
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• Newtonian and near-Newtonian flow behavior achieved with the addition of 
0.2 mg PEI/m2 mullite and 0.4 mg PEI/m2 BSAS, respectively.

• Results agree with model predictions.

Model Predictions
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Resulting Coating Quality Depends Upon Slurry Rheology

Coatings formed by dipping substrates into mullite slurries 
(45 vol%) of varying PEI Concentration, [PEI]/[PEI]crit
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Wetting Behavior Controlled Through Use of Additives

• The contact angle decreases with use of latex additives.

• The contact angle (θ) depends on the interfacial energy between the coating   
and substate, the substrate and atmosphere, and the coating and atmosphere.

Mullite-Latex
φ mullite = 0.25, pH 10

φ latex SiC Si3N4

θ θ
0 55.0 71.5

0.034 49.5 50.5
0.076 40.0 40.5

BSAS-Latex
φ BSAS = 0.25, pH 10

φ latex SiC Si3N4

θ θ
0 53.0 85.5

0.034 48.0 49.0
0.076 44.5 41.5

θ
γAC γAB

γBC

SiC or Si3N4 Substrate

Ambient or controlled Atmosphere

Slurry

Sessile Drop Measurements:
10 µL mullite suspension droplet on SiC
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SiO2-LatexCeramic-Latex Binary Suspensions

Deformable latex particles promote uniform,
Crack-free drying of slurry coatings

C. J. Martinez and J. A. Lewis, Langmuir, 18 [12] 2002
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Formation of Thin, Uniform Mullite Coatings

100 µm

Sintered in air, 1400 oC
Coating applied from 25 vol% mullite suspension w/ 5 vol% latex

20 µm

SiC

Mullite

Si-Al-O

Mullite

SN282

20 µm

100 µm
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Formation of Thin, Uniform BSAS Coatings

100 µm

Sintered in air, 1300 oC

Green coating, from 25 vol% BSAS
suspension w/ latex

2 µm
20 µm

BSAS

SiC

SiO2-rich
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Exposure of Mullite Coated SiC and SN282 Test Bars 

SiC, before

(500h Steam Exposure at 1200°C, 1 atm)

SiC, after

SN282, before SN282, after

Diffraction Pattern
After Exposure
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Minor Strength 
Degradation 
Observed After 
500h Steam 
Exposure at 
1200°C, 1 atm

Strength Can Be Influenced by Coating Properties
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*

* Hexaloy specifications for four-point bend flexural strength with standard deviation from 
Kim & Moorhead, J. Am. Ceram. Soc., 73 [7] (1990) pp 1868-72.

Four-Point Bend Flexural Strength (Initial Tests)
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Minor Reaction Occurred Between Mullite and 
SASiC Substrate During the Sintering  

SA SiC

Mullite

Si-Al-O

Interaction at the interface promotes adhesion
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SA SiC

Mullite

Silica Formation Occurs Due to Conduction of 
O2 Through the Porous Mullite Layer

SiO2
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Summary

• By applying the principles of colloidal processing, the rheological
behavior of ceramic suspensions can be tailored for the ORNL
dip-coating process. 

• Uniform coatings have been formed on complex-shaped 
components. Uniform coatings do not result in a significant
strength debit to the component.

• The coatings must be dense (i.e., no open porosity) to prevent
O2 conduction to the substrate and ultimately, the formation of
porous SiO2 at the interface.

• The substrate/coating interface is strongly influenced by the test 
environment and material selection.  Reactions that occur at the 
interface will likely dictate the service life of a coated component.
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